Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intra-pancreatic fat deposition: bringing hidden fat to the fore

Subjects

Abstract

Development of advanced modalities for detection of fat within the pancreas has transformed understanding of the role of intra-pancreatic fat deposition (IPFD) in health and disease. There is now strong evidence for the presence of minimal (but not negligible) IPFD in healthy human pancreas. Diffuse excess IPFD, or fatty pancreas disease (FPD), is more frequent than type 2 diabetes mellitus (T2DM) (the most common disease of the endocrine pancreas) and acute pancreatitis (the most common disease of the exocrine pancreas) combined. FPD is not strictly a function of high BMI; it can result from the excess deposition of fat in the islets of Langerhans, acinar cells, inter-lobular stroma, acinar-to-adipocyte trans-differentiation or replacement of apoptotic acinar cells. This process leads to a wide array of diseases characterized by excess IPFD, including but not limited to acute pancreatitis, chronic pancreatitis, pancreatic cancer, T2DM, diabetes of the exocrine pancreas. There is ample evidence for FPD being potentially reversible. Weight loss-induced decrease of intra-pancreatic fat is tightly associated with remission of T2DM and its re-deposition with recurrence of the disease. Reversing FPD will open up opportunities for preventing or intercepting progression of major diseases of the exocrine pancreas in the future.

Key points

  • A small amount of intra-pancreatic fat is a constituent of the normal human pancreas.

  • Chemical shift-encoded MRI is the modality of choice for in vivo quantification of intra-pancreatic fat in humans.

  • Excess intra-pancreatic fat is important in type 2 diabetes mellitus pathogenesis but is not necessarily a consequence of general obesity.

  • Excess intra-pancreatic fat has a major role in transition from acute to chronic pancreatitis.

  • Progressive increase in intra-pancreatic fat can be a harbinger of pancreatic cancer.

  • Intra-pancreatic fat is often labile and fatty pancreas disease is, in principle, reversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of fatty pancreas disease in the general population.
Fig. 2: Principal components of intra-pancreatic fat deposition.
Fig. 3: Possible causative role of fatty pancreas disease in major diseases of the exocrine and endocrine pancreas.

Similar content being viewed by others

References

  1. Schaefer, J. H. The normal weight of the pancreas in the adult human being: a biometric study. Anat. Rec. 32, 119–132 (1926).

    Article  Google Scholar 

  2. Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    Article  PubMed  Google Scholar 

  3. Polyzos, S. A. & Mantzoros, C. S. Making progress in nonalcoholic fatty liver disease (NAFLD) as we are transitioning from the era of NAFLD to dys-metabolism associated fatty liver disease (DAFLD). Metabolism 111S, 154318 (2020).

    Article  PubMed  Google Scholar 

  4. Polyzos, S. A. et al. Nonalcoholic or metabolic dysfunction-associated fatty liver disease? The epidemic of the 21st century in search of the most appropriate name. Metabolism 113, 154413 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Petrov, M. S. Diabetes of the exocrine pancreas: American Diabetes Association-compliant lexicon. Pancreatology 17, 523–526 (2017).

    Article  PubMed  Google Scholar 

  6. Petrov, M. S. & Basina, M. Diagnosing and classifying diabetes in diseases of the exocrine pancreas. Eur. J. Endocrinol. 184, R151–R163 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Walters, M. N. Adipose atrophy of the exocrine pancreas. J. Pathol. Bacteriol. 92, 547–557 (1966).

    Article  CAS  PubMed  Google Scholar 

  8. Olsen, T. S. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol. Microbiol. Scand. A 86A, 367–373 (1978).

    CAS  PubMed  Google Scholar 

  9. Schmitz-Moormann, P., Pittner, P. M. & Heinze, W. Lipomatosis of the pancreas. A morphometrical investigation. Pathol. Res. Pract. 173, 45–53 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. Stamm, B. H. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum. Pathol. 15, 677–683 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Kovanlikaya, A. et al. Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr. Radiol. 35, 601–607 (2005).

    Article  PubMed  Google Scholar 

  12. Durand, S., Estival, A., Vieu, C., Clemente, F. & Douste-Blazy, L. Lipid content of human and rat pancreas. Pancreas 2, 326–332 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Tremmel, D. M. et al. Hypertension, but not body mass index, is predictive of increased pancreatic lipid content and islet dysfunction. Am. J. Transpl. 20, 1105–1115 (2020).

    Article  CAS  Google Scholar 

  14. Xiao, A. Y. et al. The use of International Classification of Diseases codes to identify patients with pancreatitis: a systematic review and meta-analysis of diagnostic accuracy studies. Clin. Transl. Gastroenterol. 9, 191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, C. Y., Ou, H. Y., Chen, M. F., Chang, T. C. & Chang, C. J. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J. Am. Heart Assoc. 3, e000297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hung, C. S. et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology 287, 853–863 (2018).

    Article  PubMed  Google Scholar 

  17. Koç, U. & Taydaş, O. Evaluation of pancreatic steatosis prevalence and anthropometric measurements using non-contrast computed tomography. Turk. J. Gastroenterol. 31, 640–648 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wong, V. W. et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 109, 589–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Singh, R. G. et al. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism 69, 1–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, A. Y. et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 1, 45–55 (2016).

    Article  PubMed  Google Scholar 

  21. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  22. Cho, J. & Petrov, M. S. Pancreatitis, pancreatic cancer, and their metabolic sequelae: projected burden to 2050. Clin. Transl. Gastroenterol. 11, e00251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shibata, M., Kihara, Y., Taguchi, M., Tashiro, M. & Otsuki, M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30, 2940–2944 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Choi, C. W. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J. Gastroenterol. 16, 4329–4334 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sepe, P. S. et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest. Endosc. 73, 987–993 (2011).

    Article  PubMed  Google Scholar 

  26. Kim, S. Y. et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 271, 104–112 (2014).

    Article  PubMed  Google Scholar 

  27. Coe, P. O. et al. Development of MR quantified pancreatic fat deposition as a cancer risk biomarker. Pancreatology 18, 429–437 (2018).

    Article  PubMed  Google Scholar 

  28. Lingvay, I. et al. Noninvasive quantification of pancreatic fat in humans. J. Clin. Endocrinol. Metab. 94, 4070–4076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ko, J. et al. Associations between intra-pancreatic fat deposition, pancreas size, and pancreatic enzymes in health and after an attack of acute pancreatitis. Obes. Facts, https://doi.org/10.1159/000519621 (2021).

  30. Macauley, M., Percival, K., Thelwall, P. E., Hollingsworth, K. G. & Taylor, R. Altered volume, morphology and composition of the pancreas in type 2 diabetes. PLoS ONE 10, e0126825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeSouza, S. V., Priya, S., Cho, J., Singh, R. G. & Petrov, M. S. Pancreas shrinkage following recurrent acute pancreatitis: an MRI study. Eur. Radiol. 29, 3746–3756 (2019).

    Article  PubMed  Google Scholar 

  32. Virostko, J. Quantitative magnetic resonance imaging of the pancreas of individuals with diabetes. Front. Endocrinol. 11, 592349 (2020).

    Article  Google Scholar 

  33. Yoon, J. H. et al. Pancreatic steatosis and fibrosis: quantitative assessment with preoperative multiparametric MR imaging. Radiology 279, 140–150 (2016).

    Article  PubMed  Google Scholar 

  34. Fukui, H. et al. Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer. Eur. J. Radiol. 118, 25–31 (2019).

    Article  PubMed  Google Scholar 

  35. Li, J., Xie, Y., Yuan, F., Song, B. & Tang, C. Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: effect of aging on pancreatic fat content. Pancreas 40, 295–299 (2011).

    Article  PubMed  Google Scholar 

  36. Kühn, J. P. et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 276, 129–136 (2015).

    Article  PubMed  Google Scholar 

  37. Yang, W. et al. Effects of aging and menopause on pancreatic fat fraction in healthy women population: a STROBE-compliant article. Medicine 98, e14451 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Al-Mrabeh, A., Hollingsworth, K. G., Steven, S., Tiniakos, D. & Taylor, R. Quantification of intrapancreatic fat in type 2 diabetes. PLoS ONE 12, e0174660 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Singh, R. G. et al. Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver. Peptides 119, 170117 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Singh, R. G., Nguyen, N. N., Cervantes, A., Cho, J. & Petrov, M. S. Serum lipid profile as a biomarker of intra-pancreatic fat deposition: a nested cross-sectional study. Nutr. Metab. Cardiovasc. Dis. 29, 956–964 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Ko, J., Skudder-Hill, L., Cho, J., Bharmal, S. H. & Petrov, M. S. The relationship between abdominal fat phenotypes and insulin resistance in non-obese individuals after acute pancreatitis. Nutrients 12, 2883 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  42. Singh, R. G. et al. Associations between intra-pancreatic fat deposition and circulating levels of cytokines. Cytokine 120, 107–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Ko, J., Skudder-Hill, L., Cho, J., Bharmal, S. H. & Petrov, M. S. Pancreatic enzymes and abdominal adipose tissue distribution in new-onset prediabetes/diabetes after acute pancreatitis. World J. Gastroenterol. 27, 3357–3371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steven, S. et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care 39, 158–165 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Steven, S. et al. Very low calorie diet and 6 months of weight stability in type 2 diabetes: pathophysiological changes in responders and nonresponders. Diabetes Care 39, 808–815 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Al-Mrabeh, A. et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 31, 233–249 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Taylor, R. et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery. Cell Metab. 28, 547–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Lim, E. L. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kato, S. et al. Three-dimensional analysis of pancreatic fat by fat-water magnetic resonance imaging provides detailed characterization of pancreatic steatosis with improved reproducibility. PLoS ONE 14, e0224921 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koç, U., Ocakoğlu, G. & Alğin, O. The efficacy of the 3-dimensional vibe-caipirinha-Dixon technique in the evaluation of pancreatic steatosis. Turk. J. Med. Sci. 50, 184–194 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Kumar, H., DeSouza, S. V. & Petrov, M. S. Automated pancreas segmentation from computed tomography and magnetic resonance images: a systematic review. Comput. Methods Prog. Biomed. 178, 319–328 (2019).

    Article  Google Scholar 

  52. Abunahel, B. M., Pontre, B., Kumar, H. & Petrov, M. S. Pancreas image mining: a systematic review of radiomics. Eur. Radiol. 31, 3447–3467 (2021).

    Article  PubMed  Google Scholar 

  53. Svendsen, O. L., Hassager, C. & Christiansen, C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism 44, 369–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Lê, K. A. et al. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 34, 485–490 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Szczepaniak, L. S. et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care 35, 2377–2383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lingvay, I. M., Szczepaniak, E. W. & Szczepaniak, L. S. Ethnic diversity in beta-cell function susceptibility to pancreatic triglyceride levels: pilot investigation. J. Diabetes Metab. 5, 348 (2014).

    Article  Google Scholar 

  57. Roh, E. et al. Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans. Diabetes Obes. Metab. 20, 2642–2652 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Hakim, O. et al. Associations between pancreatic lipids and β-cell function in black African and White European men with type 2 diabetes. J. Clin. Endocrinol. Metab. 104, 1201–1210 (2019).

    Article  PubMed  Google Scholar 

  59. Cervantes, A., Waymouth, E. K. & Petrov, M. S. African-Americans and indigenous peoples have increased burden of diseases of the exocrine pancreas: a systematic review and meta-analysis. Dig. Dis. Sci. 64, 249–261 (2019).

    Article  PubMed  Google Scholar 

  60. Yang, J. Z. et al. Evaluation of ethnic variations in visceral, subcutaneous, intra-pancreatic, and intra-hepatic fat depositions by magnetic resonance imaging among New Zealanders. Biomedicines 8, 174 (2020).

    Article  PubMed Central  Google Scholar 

  61. Cervantes, A., Singh, R. G., Kim, J. U., DeSouza, S. V. & Petrov, M. S. Relationship of anthropometric indices to abdominal body composition: a multi-ethnic New Zealand magnetic resonance imaging study. J. Clin. Med. Res. 11, 435–446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Soyer, P. et al. Cystic fibrosis in adolescents and adults: fatty replacement of the pancreas - CT evaluation and functional correlation. Radiology 210, 611–615 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Raeder, H. et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes 56, 444–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Zenker, M., Mayerle, J., Reis, A. & Lerch, M. M. Genetic basis and pancreatic biology of Johanson–Blizzard syndrome. Endocrinol. Metab. Clin. North. Am. 35, 243–253 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Robberecht, E. et al. Pancreatic lipomatosis in the Shwachman–Diamond syndrome. Identification by sonography and CT-scan. Pediatr. Radiol. 15, 348–349 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Godoy-Matos, A. F., Valerio, C. M., Moreira, R. O., Momesso, D. P. & Bittencourt, L. K. Pancreatic fat deposition is increased and related to beta-cell function in women with familial partial lipodystrophy. Diabetol. Metab. Syndr. 10, 71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wilson, P. A., Gardner, S. D., Lambie, N. M., Commans, S. A. & Crowther, D. J. Characterization of the human patatin-like phospholipase family. J. Lipid Res. 47, 1940–1949 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Wagner, R. et al. Pancreatic steatosis associates with impaired insulin secretion in genetically predisposed individuals. J. Clin. Endocrinol. Metab. 105, 3518–3525 (2020).

    Article  PubMed Central  Google Scholar 

  69. Jermendy, G. et al. Environmental factors slightly outweigh genetic influences in the development of pancreatic lipid accumulation: a classical twin study. Metab. Syndr. Relat. Disord. 18, 413–418 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Darle, N., Ekholm, R. & Edlund, Y. Ultrastructure of the rat exocrine pancreas after long term intake of ethanol. Gastroenterology 58, 62–72 (1970).

    Article  CAS  PubMed  Google Scholar 

  71. Tasso, F., Clop, J. & Sarles, H. The interaction of ethanol, dietary lipids and proteins on the rat pancreas. II. Ultrastructural study. Digestion 4, 23–34 (1971).

    Article  CAS  PubMed  Google Scholar 

  72. Stuart, C. E. et al. Implications of tobacco smoking and alcohol consumption on ectopic fat deposition in individuals after pancreatitis. Pancreas 49, 924–934 (2020).

    Article  PubMed  Google Scholar 

  73. Mitchell, T. et al. Type and pattern of alcohol consumption is associated with liver fibrosis in patients with non-alcoholic fatty liver disease. Am. J. Gastroenterol. 113, 1484–1493 (2018).

    Article  PubMed  Google Scholar 

  74. Stuart, C. E. et al. Relationship of pancreas volume to tobacco smoking and alcohol consumption following pancreatitis. Pancreatology 20, 60–67 (2020).

    Article  PubMed  Google Scholar 

  75. Alsamarrai, A., Das, S. L., Windsor, J. A. & Petrov, M. S. Factors that affect risk for pancreatic disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Clin. Gastroenterol. Hepatol. 12, 1635–1644 (2014).

    Article  PubMed  Google Scholar 

  76. Stuart, C. E. et al. Associations between cannabis use, abdominal fat phenotypes and insulin traits. J. Clin. Med. Res. 12, 377–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamazaki, H. et al. Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J. Gastroenterol. 53, 873–882 (2018).

    Article  PubMed  Google Scholar 

  78. Rospleszcz, S. et al. Association of longitudinal risk profile trajectory clusters with adipose tissue depots measured by magnetic resonance imaging. Sci. Rep. 9, 16972 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Petrov, M. S. & Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 175–184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Petrov, M. S. Metabolic trifecta after pancreatitis: exocrine pancreatic dysfunction, altered gut microbiota, and new-onset diabetes. Clin. Transl. Gastroenterol. 10, e00086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Petrov, M. S. Post-pancreatitis diabetes mellitus: prime time for secondary disease. Eur. J. Endocrinol. 184, R137–R149 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Petrov, M. S. Panorama of mediators in postpancreatitis diabetes mellitus. Curr. Opin. Gastroenterol. 36, 443–451 (2020).

    Article  PubMed  Google Scholar 

  83. Bharmal, S. H. et al. Trajectories of glycaemia following acute pancreatitis: a prospective longitudinal cohort study with 24 months follow-up. J. Gastroenterol. 55, 775–788 (2020).

    Article  PubMed  Google Scholar 

  84. Cho, J., Scragg, R. & Petrov, M. S. Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: a population-based matched cohort study. Am. J. Gastroenterol. 114, 804–812 (2019).

    Article  PubMed  Google Scholar 

  85. Ko, J. et al. Chronic pancreatitis is characterized by elevated circulating periostin levels related to intra-pancreatic fat deposition. J. Clin. Med. Res. 12, 568–578 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fujii, M., Ohno, Y., Yamada, M., Kamada, Y. & Miyoshi, E. Impact of fatty pancreas and lifestyle on the development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup. Env. Health Prev. Med. 24, 10 (2019).

    Article  Google Scholar 

  87. Sreedhar, U. L., DeSouza, S. V., Park, B. & Petrov, M. S. A systematic review of intra-pancreatic fat deposition and pancreatic carcinogenesis. J. Gastrointest. Surg. 24, 2560–2569 (2020).

    Article  PubMed  Google Scholar 

  88. Kromrey, M. L. et al. Pancreatic steatosis is associated with impaired exocrine pancreatic function. Invest. Radiol. 54, 403–408 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Singh, R. G. et al. Intrapancreatic fat deposition and visceral fat volume are associated with the presence of diabetes after acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G806–G815 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Yamazaki, H. et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J. Gastroenterol. 55, 712–721 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Yamazaki, H. et al. Association between pancreatic fat and incidence of metabolic syndrome: a 5-year Japanese cohort study. J. Gastroenterol. Hepatol. 33, 2048–2054 (2018).

    Article  PubMed  Google Scholar 

  92. Cho, J., Scragg, R. & Petrov, M. S. Postpancreatitis diabetes confers higher risk for pancreatic cancer than type 2 diabetes: results from a nationwide cancer registry. Diabetes Care 43, 2106–2112 (2020).

    Article  PubMed  Google Scholar 

  93. Dybala, M. P. et al. Integrated pancreatic blood flow: bidirectional microcirculation between endocrine and exocrine pancreas. Diabetes 69, 1439–1450 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mittendorfer, B., Yoshino, M., Patterson, B. W. & Klein, S. VLDL triglyceride kinetics in lean, overweight, and obese men and women. J. Clin. Endocrinol. Metab. 101, 4151–4160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Al-Mrabeh, A. Pathogenesis and remission of type 2 diabetes: what has the twin cycle hypothesis taught us? Cardiovasc. Endocrinol. Metab. 9, 132–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Taylor, R., Al-Mrabeh, A. & Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 7, 726–736 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Taylor, R. & Holman, R. Normal weight individuals who develop type 2 diabetes: the personal fat threshold. Clin. Sci. 128, 405–410 (2015).

    Article  Google Scholar 

  99. Lee, Y. et al. β-cell lipotoxicity in the pathogenesis of non-insulindependent diabetes mellitus of obese rats: Impairment in adipocyte–β-cell relationships. Proc. Natl Acad. Sci. USA 91, 10878–10882 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Taylor, R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 51, 1781–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Zhyzhneuskaya, S. V. et al. Time course of normalisation of functional beta cell capacity in DiRECT after weight loss in type 2 diabetes. Diabetes Care 43, 813–820 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. White, M. G., Shaw, J. A. & Taylor, R. Type 2 diabetes: the pathologic basis of reversible beta-cell dysfunction. Diabetes Care 39, 2080–2088 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Pinnick, K., Neville, M., Clark, A. & Fielding, B. Reversibility of metabolic and morphological changes associated with chronic exposure of pancreatic islet beta-cells to fatty acids. J. Cell Biochem. 109, 683–692 (2010).

    CAS  PubMed  Google Scholar 

  104. Pinnick, K. E. et al. Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 16, 522–530 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Diakogiannaki, E. et al. Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. J. Endocrinol. 194, 283–291 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, Y. et al. Pancreatic steatosis: harbinger of type 2 diabetes in obese rodents. Int. J. Obes. 34, 396–400 (2009).

    Article  Google Scholar 

  107. Yan, M. X., Li, Y. Q., Meng, M., Ren, H. B. & Kou, Y. Long-term high-fat diet induces pancreatic injuries via pancreatic microcirculatory disturbances and oxidative stress in rats with hyperlipidemia. Biochem. Biophys. Res. Commun. 347, 192–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Singh, R. G., Yoon, H. D., Poppitt, S. D., Plank, L. D. & Petrov, M. S. Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis. Diabetes Metab. Res. Rev. 33, e2918 (2017).

    Article  Google Scholar 

  109. Szymanski, K. M. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl Acad. Sci. USA 104, 20890–20895 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Al-Mrabeh, A. et al. 2-year remission of type 2 diabetes and pancreas morphology: a post-hoc analysis of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 8, 939–948 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. DeSouza, S. V. et al. Pancreas volume in health and disease: a systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 12, 757–766 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. DeSouza, S. V., Yoon, H. D., Singh, R. G. & Petrov, M. S. Quantitative determination of pancreas size using anatomical landmarks and its clinical relevance: a systematic literature review. Clin. Anat. 31, 913–926 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Al-Mrabeh, A., Hollingsworth, K. G., Steven, S. & Taylor, R. Morphology of the pancreas in type 2 diabetes: effect of weight loss with or without normalisation of insulin secretory capacity. Diabetologia 59, 1753–1759 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Grippo, P. J. et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut 61, 1454–1464 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Teper, Y. & Eibl, G. Pancreatic macrophages: critical players in obesity-promoted pancreatic cancer. Cancers 12, 1946 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  116. Eibl, G. & Rozengurt, E. KRAS, YAP, and obesity in pancreatic cancer: a signaling network with multiple loops. Semin. Cancer Biol. 54, 50–62 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Eibl, G. et al. Diabetes mellitus and obesity as risk factors for pancreatic cancer. J. Acad. Nutr. Diet. 118, 555–567 (2018).

    Article  PubMed  Google Scholar 

  118. Petrov, M. S. Post-pancreatitis diabetes mellitus and excess intra-pancreatic fat deposition as harbingers of pancreatic cancer. World J. Gastroenterol. 27, 1936–1942 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chien, H. J. et al. Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G694–G706 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Pendharkar, S. A., Walia, M., Drury, M. & Petrov, M. S. Calcitonin gene-related peptide: neuroendocrine communication between the pancreas, gut, and brain in regulation of blood glucose. Ann. Transl. Med. 5, 419 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pendharkar, S. A., Singh, R. G. & Petrov, M. S. Cross-talk between innate cytokines and the pancreatic polypeptide family in acute pancreatitis. Cytokine 90, 161–168 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Stigliano, S., Sternby, H., de Madaria, E., Capurso, G. & Petrov, M. S. Early management of acute pancreatitis: a review of the best evidence. Dig. Liver Dis. 49, 585–594 (2017).

    Article  PubMed  Google Scholar 

  123. Seeley, E. S., Carrière, C., Goetze, T., Longnecker, D. S. & Korc, M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69, 422–430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bonal, C. et al. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 136, 309–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Martinelli, P. et al. Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 62, 1481–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Augereau, C. et al. Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Hum. Mol. Genet. 25, 5017–5026 (2016).

    CAS  PubMed  Google Scholar 

  127. Fahr, L. et al. Expression of the EWSR1-FLI1 fusion oncogene in pancreas cells drives pancreatic atrophy and lipomatosis. Pancreatology 20, 1673–1681 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Merry, T. L. & Petrov, M. S. The rise of genetically engineered mouse models of pancreatitis: a review of literature. Biomol. Concepts 10, 103–114 (2018).

    Article  Google Scholar 

  129. Cinti, F. et al. Evidence of β-cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 1044–1054 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Cnop, M. et al. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Brereton, M. F. et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat. Commun. 5, 4639 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Spijker, H. S. et al. Loss of β-cell identity occurs in type 2 diabetes and is associated with islet amyloid deposits. Diabetes 64, 2928–2938 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. White, M. G. et al. Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes. Diabetes Care 36, 3818–3820 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sun, J. et al. Beta cell dedifferentiation in T2D patients with adequate glucose control and non-diabetic chronic pancreatitis. J. Clin. Endocrinol. Metab. 104, 83–94 (2019).

    Article  PubMed  Google Scholar 

  136. Watanabe, S. et al. Changes in the mouse exocrine pancreas after pancreatic duct ligation: a qualitative and quantitative histological study. Arch. Histol. Cytol. 58, 365–374 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Haunz, E. & Baggenstoss, A. Carcinoma of the head of the pancreas. Arch. Pathol. 49, 367–387 (1950).

    Google Scholar 

  138. Mossner, J. et al. Isolated rat pancreatic acini as a model to study the potential role of lipase in the pathogenesis of acinar cell destruction. Int. J. Pancreatol. 12, 285–296 (1992).

    Article  CAS  PubMed  Google Scholar 

  139. Gaisano, H. Y. et al. Supramaximal cholecystokinin displaces Munc18c from the pancreatic acinar basal surface, redirecting apical exocytosis to the basal membrane. J. Clin. Invest. 108, 1597–1611 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Panek, J., Sztefko, K. & Drozdz, W. Composition of free fatty acid and triglyceride fractions in human necrotic pancreatic tissue. Med. Sci. Monit. 7, 894–898 (2001).

    CAS  PubMed  Google Scholar 

  141. Navina, S. et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med. 3, 107ra110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Petrov, M. S., Shanbhag, S., Chakraborty, M., Phillips, A. R. & Windsor, J. A. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology 139, 813–820 (2010).

    Article  PubMed  Google Scholar 

  143. Dellinger, E. P. et al. Determinant-based classification of acute pancreatitis severity: an international multidisciplinary consultation. Ann. Surg. 256, 875–880 (2012).

    Article  PubMed  Google Scholar 

  144. Patel, K. et al. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am. J. Pathol. 185, 808–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gillies, N. A., Pendharkar, S. A., Singh, R. G., Asrani, V. M. & Petrov, M. S. Lipid metabolism in patients with chronic hyperglycemia after an episode of acute pancreatitis. Diabetes Metab. Syndr. 11S, S233–S241 (2017).

    Article  Google Scholar 

  146. Acharya, C. et al. Fibrosis reduces severity of acute-on-chronic pancreatitis in humans. Gastroenterology 145, 466–475 (2013).

    Article  PubMed  Google Scholar 

  147. Sankaran, S. J. et al. Frequency of progression from acute to chronic pancreatitis and risk factors: a meta-analysis. Gastroenterology 149, 1490–1500 (2015).

    Article  PubMed  Google Scholar 

  148. Modesto, A. E. et al. Psoas muscle size as a magnetic resonance imaging biomarker of progression of pancreatitis. Eur. Radiol. 30, 2902–2911 (2020).

    Article  PubMed  Google Scholar 

  149. Pothula, S. P., Pirola, R. C., Wilson, J. S. & Apte, M. V. Pancreatic stellate cells: aiding and abetting pancreatic cancer progression. Pancreatology 20, 409–418 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Erkan, M. et al. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008).

    Article  PubMed  Google Scholar 

  153. Kanno, A. et al. Periostin, secreted from stromal cells, has biphasic effect on cell migration and correlates with the epithelial to mesenchymal transition of human pancreatic cancer cells. Int. J. Cancer 122, 2707–2718 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Zhou, Y. et al. Pancreatic stellate cells: a rising translational physiology star as a potential stem cell type for beta cell neogenesis. Front. Physiol. 10, 218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Gepner, Y. et al. Effect of distinct lifestyle interventions on mobilization of fat storage pools: CENTRAL magnetic resonance imaging randomized controlled trial. Circulation 137, 1143–1157 (2018).

    Article  PubMed  Google Scholar 

  156. Quiclet, C. et al. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 97, 9–17 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Ko, J. et al. Dietary carbohydrate intake and insulin traits in individuals after acute pancreatitis: effect modification by intra-pancreatic fat deposition. Pancreatology 21, 353–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Ko, J. et al. Intra-pancreatic fat deposition as a modifier of the relationship between habitual dietary fat intake and insulin resistance. Clin. Nutr. 40, 4730–4737 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Gaborit, B. et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int. J. Obes. 39, 480–487 (2015).

    Article  CAS  Google Scholar 

  160. Honka, H. et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J. Clin. Endocrinol. Metab. 100, 2015–2023 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Umemura, A. et al. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr. J. 64, 487–498 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Lautenbach, A. et al. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss. Diabetes Metab. Res. Rev. 34, e3025 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Hui, S. C. et al. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur. Radiol. 29, 849–856 (2019).

    Article  PubMed  Google Scholar 

  164. Covarrubias, Y. et al. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity. J. Magn. Reson. Imaging 50, 1092–1102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Gaborit, B. et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J. Am. Coll. Cardiol. 60, 1381–1389 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.S.P. is the recipient of a Rutherford Discovery Fellowship by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Contributions

M.S.P and R.T. discussed the article content, researched data for the article, wrote, reviewed and edited the manuscript.

Corresponding author

Correspondence to Maxim S. Petrov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Hajime Yamazaki, Guido Eibl and Murray Korc for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, M.S., Taylor, R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol 19, 153–168 (2022). https://doi.org/10.1038/s41575-021-00551-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00551-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing