Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hippo signalling in the liver: role in development, regeneration and disease

Abstract

The Hippo signalling pathway has emerged as a major player in many aspects of liver biology, such as development, cell fate determination, homeostatic function and regeneration from injury. The regulation of Hippo signalling is complex, with activation of the pathway by diverse upstream inputs including signals from cellular adhesion, mechanotransduction and crosstalk with other signalling pathways. Pathological activation of the downstream transcriptional co-activators yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, encoded by WWTR1), which are negatively regulated by Hippo signalling, has been implicated in multiple aspects of chronic liver disease, such as the development of liver fibrosis and tumorigenesis. Thus, development of pharmacological inhibitors of YAP–TAZ signalling has been an area of great interest. In this Review, we summarize the diverse roles of Hippo signalling in liver biology and highlight areas where outstanding questions remain to be investigated. Greater understanding of the mechanisms of Hippo signalling in liver function should help facilitate the development of novel therapies for the treatment of liver disease.

Key points

  • During embryonic liver development, yes-associated protein 1 (YAP) activity in hepatoblasts suppresses hepatocyte differentiation and is essential for proper cholangiocyte maturation and formation of the intrahepatic biliary network.

  • During adult liver homeostasis, YAP activity is largely dispensable in hepatocytes but is required for the maintenance of mature cholangiocytes through its protective effects against exposure to hydrophobic bile acids.

  • YAP is an important regulator of liver cell fate owing to its ability to promote hepatocyte-to-cholangiocyte transdifferentiation, and its activity in cholangiocytes drives the ductular reaction during chronic liver injury.

  • YAP–transcriptional co-activator with PDZ-binding motif (TAZ) activity in hepatocytes, hepatic stellate cells, Kupffer cells and liver sinusoidal endothelial cells promotes inflammation and fibrosis in multiple models of nonalcoholic steatohepatitis and chemical-induced liver fibrosis.

  • YAP is a potent oncogene and high YAP activity is frequently observed in hepatocellular carcinoma, hepatoblastoma and cholangiocarcinoma, where it promotes tumour cell proliferation, drug resistance and potentially immune evasion.

  • Pharmacological targeting of YAP–TAZ holds great potential, either through inhibition of YAP–TAZ activity for anti-cancer or anti-fibrotic therapies or through promotion of YAP–TAZ activity to enhance liver regeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hippo signalling pathway.
Fig. 2: Role of Hippo signalling in liver development.
Fig. 3: Role of Hippo signalling in liver homeostasis and regeneration.
Fig. 4: Role of Hippo signalling in liver cancer.
Fig. 5: Strategies for targeting the Hippo signalling pathway.

Similar content being viewed by others

References

  1. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

    Article  PubMed  Google Scholar 

  2. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Creasy, C. L. & Chernoff, J. Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene 167, 303–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Creasy, C. L., Ambrose, D. M. & Chernoff, J. The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J. Biol. Chem. 271, 21049–21053 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Tao, W. et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nat. Genet. 21, 177–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yin, F. et al. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 154, 1342–1355 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, J. & Giancotti, F. G. Molecular insights into NF2/Merlin tumor suppressor function. FEBS Lett. 588, 2743–2752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, B., Li, L., Tumaneng, K., Wang, C. Y. & Guan, K. L. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(β-TRCP). Genes Dev. 24, 72–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanai, F. et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19, 6778–6791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18, 2551–2562 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19, 831–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Mohseni, M. et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat. Cell Biol. 16, 108–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen, H. B., Babcock, J. T., Wells, C. D. & Quilliam, L. A. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap. Oncogene 32, 4100–4109 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Herr, K. J. et al. Loss of α-catenin elicits a cholestatic response and impairs liver regeneration. Sci. Rep. 4, 6835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, N. G., Koh, E., Chen, X. & Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl Acad. Sci. USA 108, 11930–11935 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benham-Pyle, B. W., Pruitt, B. L. & Nelson, W. J. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bai, H. et al. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G396–G411 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun, S. & Irvine, K. D. Cellular organization and cytoskeletal regulation of the hippo signaling network. Trends Cell Biol. 26, 694–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Sun, P. et al. Maintenance of primary hepatocyte functions in vitro by inhibiting mechanical tension-induced YAP activation. Cell Rep. 29, 3212–3222.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, B. et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes. Dev. 25, 51–63 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chan, S. W. et al. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 286, 7018–7026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moroishi, T. et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 29, 1271–1284 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mana-Capelli, S., Paramasivam, M., Dutta, S. & McCollum, D. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25, 1676–1685 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi, C. et al. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci. Signal. 6, ra77 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mao, B., Gao, Y., Bai, Y. & Yuan, Z. Hippo signaling in stress response and homeostasis maintenance. Acta Biochim. Biophys. Sin. 47, 2–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Koo, J. H. & Guan, K. L. Interplay between YAP/TAZ and metabolism. Cell Metab. 28, 196–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, H. W. et al. Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mo, J. S., Yu, F. X., Gong, R., Brown, J. H. & Guan, K. L. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev. 26, 2138–2143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reddy, B. V. & Irvine, K. D. Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev. Cell 24, 459–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rizvi, S. et al. A hippo and fibroblast growth factor receptor autocrine pathway in cholangiocarcinoma. J. Biol. Chem. 291, 8031–8047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Straßburger, K., Tiebe, M., Pinna, F., Breuhahn, K. & Teleman, A. A. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev. Biol. 367, 187–196 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Li, P. et al. αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev. 30, 798–811 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Si, Y. et al. Src inhibits the hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Res. 77, 4868–4880 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Hong, A. W. et al. Osmotic stress-induced phosphorylation by NLK at Ser128 activates YAP. EMBO Rep. 18, 72–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Moon, S. et al. Phosphorylation by NLK inhibits YAP-14-3-3-interactions and induces its nuclear localization. EMBO Rep. 18, 61–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Oudhoff, M. J. et al. Control of the hippo pathway by Set7-dependent methylation of Yap. Dev. Cell 26, 188–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Fang, L. et al. SET1A-mediated mono-methylation at K342 regulates YAP activation by blocking its nuclear export and promotes tumorigenesis. Cancer Cell 34, 103–118.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, Y. et al. Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice. Hepatology 69, 343–358 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Anakk, S. et al. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 5, 1060–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell–cell adhesion. Science 281, 832–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, D. H. et al. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat. Commun. 7, 11961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yuan, W. C. et al. NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, P. et al. Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget 8, 73433–73447 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cox, A. G. et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat. Cell Biol. 18, 886–896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jeong, S. H. et al. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J. Clin. Invest. 128, 1010–1025 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lemaigre, F. P. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137, 62–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. Development 142, 2094–2108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kyrmizi, I. et al. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes Dev. 20, 2293–2305 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, L. et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 66, 1387–1401 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Alder, O. et al. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. Cell Rep. 9, 261–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yi, J. et al. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ. Hepatology 64, 1757–1772 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Song, H. et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl Acad. Sci. USA 107, 1431–1436 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee, K. P. et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA 107, 8248–8253 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu, N. et al. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Lab. Invest. 97, 843–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Molina, L. M. et al. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep. 36, 109310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verboven, E. et al. Regeneration defects in yap and taz mutant mouse livers are caused by bile duct disruption and cholestasis. Gastroenterology 160, 847–862 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Lu, L., Finegold, M. J. & Johnson, R. L. Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med. 50, e423 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fitamant, J. et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Rep. 10, 1692–1707 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bai, H. et al. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 56, 1097–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 25, 23–38.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pocaterra, A. et al. F-actin dynamics regulates mammalian organ growth and cell fate maintenance. J. Hepatol. 71, 130–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Planas-Paz, L. et al. YAP, but Not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25, 39–53.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Russell, J. O. et al. Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 69, 742–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Deng, X. et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114–122.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Choi, T. Y., Ninov, N., Stainier, D. Y. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Schaub, J. R. et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Michalopoulos, G. K., Barua, L. & Bowen, W. C. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41, 535–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Wu, H. et al. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep. 3, 1663–1677 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    Article  PubMed  CAS  Google Scholar 

  92. Poudel, S. et al. Hepatocyte specific deletion of Yes-associated protein (YAP) improves recovery from acetaminophen-induced acute liver injury. Toxicol. Sci. 184, 276–285 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Loforese, G. et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol. Med. 9, 46–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Swiderska-Syn, M. et al. Hedgehog regulates Yes-associated protein 1 in regenerating mouse liver. Hepatology 64, 232–244 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Paranjpe, S. et al. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 64, 1711–1724 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Ko, S., Russell, J. O., Molina, L. M. & Monga, S. P. Liver progenitors and adult cell plasticity in hepatic injury and repair: knowns and unknowns. Annu. Rev. Pathol. 15, 23–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Bangru, S. et al. Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nat. Struct. Mol. Biol. 25, 928–939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, W. et al. A homeostatic arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25, 54–68.e55 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Chang, L. et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563, 265–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Mooring, M. et al. Hepatocyte stress increases expression of Yes-associated protein and transcriptional coactivator with PDZ-binding motif in hepatocytes to promote parenchymal inflammation and fibrosis. Hepatology 71, 1813–1830 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, Y. et al. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia–reperfusion injury. J. Hepatol. 71, 719–730 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mannaerts, I. et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J. Hepatol. 63, 679–688 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7, 12502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song, K. et al. Yes-associated protein in Kupffer cells enhances the production of proinflammatory cytokines and promotes the development of nonalcoholic steatohepatitis. Hepatology 72, 72–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Qing, J. et al. Dopamine receptor D2 antagonization normalizes profibrotic macrophage-endothelial crosstalk in non-alcoholic steatohepatitis. J. Hepatol. https://doi.org/10.1016/j.jhep.2021.09.032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nakajima, H. et al. Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Dev. Cell 40, 523–536.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Zhang, C. et al. Oroxylin A prevents angiogenesis of LSECs in liver fibrosis via inhibition of YAP/HIF-1α signaling. J. Cell Biochem. 119, 2258–2268 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA 107, 1437–1442 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tschaharganeh, D. F. et al. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144, 1530–1542.e12 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Li, H. et al. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver Int. 32, 38–47 (2012).

    Article  PubMed  CAS  Google Scholar 

  112. Xu, M. Z. et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 115, 4576–4585 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Sohn, B. H. et al. Inactivation of hippo pathway is significantly associated with poor prognosis in hepatocellular carcinoma. Clin. Cancer Res. 22, 1256–1264 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, Y. et al. Comprehensive molecular characterization of the hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kim, I. et al. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28, 940–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67, 863–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, Q. et al. Glycogen accumulation and phase separation drives liver tumor initiation. Cell 184, 5559–5576.e19 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Xia, H. et al. EGFR-PI3K-PDK1 pathway regulates YAP signaling in hepatocellular carcinoma: the mechanism and its implications in targeted therapy. Cell Death Dis. 9, 269 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Chakraborty, S. et al. Agrin as a mechanotransduction signal regulating YAP through the hippo pathway. Cell Rep. 18, 2464–2479 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Gao, J. et al. Cirrhotic stiffness affects the migration of hepatocellular carcinoma cells and induces sorafenib resistance through YAP. J. Cell Physiol. 234, 2639–2648 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Liang, Y. et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology 57, 1847–1857 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Ma, B. et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Zhou, T. Y. et al. Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance to sorafenib in hepatocellular carcinoma cells. Sci. Rep. 6, 30483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cho, K. et al. YAP/TAZ suppress drug penetration into hepatocellular carcinoma through stromal activation. Hepatology 74, 2605–2621 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, W. et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137–152 (2017).

    Article  PubMed  Google Scholar 

  127. Tao, J. et al. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 690–701 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Park, Y. Y. et al. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma. Hepatology 63, 159–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Smith, J. L. et al. YAP1 withdrawal in hepatoblastoma drives therapeutic differentiation of tumor cells to functional hepatocyte-like cells. Hepatology 73, 1011–1027 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Pei, T. et al. YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 6, 17206–17220 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Marti, P. et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62, 1497–1510 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Wu, H. et al. Clinicopathological and prognostic significance of Yes-associated protein expression in hepatocellular carcinoma and hepatic cholangiocarcinoma. Tumour Biol. 37, 13499–13508 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Rizvi, S. et al. YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget 9, 5892–5905 (2018).

    Article  PubMed  Google Scholar 

  134. Fan, B. et al. Cholangiocarcinomas can originate from hepatocytes in mice. J. Clin. Invest. 122, 2911–2915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moya, I. M. et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 366, 1029–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, J. et al. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Oncogene 37, 3229–3242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yamada, D. et al. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 61, 1627–1642 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Lu, X. et al. YAP accelerates notch-driven cholangiocarcinogenesis via mTORC1 in mice. Am. J. Pathol. 191, 1651–1667 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Song, X. et al. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. J. Hepatol. 75, 888–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. White, S. M., Murakami, S. & Yi, C. The complex entanglement of Hippo-Yap/Taz signaling in tumor immunity. Oncogene 38, 2899–2909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lee, B. S. et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem. Biophys. Res. Commun. 491, 493–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Kim, M. H. et al. YAP-Induced PD-L1 expression drives immune evasion in BRAFi-resistant melanoma. Cancer Immunol. Res. 6, 255–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Janse van Rensburg, H. J. et al. The Hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res. 78, 1457–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Miao, J. et al. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget 8, 114576–114587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Macek Jilkova, Z., Aspord, C. & Decaens, T. Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: current status and challenges. Cancers (Basel) 11, 1554 (2019).

    Article  CAS  Google Scholar 

  146. Moroishi, T. et al. The Hippo pathway kinases LATS1/2 suppress cancer immunity. Cell 167, 1525–1539.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guo, X. et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 31, 247–259 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim, W. et al. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 67, 1692–1703 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Hyun, J. et al. Dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes hepatobiliary carcinogenesis in non-alcoholic fatty liver disease. J. Hepatol. 75, 623–633 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Konstantinou, E. K. et al. Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci. Rep. 7, 46581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chen, L. et al. Structural basis of YAP recognition by TEAD4 in the Hippo pathway. Genes Dev. 24, 290–300 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bum-Erdene, K. et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEADYap protein-protein interaction. Cell Chem. Biol. 26, 378–389.e13 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Holden, J. K. et al. Small molecule dysregulation of TEAD lipidation induces a dominant-negative inhibition of Hippo pathway signaling. Cell Rep. 31, 107809 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, W. et al. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 13, 524–532 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Jia, J. et al. Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS ONE 12, e0184068 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yin, H. et al. RNAi-nanoparticulate manipulation of gene expression as a new functional genomics tool in the liver. J. Hepatol. 64, 899–907 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Haak, A. J. et al. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci. Transl. Med. 11, eaau6296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Alsamman, S. et al. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci. Transl. Med. 12, eaay8798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all the members of the laboratory of F.D.C. for insightful discussions. The authors were supported by grants from the National Institutes of Health (AR064036 and DK099559 to F.D.C., 1F32CA254433-01 to J.O.R.) and the Cholangiocarcinoma Foundation (2019 Mark R. Clements Memorial Research Fellowship Award to J.O.R.). F.D.C. is an HHMI scholar.

Author information

Authors and Affiliations

Authors

Contributions

F.D.C. made a substantial contribution to discussion of content, and reviewed/edited the manuscript before submission. J.O.R. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Fernando D. Camargo.

Ethics declarations

Competing interests

F.D.C. holds equity interests and is on the scientific advisory board of Fog Therapeutics. F.D.C. has applied for patents related to inhibition of YAP/TEAD function.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Xin Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, J.O., Camargo, F.D. Hippo signalling in the liver: role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol 19, 297–312 (2022). https://doi.org/10.1038/s41575-021-00571-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00571-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing