Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liver regeneration: biological and pathological mechanisms and implications

Abstract

The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this ‘hepatostat’ will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.

Key points

  • Hepatocyte proliferation during liver regeneration is controlled by multiple extracellular signals, two of which (MET and EGFR) are directly mitogenic and others only delay liver regeneration if they are bypassed.

  • Intracellular signalling pathways in hepatocytes are very rapidly (within minutes) activated after partial hepatectomy. The mechanisms triggering these pathways are not clear.

  • All hepatic cell types participate in cell proliferation during liver regeneration. No ‘stem cells’ are involved.

  • If hepatocyte or cholangiocyte proliferation is seriously impaired, then each of the two cell types can transdifferentiate into the other and function as a facultative stem cell.

  • Loss of hepatocytes occurring in chronic liver diseases triggers compensatory proliferation of the surviving hepatocytes and exposes them to potentially genotoxic injury that might lead to neoplasia.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Multiple signalling molecules regulate cell proliferation during liver regeneration.
Fig. 2: Extracellular signals involved in liver regeneration are classified according to their actions on hepatocytes and their overall effect on liver regeneration.
Fig. 3: Transdifferentiation events between hepatocytes and cholangiocytes.

References

  1. 1.

    Michalopoulos, G. K. Liver regeneration. J. Cell Physiol. 213, 286–300 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    CAS  PubMed  Google Scholar 

  3. 3.

    Michalopoulos, G. K. Principles of liver regeneration and growth homeostasis. Compr. Physiol. 3, 485–513 (2013).

    PubMed  Google Scholar 

  4. 4.

    Fausto, N., Campbell, J. S. & Riehle, K. J. Liver regeneration. Hepatology 43, S45–S53 (2006).

    CAS  PubMed  Google Scholar 

  5. 5.

    Higgins, G., Anderson, R. E., Higgins, G. M. & Anderson, R. M. Experimental pathology of the liver, 1: restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12, 186–202 (1931).

    Google Scholar 

  6. 6.

    Demetriou, A. A. et al. Transplantation of microcarrier-attached hepatocytes into 90% partially hepatectomized rats. Hepatology 8, 1006–1009 (1988).

    CAS  PubMed  Google Scholar 

  7. 7.

    Demetris, A. J. et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am. J. Surg. Pathol. 30, 986–993 (2006).

    PubMed  Google Scholar 

  8. 8.

    Miyaoka, Y. & Miyajima, A. To divide or not to divide: revisiting liver regeneration. Cell Div. 8, 8 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    DeLeve, L. D., Wang, X. & Wang, L. VEGF-sdf1 recruitment of CXCR7+ bone marrow progenitors of liver sinusoidal endothelial cells promotes rat liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol 310, G739–G746 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Fujii, H. et al. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J. Hepatol. 36, 653–659 (2002).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer Cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Marubashi, S. et al. Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 136, 1028–1037 (2004).

    PubMed  Google Scholar 

  13. 13.

    Preziosi, M., Okabe, H., Poddar, M., Singh, S. & Monga, S. P. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol. Commun. 2, 845–860 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Russell, J. O. & Monga, S. P. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology. Annu. Rev. Pathol. 13, 351–378 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Rappaport, A. M. The microcirculatory hepatic unit. Microvasc. Res. 6, 212–228 (1973).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wake, K. Hepatic stellate cells: three-dimensional structure, localization, heterogeneity and development. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 82, 155–164 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Oda, M., Yokomori, H. & Han, J. Y. Regulatory mechanisms of hepatic microcirculatory hemodynamics: hepatic arterial system. Clin. Hemorheol. Microcirc. 34, 11–26 (2006).

    PubMed  Google Scholar 

  18. 18.

    Mars, W. M. et al. Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology 21, 1695–1701 (1995).

    CAS  PubMed  Google Scholar 

  19. 19.

    Kim, T. H., Mars, W. M., Stolz, D. B. & Michalopoulos, G. K. Expression and activation of pro-MMP-2 and pro-MMP-9 during rat liver regeneration. Hepatology 31, 75–82 (2000).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kim, T. H., Mars, W. M., Stolz, D. B., Petersen, B. E. & Michalopoulos, G. K. Extracellular matrix remodeling at the early stages of liver regeneration in the rat. Hepatology 26, 896–904 (1997).

    CAS  PubMed  Google Scholar 

  21. 21.

    Nejak-Bowen, K., Orr, A., Bowen, W. C. Jr. & Michalopoulos, G. K. Conditional genetic elimination of hepatocyte growth factor in mice compromises liver regeneration after partial hepatectomy. PLoS ONE 8, e59836 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mars, W. M., Kim, T. H., Stolz, D. B., Liu, M. L. & Michalopoulos, G. K. Presence of urokinase in serum-free primary rat hepatocyte cultures and its role in activating hepatocyte growth factor. Cancer Res. 56, 2837–2843 (1996).

    CAS  PubMed  Google Scholar 

  23. 23.

    Lindroos, P. M., Zarnegar, R. & Michalopoulos, G. K. Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 13, 743–750 (1991).

    CAS  PubMed  Google Scholar 

  24. 24.

    Saegusa, S., Isaji, S. & Kawarada, Y. Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats. World J. Surg. 26, 694–699 (2002).

    PubMed  Google Scholar 

  25. 25.

    Roselli, H. T. et al. Liver regeneration is transiently impaired in urokinase-deficient mice. Am. J. Physiol. 275, G1472–G1479 (1998).

    CAS  PubMed  Google Scholar 

  26. 26.

    Lieber, A. et al. Adenovirus-mediated urokinase gene transfer induces liver regeneration and allows for efficient retrovirus transduction of hepatocytes in vivo. Proc. Natl Acad. Sci. USA 92, 6210–6214 (1995).

    CAS  PubMed  Google Scholar 

  27. 27.

    Mohammed, F. F. & Khokha, R. Thinking outside the cell: proteases regulate hepatocyte division. Trends Cell Biol. 15, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  28. 28.

    Rudolph, K. L. et al. Differential regulation of extracellular matrix synthesis during liver regeneration after partial hepatectomy in rats. Hepatology 30, 1159–1166 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    Gallai, M. et al. Proteoglycan gene expression in rat liver after partial hepatectomy. Biochem. Biophys. Res. Commun. 228, 690–694 (1996).

    CAS  PubMed  Google Scholar 

  30. 30.

    Weymann, A. et al. p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology 50, 207–215 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Moolten, F. L. & Bucher, N. L. Regeneration of rat liver: transfer of humoral agent by cross circulation. Science 158, 272–274 (1967).

    CAS  PubMed  Google Scholar 

  32. 32.

    Jirtle, R. L. & Michalopoulos, G. Effects of partial hepatectomy on transplanted hepatocytes. Cancer Res. 42, 3000–3004 (1982).

    CAS  PubMed  Google Scholar 

  33. 33.

    Kohler, C. et al. Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology 39, 1056–1065 (2004).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Monga, S. P., Pediaditakis, P., Mule, K., Stolz, D. B. & Michalopoulos, G. K. Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33, 1098–1109 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stolz, D. B., Mars, W. M., Petersen, B. E., Kim, T. H. & Michalopoulos, G. K. Growth factor signal transduction immediately after two-thirds partial hepatectomy in the rat. Cancer Res. 59, 3954–3960 (1999).

    CAS  PubMed  Google Scholar 

  36. 36.

    Taub, R. Liver regeneration 4: transcriptional control of liver regeneration. FASEB J. 10, 413–427 (1996).

    CAS  PubMed  Google Scholar 

  37. 37.

    Apte, U. et al. Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology 50, 844–851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Desbarats, J. & Newell, M. K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat. Med. 6, 920–923 (2000).

    CAS  PubMed  Google Scholar 

  39. 39.

    Albrecht, J. H. et al. Involvement of p21 and p27 in the regulation of CDK activity and cell cycle progression in the regenerating liver. Oncogene 16, 2141–2150 (1998).

    CAS  PubMed  Google Scholar 

  40. 40.

    Bhave, V. S. et al. Genes inducing iPS phenotype play a role in hepatocyte survival and proliferation in vitro and liver regeneration in vivo. Hepatology 54, 1360–1370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mullany, L. K. et al. Distinct proliferative and transcriptional effects of the D-type cyclins in vivo. Cell Cycle 7, 2215–2224 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Russell, W. E., Kaufmann, W. K., Sitaric, S., Luetteke, N. C. & Lee, D. C. Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice. Mol. Carcinog. 15, 183–189 (1996).

    CAS  PubMed  Google Scholar 

  43. 43.

    Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5, 836–847 (2004).

    CAS  PubMed  Google Scholar 

  44. 44.

    Paranjpe, S. et al. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 64, 1711–1724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Greenbaum, L. E., Cressman, D. E., Haber, B. A. & Taub, R. Coexistence of C/EBP alpha, beta, growth-induced proteins and DNA synthesis in hepatocytes during liver regeneration. Implications for maintenance of the differentiated state during liver growth. J. Clin. Invest. 96, 1351–1365 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wang, X. et al. Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr. 11, 149–162 (2003).

    CAS  PubMed  Google Scholar 

  47. 47.

    Klochendler, A. et al. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation. Dev. Cell 23, 681–690 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Rabes, H. M. Kinetics of hepatocellular proliferation as a function of the microvascular structure and functional state of the liver. Ciba Found. Symp. https://doi.org/10.1002/9780470720363.ch3 (1977).

  49. 49.

    Volk, A., Michalopoulos, G., Weidner, M. & Gebhardt, R. Different proliferative responses of periportal and pericentral rat hepatocytes to hepatocyte growth factor. Biochem. Biophys. Res. Commun. 207, 578–584 (1995).

    CAS  PubMed  Google Scholar 

  50. 50.

    Stocker, E. & Heine, W. D. Regeneration of liver parenchyma under normal and pathological conditions. Beitr. Pathol. 144, 400–408 (1971).

    CAS  PubMed  Google Scholar 

  51. 51.

    Biondo-Simoes Mde, L. et al. Effect of aging on liver regeneration in rats. Acta Cir. Bras. 21, 197–202 (2006).

    PubMed  Google Scholar 

  52. 52.

    Matsumoto, T., Wakefield, L., Tarlow, B. D. & Grompe, M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26, 34–47.e3 (2020).

    CAS  PubMed  Google Scholar 

  53. 53.

    Trusolino, L., Bertotti, A. & Comoglio, P. M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848 (2010).

    CAS  PubMed  Google Scholar 

  54. 54.

    Gentile, A., Trusolino, L. & Comoglio, P. M. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 27, 85–94 (2008).

    CAS  PubMed  Google Scholar 

  55. 55.

    Liu, M. L., Mars, W. M., Zarnegar, R. & Michalopoulos, G. K. Uptake and distribution of hepatocyte growth factor in normal and regenerating adult rat liver. Am. J. Pathol. 144, 129–140 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Bard-Chapeau, E. A. et al. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol. Cell Biol. 26, 4664–4674 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zarnegar, R., DeFrances, M. C., Kost, D. P., Lindroos, P. & Michalopoulos, G. K. Expression of hepatocyte growth factor mRNA in regenerating rat liver after partial hepatectomy. Biochem. Biophys. Res. Commun. 177, 559–565 (1991).

    CAS  PubMed  Google Scholar 

  58. 58.

    Kono, S., Nagaike, M., Matsumoto, K. & Nakamura, T. Marked induction of hepatocyte growth factor mRNA in intact kidney and spleen in response to injury of distant organs. Biochem. Biophys. Res. Commun. 186, 991–998 (1992).

    CAS  PubMed  Google Scholar 

  59. 59.

    Yanagita, K. et al. Lung may have an endocrine function producing hepatocyte growth factor in response to injury of distal organs. Biochem. Biophys. Res. Commun. 182, 802–809 (1992).

    CAS  PubMed  Google Scholar 

  60. 60.

    Broten, J., Michalopoulos, G., Petersen, B. & Cruise, J. Adrenergic stimulation of hepatocyte growth factor expression. Biochem. Biophys. Res. Commun. 262, 76–79 (1999).

    CAS  PubMed  Google Scholar 

  61. 61.

    Passino, M. A., Adams, R. A., Sikorski, S. L. & Akassoglou, K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 315, 1853–1856 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    Carver, R. S., Stevenson, M. C., Scheving, L. A. & Russell, W. E. Diverse expression of ErbB receptor proteins during rat liver development and regeneration. Gastroenterology 123, 2017–2027 (2002).

    CAS  PubMed  Google Scholar 

  63. 63.

    Paranjpe, S. et al. RNA interference against hepatic epidermal growth factor receptor has suppressive effects on liver regeneration in rats. Am. J. Pathol. 176, 2669–2681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Odegard, J. et al. Differential effects of epidermal growth factor (EGF) receptor ligands on receptor binding, downstream signalling pathways and DNA synthesis in hepatocytes. Growth Factors 35, 239–248 (2017).

    CAS  PubMed  Google Scholar 

  65. 65.

    Olsen, P. S., Poulsen, S. S. & Kirkegaard, P. Adrenergic effects on secretion of epidermal growth factor from Brunner’s glands. Gut 26, 920–927 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Skov Olsen, P. et al. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats. Hepatology 8, 992–996 (1988).

    CAS  PubMed  Google Scholar 

  67. 67.

    Dao, D. T., Anez-Bustillos, L., Adam, R. M., Puder, M. & Bielenberg, D. R. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration. Am. J. Pathol. 188, 2446–2456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Webber, E. M., FitzGerald, M. J., Brown, P. I., Bartlett, M. H. & Fausto, N. Transforming growth factor-alpha expression during liver regeneration after partial hepatectomy and toxic injury, and potential interactions between transforming growth factor-alpha and hepatocyte growth factor. Hepatology 18, 1422–1431 (1993).

    CAS  PubMed  Google Scholar 

  69. 69.

    Lee, D. C. et al. TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann. NY Acad. Sci. 995, 22–38 (2003).

    CAS  PubMed  Google Scholar 

  70. 70.

    Berasain, C. et al. Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology 128, 424–432 (2005).

    CAS  PubMed  Google Scholar 

  71. 71.

    Khai, N. C. et al. In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF. J. Hepatol. 44, 1046–1054 (2006).

    CAS  PubMed  Google Scholar 

  72. 72.

    Mitchell, C. et al. Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. J. Biol. Chem. 280, 2562–2568 (2005).

    CAS  PubMed  Google Scholar 

  73. 73.

    Maretti-Mira, A. C., Wang, X., Wang, L. & DeLeve, L. D. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69, 1259–1272 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Natarajan, A., Wagner, B. & Sibilia, M. The EGF receptor is required for efficient liver regeneration. Proc. Natl Acad. Sci. USA 104, 17081–17086 (2007).

    CAS  PubMed  Google Scholar 

  75. 75.

    Scheving, L. A., Zhang, X., Stevenson, M. C., Threadgill, D. W. & Russell, W. E. Loss of hepatocyte EGFR has no effect alone but exacerbates carbon tetrachloride-induced liver injury and impairs regeneration in hepatocyte Met-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G364–G377 (2015).

    CAS  PubMed  Google Scholar 

  76. 76.

    Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    CAS  PubMed  Google Scholar 

  77. 77.

    Jo, M. et al. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J. Biol. Chem. 275, 8806–8811 (2000).

    CAS  PubMed  Google Scholar 

  78. 78.

    Tsagianni, A. et al. Combined systemic disruption of MET and epidermal growth factor receptor signaling causes liver failure in normal mice. Am. J. Pathol. 88, 2223–2235 (2018).

    Google Scholar 

  79. 79.

    Limaye, P. B. et al. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology 47, 1702–1713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Bhushan, B. et al. TCPOBOP-induced hepatomegaly and hepatocyte proliferation are attenuated by combined disruption of MET and EGFR signaling. Hepatology 69, 1702–1718 (2019).

    CAS  PubMed  Google Scholar 

  81. 81.

    Houck, K. A., Zarnegar, R., Muga, S. J. & Michalopoulos, G. K. Acidic fibroblast growth factor (HBGF-1) stimulates DNA synthesis in primary rat hepatocyte cultures. J. Cell Physiol. 143, 129–132 (1990).

    CAS  PubMed  Google Scholar 

  82. 82.

    Kan, M. et al. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc. Natl Acad. Sci. USA 86, 7432–7436 (1989).

    CAS  PubMed  Google Scholar 

  83. 83.

    Huang, X. et al. Ectopic activity of fibroblast growth factor receptor 1 in hepatocytes accelerates hepatocarcinogenesis by driving proliferation and vascular endothelial growth factor-induced angiogenesis. Cancer Res. 66, 1481–1490 (2006).

    CAS  PubMed  Google Scholar 

  84. 84.

    Luo, Y. et al. Metabolic regulator βKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation. J. Biol. Chem. 285, 30069–30078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Padrissa-Altes, S. et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut 64, 1444–1453 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Cicione, C., Degirolamo, C. & Moschetta, A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 56, 2404–2411 (2012).

    CAS  PubMed  Google Scholar 

  87. 87.

    Kong, B. et al. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am. J. Physiol. Gastrointest. Liver Physiol 306, G893–G902 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Yamada, Y., Webber, E. M., Kirillova, I., Peschon, J. J. & Fausto, N. Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for type 1 but not type 2 receptor. Hepatology 28, 959–970 (1998).

    CAS  PubMed  Google Scholar 

  89. 89.

    Kirillova, I., Chaisson, M. & Fausto, N. Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor κB activation. Cell Growth Differ. 10, 819–828 (1999).

    CAS  PubMed  Google Scholar 

  90. 90.

    Cressman, D. E. et al. Liver failure and defective hepatocyte regeneration in interleukin-6- deficient mice. Science 274, 1379–1383 (1996).

    CAS  PubMed  Google Scholar 

  91. 91.

    Norris, C. A. et al. Synthesis of IL-6 by hepatocytes is a normal response to common hepatic stimuli. PLoS ONE 9, e96053 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Fausto, N. Liver regeneration. J. Hepatol. 32, 19–31 (2000).

    CAS  PubMed  Google Scholar 

  93. 93.

    Runge, D. M., Runge, D., Foth, H., Strom, S. C. & Michalopoulos, G. K. STAT 1alpha/1beta, STAT 3 and STAT 5: expression and association with c- MET and EGF-receptor in long-term cultures of human hepatocytes. Biochem. Biophys. Res. Commun. 265, 376–381 (1999).

    CAS  PubMed  Google Scholar 

  94. 94.

    Cruise, J. L., Knechtle, S. J., Bollinger, R. R., Kuhn, C. & Michalopoulos, G. Alpha 1-adrenergic effects and liver regeneration. Hepatology 7, 1189–1194 (1987).

    CAS  PubMed  Google Scholar 

  95. 95.

    Cruise, J. L., Houck, K. A. & Michalopoulos, G. K. Induction of DNA synthesis in cultured rat hepatocytes through stimulation of alpha 1 adrenoreceptor by norepinephrine. Science 227, 749–751 (1985).

    CAS  PubMed  Google Scholar 

  96. 96.

    Han, C., Bowen, W. C., Michalopoulos, G. K. & Wu, T. Alpha-1 adrenergic receptor transactivates signal transducer and activator of transcription-3 (Stat3) through activation of Src and epidermal growth factor receptor (EGFR) in hepatocytes. J. Cell Physiol. 216, 486–497 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Houck, K. A., Cruise, J. L. & Michalopoulos, G. Norepinephrine modulates the growth-inhibitory effect of transforming growth factor-beta in primary rat hepatocyte cultures. J. Cell Physiol. 135, 551–555 (1988).

    CAS  PubMed  Google Scholar 

  98. 98.

    Huang, W. et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312, 233–236 (2006).

    CAS  PubMed  Google Scholar 

  99. 99.

    Borude, P. et al. Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology 56, 2344–2352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Block, G. D. et al. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J. Cell Biol. 132, 1133–1149 (1996).

    CAS  PubMed  Google Scholar 

  101. 101.

    Francavilla, A. et al. Screening for candidate hepatic growth factors by selective portal infusion after canine Eck’s fistula. Hepatology 14, 665–670 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Fafalios, A. et al. A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat. Med. 17, 1577–1584 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Planas-Paz, L. et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18, 467–479 (2016).

    CAS  PubMed  Google Scholar 

  104. 104.

    Capurro, M., Martin, T., Shi, W. & Filmus, J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling. J. Cell Sci. 127, 1565–1575 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Li, N. et al. A frizzled-like cysteine-rich domain in glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice. Hepatology 70, 1231–1245 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Monga, S. P. et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res. 62, 2064–2071 (2002).

    CAS  PubMed  Google Scholar 

  107. 107.

    Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    CAS  PubMed  Google Scholar 

  108. 108.

    Yang, J. et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology 60, 964–976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Ochoa, B. et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 51, 1712–1723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Swiderska-Syn, M. et al. Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology 64, 232–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Liu, B. et al. Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice. Hepatology 52, 1060–1067 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Bhave, V. S. et al. Regulation of liver growth by glypican 3, CD81, hedgehog, and Hhex. Am. J. Pathol. 183, 153–159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Machado, M. V. & Diehl, A. M. Hedgehog signalling in liver pathophysiology. J. Hepatol. 68, 550–562 (2018).

    CAS  PubMed  Google Scholar 

  114. 114.

    Li, W. et al. A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell 25, 54–68 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Septer, S. et al. Yes-associated protein is involved in proliferation and differentiation during postnatal liver development. Am. J. Physiol. Gastrointest. Liver Physiol 302, G493–G503 (2012).

    CAS  PubMed  Google Scholar 

  116. 116.

    Halder, G. & Johnson, R. L. Hippo signaling: growth control and beyond. Development 138, 9–22 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Patel, S. H., Camargo, F. D. & Yimlamai, D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology 152, 533–545 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Grijalva, J. L. et al. Dynamic alterations in Hippo signaling pathway and YAP activation during liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol 307, G196–G204 (2014).

    CAS  PubMed  Google Scholar 

  119. 119.

    Oh, S. H., Swiderska-Syn, M., Jewell, M. L., Premont, R. T. & Diehl, A. M. Liver regeneration requires Yap1-TGFbeta-dependent epithelial-mesenchymal transition in hepatocytes. J. Hepatol. 69, 359–367 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Xue, Y. et al. Hepatitis C virus mimics effects of glypican-3 on CD81 and promotes development of hepatocellular carcinomas via activation of hippo pathway in hepatocytes. Am. J. Pathol. 188, 1469–1477 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Ferdous, Z., Wei, V. M., Iozzo, R., Hook, M. & Grande-Allen, K. J. Decorin-transforming growth factor- interaction regulates matrix organization and mechanical characteristics of three-dimensional collagen matrices. J. Biol. Chem. 282, 35887–35898 (2007).

    CAS  PubMed  Google Scholar 

  122. 122.

    Jirtle, R. L., Carr, B. I. & Scott, C. D. Modulation of insulin-like growth factor-II/mannose 6-phosphate receptors and transforming growth factor-beta 1 during liver regeneration. J. Biol. Chem. 266, 22444–22450 (1991).

    CAS  PubMed  Google Scholar 

  123. 123.

    Jakowlew, S. B. et al. Transforming growth factor-beta (TGF-beta) isoforms in rat liver regeneration: messenger RNA expression and activation of latent TGF- beta. Cell Regul. 2, 535–548 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Chari, R. S., Price, D. T., Sue, S. R., Meyers, W. C. & Jirtle, R. L. Down-regulation of transforming growth factor beta receptor type I, II, and III during liver regeneration. Am. J. Surg. 169, 126–131 (1995).

    CAS  PubMed  Google Scholar 

  125. 125.

    Thenappan, A. et al. Loss of transforming growth factor beta adaptor protein β-2 spectrin leads to delayed liver regeneration in mice. Hepatology 53, 1641–1650 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Pepper, M. S., Vassalli, J. D., Orci, L. & Montesano, R. Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis. Exp. Cell Res. 204, 356–363 (1993).

    CAS  PubMed  Google Scholar 

  127. 127.

    Hu, J. et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science 343, 416–419 (2014).

    CAS  PubMed  Google Scholar 

  128. 128.

    Ichikawa, T. et al. Transforming growth factor beta and activin tonically inhibit DNA synthesis in the rat liver. Hepatology 34, 918–925 (2001).

    CAS  PubMed  Google Scholar 

  129. 129.

    Carpentier, R. et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141, 1432–1438 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes. Dev. 19, 1849–1854 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Clotman, F. et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129, 1819–1828 (2002).

    CAS  PubMed  Google Scholar 

  132. 132.

    Grisham, J. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating liver; autoradiography with thymidine-H3. Cancer Res. 22, 842–849 (1962).

    CAS  PubMed  Google Scholar 

  133. 133.

    Matsumoto, K., Fujii, H., Michalopoulos, G., Fung, J. J. & Demetris, A. J. Human biliary epithelial cells secrete and respond to cytokines and hepatocyte growth factors in vitro: interleukin-6, hepatocyte growth factor and epidermal growth factor promote DNA synthesis in vitro. Hepatology 20, 376–382 (1994).

    CAS  PubMed  Google Scholar 

  134. 134.

    Keitel, V. & Haussinger, D. TGR5 in the biliary tree. Dig. Dis. 29, 45–47 (2011).

    PubMed  Google Scholar 

  135. 135.

    Pean, N. et al. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 58, 1451–1460 (2013).

    CAS  PubMed  Google Scholar 

  136. 136.

    Glaser, S., Han, Y., Francis, H. & Alpini, G. Melatonin regulation of biliary functions. Hepatobiliary Surg. Nutr. 3, 35–43 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Johnson, C. et al. Histamine restores biliary mass following carbon tetrachloride-induced damage in a cholestatic rat model. Dig. Liver Dis. 47, 211–217 (2015).

    CAS  PubMed  Google Scholar 

  138. 138.

    Michalopoulos, G. K., Barua, L. & Bowen, W. C. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41, 535–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Pepe-Mooney, B. J. et al. Single-cell analysis of the liver epithelium reveals dynamic heterogeneity and an essential role for YAP in homeostasis and regeneration. Cell Stem Cell 25, 23–38.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Fouassier, L. & Fiorotto, R. Ezrin finds its groove in cholangiocytes. Hepatology 61, 1467–1470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Ross, M. A., Sander, C. M., Kleeb, T. B., Watkins, S. C. & Stolz, D. B. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 34, 1135–1148 (2001).

    CAS  PubMed  Google Scholar 

  142. 142.

    LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    CAS  PubMed  Google Scholar 

  143. 143.

    Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Rocha, A. S. et al. The angiocrine factor rspondin3 is a key determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).

    CAS  PubMed  Google Scholar 

  145. 145.

    Wang, L. et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J. Clin. Invest. 122, 1567–1573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Ikarashi, M. et al. Distinct development and functions of resident and recruited liver Kupffer cells/macrophages. J. Leukoc. Biol. 94, 1325–1336 (2013).

    PubMed  Google Scholar 

  147. 147.

    Nishiyama, K. et al. Mouse CD11b+ Kupffer cells recruited from bone marrow accelerate liver regeneration after partial hepatectomy. PLoS ONE 10, e0136774 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Li, N. & Hua, J. Immune cells in liver regeneration. Oncotarget 8, 3628–3639 (2017).

    PubMed  Google Scholar 

  149. 149.

    Oben, J. A. et al. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 53, 438–445 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS  PubMed  Google Scholar 

  151. 151.

    Gkretsi, V. et al. Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology 48, 1932–1941 (2008).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Gkretsi, V., Bowen, W. C., Yang, Y., Wu, C. & Michalopoulos, G. K. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation. Biochem. Biophys. Res. Commun. 353, 638–643 (2007).

    CAS  PubMed  Google Scholar 

  153. 153.

    Donthamsetty, S. et al. Role of PINCH and its partner tumor suppressor Rsu-1 in regulating liver size and tumorigenesis. PLoS ONE 8, e74625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Oe, S. et al. Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in mice. Hepatology 40, 1098–1105 (2004).

    CAS  PubMed  Google Scholar 

  155. 155.

    Yang, J. et al. WNT5A inhibits hepatocyte proliferation and concludes beta-catenin signaling in liver regeneration. Am. J. Pathol. 185, 2194–2205 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Huck, I., Gunewardena, S., Espanol-Suner, R., Willenbring, H. & Apte, U. Hepatocyte nuclear factor 4 alpha activation is essential for termination of liver regeneration in mice. Hepatology 70, 666–681 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Jin, J. et al. Cooperation of C/EBP family proteins and chromatin remodeling proteins is essential for termination of liver regeneration. Hepatology 61, 315–325 (2015).

    CAS  PubMed  Google Scholar 

  158. 158.

    Michalopoulos, G. K. & Khan, Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149, 876–882 (2015).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Trautwein, C. et al. 2-acetaminofluorene blocks cell cycle progression after hepatectomy by p21 induction and lack of cyclin E expression. Oncogene 18, 6443–6453 (1999).

    CAS  PubMed  Google Scholar 

  160. 160.

    Evarts, R. P. et al. Precursor-product relationship between oval cells and hepatocytes: comparison between tritiated thymidine and bromodeoxyuridine as tracers. Carcinogenesis 17, 2143–2151 (1996).

    CAS  PubMed  Google Scholar 

  161. 161.

    Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Deng, X. et al. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23, 114–122.e3 (2018).

    CAS  PubMed  Google Scholar 

  164. 164.

    Russell, J. O. et al. Hepatocyte-specific beta-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 69, 742–759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Dorrell, C. et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes. Dev. 25, 1193–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Li, B. et al. Adult mouse liver contains two distinct populations of cholangiocytes. Stem Cell Rep. 9, 478–489 (2017).

    CAS  Google Scholar 

  167. 167.

    Isse, K. et al. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells. Hepatology 57, 1632–1643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Petersen, B. E., Zajac, V. F. & Michalopoulos, G. K. Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats. Hepatology 27, 1030–1038 (1998).

    CAS  PubMed  Google Scholar 

  170. 170.

    Kasprzak, A. et al. p21/Wafl/Cipl cellular expression in chronic long-lasting hepatitis C: correlation with HCV proteins (C, NS3, NS5A), other cell-cycle related proteins and selected clinical data. Folia Histochem. Cytobiol. 47, 385–394 (2009).

    PubMed  Google Scholar 

  171. 171.

    Sclair, S. N. et al. Increased hepatic progenitor cell response and ductular reaction in patients with severe recurrent HCV post-liver transplantation. Clin. Transpl. 30, 722–730 (2016).

    Google Scholar 

  172. 172.

    Khaliq, M. et al. Stat3 regulates liver progenitor cell-driven liver regeneration in zebrafish. Gene Expr. 18, 157–170 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Limaye, P. B., Bowen, W. C., Orr, A., Apte, U. M. & Michalopoulos, G. K. Expression of hepatocytic- and biliary-specific transcription factors in regenerating bile ducts during hepatocyte-to-biliary epithelial cell transdifferentiation. Comp. Hepatol. 9, 9 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174.

    Font-Burgada, J. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Michalopoulos, G. K., Bowen, W. C., Mule, K. & Luo, J. HGF-, EGF-, and dexamethasone-induced gene expression patterns during formation of tissue in hepatic organoid cultures. Gene Expr. 11, 55–75 (2003).

    CAS  PubMed  Google Scholar 

  176. 176.

    Michalopoulos, G. K., Bowen, W. C., Mule, K. & Stolz, D. B. Histological organization in hepatocyte organoid cultures. Am. J. Pathol. 159, 1877–1887 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Schaub, J. R. et al. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Yovchev, M. I., Lee, E. J., Rodriguez-Silva, W., Locker, J. & Oertel, M. Biliary obstruction promotes multilineage differentiation of hepatic stem cells. Hepatol. Commun. 3, 1137–1150 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Limaye, P. B. et al. Expression of specific hepatocyte and cholangiocyte transcription factors in human liver disease and embryonic development. Lab. Invest. 88, 865–872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Hattoum, A., Rubin, E., Orr, A. & Michalopoulos, G. K. Expression of hepatocyte epidermal growth factor receptor, FAS and glypican 3 in EpCAM-positive regenerative clusters of hepatocytes, cholangiocytes, and progenitor cells in human liver failure. Hum. Pathol. 44, 743–749 (2013).

    CAS  PubMed  Google Scholar 

  181. 181.

    Stueck, A. E. & Wanless, I. R. Hepatocyte buds derived from progenitor cells repopulate regions of parenchymal extinction in human cirrhosis. Hepatology 61, 1696–1707 (2015).

    CAS  PubMed  Google Scholar 

  182. 182.

    Bhushan, B. & Apte, U. Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities. Am. J. Pathol. 189, 719–729 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Bhushan, B. et al. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am. J. Pathol. 184, 3013–3025 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Bhushan, B. et al. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol. Sci. 155, 363–378 (2017).

    CAS  PubMed  Google Scholar 

  185. 185.

    Hughes, R. D., Zhang, L., Tsubouchi, H., Daikuhara, Y. & Williams, R. Plasma hepatocyte growth factor and biliprotein levels and outcome in fulminant hepatic failure. J. Hepatol. 20, 106–111 (1994).

    CAS  PubMed  Google Scholar 

  186. 186.

    James, L. P., Kurten, R. C., Lamps, L. W., McCullough, S. & Hinson, J. A. Tumour necrosis factor receptor 1 and hepatocyte regeneration in acetaminophen toxicity: a kinetic study of proliferating cell nuclear antigen and cytokine expression. Basic Clin. Pharmacol. Toxicol. 97, 8–14 (2005).

    CAS  PubMed  Google Scholar 

  187. 187.

    James, L. P., Lamps, L. W., McCullough, S. & Hinson, J. A. Interleukin 6 and hepatocyte regeneration in acetaminophen toxicity in the mouse. Biochem. Biophys. Res. Commun. 309, 857–863 (2003).

    CAS  PubMed  Google Scholar 

  188. 188.

    Donahower, B. et al. Vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G102–G109 (2006).

    CAS  PubMed  Google Scholar 

  189. 189.

    Kato, T. et al. Vascular endothelial growth factor receptor-1 signaling promotes liver repair through restoration of liver microvasculature after acetaminophen hepatotoxicity. Toxicol. Sci. 120, 218–229 (2011).

    CAS  PubMed  Google Scholar 

  190. 190.

    Bhushan, B. et al. Role of bile acids in liver injury and regeneration following acetaminophen overdose. Am. J. Pathol. 183, 1518–1526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Bhushan, B., Poudel, S., Manley, M. W. Jr. Roy, N. & Apte, U. Inhibition of glycogen synthase kinase 3 accelerated liver regeneration after acetaminophen-induced hepatotoxicity in mice. Am. J. Pathol. 187, 543–552 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Alvarez-Sola, G. et al. Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death Dis. 8, e3083 (2017).

    PubMed  PubMed Central  Google Scholar 

  193. 193.

    Bird, T. G. et al. TGFβ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl Med. 10, eaan1230 (2018).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Borude, P., Bhushan, B. & Apte, U. DNA damage response regulates initiation of liver regeneration following acetaminophen overdose. Gene Expr. 18, 115–123 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195.

    Borude, P. et al. Pleiotropic role of p53 in injury and liver regeneration after acetaminophen overdose. Am. J. Pathol. 188, 1406–1418 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Overturf, K. et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 12, 266–273 (1996).

    CAS  PubMed  Google Scholar 

  197. 197.

    Overturf, K., al-Dhalimy, M., Ou, C. N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Monga, S. P. Updates on hepatic homeostasis and the many tiers of hepatobiliary repair. Nat. Rev. Gastroenterol. Hepatol. 16, 84–86 (2019).

    CAS  PubMed  Google Scholar 

  199. 199.

    Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Kennedy, S., Rettinger, S., Flye, M. W. & Ponder, K. P. Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology 22, 160–168 (1995).

    CAS  PubMed  Google Scholar 

  201. 201.

    Lin, S. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26, 27–33.e4 (2020).

    CAS  PubMed  Google Scholar 

  203. 203.

    Sun, T. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26, 97–107.e6 (2019).

    PubMed  Google Scholar 

  204. 204.

    Monga, S. P. No zones left behind: democratic hepatocytes contribute to liver homeostasis and repair. Cell Stem Cell 26, 2–3 (2020).

    CAS  PubMed  Google Scholar 

  205. 205.

    Michalopoulos, G. K. Hepatostat: liver regeneration and normal liver tissue maintenance. Hepatology 65, 1384–1392 (2017).

    PubMed  Google Scholar 

  206. 206.

    Klaas, M. et al. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6, 27398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. 207.

    Canbay, A. et al. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab. Invest. 83, 655–663 (2003).

    CAS  PubMed  Google Scholar 

  208. 208.

    Duncan, A. W. et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467, 707–710 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. 209.

    Anti, M. et al. DNA ploidy pattern in human chronic liver diseases and hepatic nodular lesions. Flow cytometric analysis on echo-guided needle liver biopsy. Cancer 73, 281–288 (1994).

    CAS  PubMed  Google Scholar 

  210. 210.

    Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

    PubMed  Google Scholar 

  211. 211.

    Boege, Y. et al. A dual role of caspase-8 in triggering and sensing proliferation-associated DNA damage, a key determinant of liver cancer development. Cancer Cell 32, 342–359 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. 213.

    Luo, J. H. et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology 44, 1012–1024 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

G.K.M. and B.B. wrote the article. G.K.M. reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to George K. Michalopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks S. Dooley, S. Huppert, H. Jaeschke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michalopoulos, G.K., Bhushan, B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 18, 40–55 (2021). https://doi.org/10.1038/s41575-020-0342-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing