Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AMPK as a mediator of tissue preservation: time for a shift in dogma?

Abstract

Ground-breaking discoveries have established 5′-AMP-activated protein kinase (AMPK) as a central sensor of metabolic stress in cells and tissues. AMPK is activated through cellular starvation, exercise and drugs by either directly or indirectly affecting the intracellular AMP (or ADP) to ATP ratio. In turn, AMPK regulates multiple processes of cell metabolism, such as the maintenance of cellular ATP levels, via the regulation of fatty acid oxidation, glucose uptake, glycolysis, autophagy, mitochondrial biogenesis and degradation, and insulin sensitivity. Moreover, AMPK inhibits anabolic processes, such as lipogenesis and protein synthesis. These findings support the notion that AMPK is a crucial regulator of cell catabolism. However, studies have revealed that AMPK’s role in cell homeostasis might not be as unidirectional as originally thought. This Review explores emerging evidence for AMPK as a promoter of cell survival and an enhancer of anabolic capacity in skeletal muscle and adipose tissue during catabolic crises. We discuss AMPK-activating interventions for tissue preservation during tissue wasting in cancer-associated cachexia and explore the clinical potential of AMPK activation in wasting conditions. Overall, we provide arguments that call for a shift in the current dogma of AMPK as a mere regulator of cell catabolism, concluding that AMPK has an unexpected role in tissue preservation.

Key points

  • AMPK is traditionally viewed as a predominantly anti-anabolic enzyme that mitigates the inhibition of protein synthesis.

  • Emerging evidence from preclinical models suggests that activating AMPK could be a viable strategy to improve muscle and adipose tissue maintenance during wasting conditions, such as cancer cachexia.

  • AMPK’s ability to ensure sufficient ATP levels by regulating mitochondrial function and insulin sensitivity supports cellular homeostasis and survival during cancer cachexia.

  • Direct and indirect AMPK-activating strategies in preclinical cachexia models resulted in increased anabolism and attenuated muscle and adipose tissue atrophy.

  • The benefits of AMPK are probably not limited to cancer cachexia but can be found in other metabolic conditions that also involve tissue wasting, such as sarcopenia or congenital muscular dystrophies.

  • AMPK could be a target for the design of strategies that address the unmet clinical need for treatment of wasting conditions, such as cancer cachexia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activating and inhibitory signalling events.
Fig. 2: Skeletal muscle during cancer cachexia.
Fig. 3: Proposed AMPK signalling network in white adipose tissue during cancer cachexia.

Similar content being viewed by others

References

  1. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Sartori, R., Romanello, V. & Sandri, M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitch, W. E. & Goldberg, A. L. Mechanisms of muscle wasting – the role of the ubiquitin–proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg, G. R. et al. Tumor necrosis factor ɑ-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4, 465–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Joseph, B. K. et al. Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J. Biol. Chem. 290, 10588–10598 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. & Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y. L. et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18, 546–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Fearon, K. C. H., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. White, J. P. et al. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am. J. Physiol. Endocrinol. Metab. 304, E1042–E1052 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguilar-Recarte, D. et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 36, 109501 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Grossberg, A. J., Scarlett, J. M. & Marks, D. L. Hypothalamic mechanisms in cachexia. Physiol. Behav. 100, 478–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bennani-Baiti, N. & Walsh, D. Animal models of the cancer anorexia-cachexia syndrome. Support. Care Cancer 19, 1451–1463 (2011).

    Article  PubMed  Google Scholar 

  19. Winter, A., MacAdams, J. & Chevalier, S. Normal protein anabolic response to hyperaminoacidemia in insulin-resistant patients with lung cancer cachexia. Clin. Nutr. 31, 765–773 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Yoshikawa, T., Noguchi, Y., Doi, C., Makino, T. & Nomura, K. Insulin resistance in patients with cancer: relationships with tumor site, tumor stage, body-weight loss, acute-phase response, and energy expenditure. Nutrition 17, 590–593 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yoshikawa, T. et al. Insulin resistance was connected with the alterations of substrate utilization in patients with cancer. Cancer Lett. 141, 93–98 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Heber, D., Byerly, L. O. & Chlebowski, R. T. Metabolic abnormalities in the cancer patient. Cancer 55, 225–229 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Màrmol, J. M. et al. Insulin resistance in patients with cancer: a systematic review and meta-analysis. Acta Oncol. 62, 364–371 (2023).

    Article  PubMed  Google Scholar 

  24. Smith, K. L. & Tisdale, M. J. Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br. J. Cancer 67, 680–685 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Emery, P. W., Edwards, R. H., Rennie, M. J., Souhami, R. L. & Halliday, D. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br. Med. J. 289, 584–586 (1984).

    Article  CAS  Google Scholar 

  26. Jeevanandam, M., Lowry, S., Horowitz, G. & Brennan, M. Cancer cachexia and protein metabolism. Lancet 323, 1423–1426 (1984).

    Article  Google Scholar 

  27. Lundholm, K., Edström, S., Karlberg, I., Ekman, L. & Scherstén, T. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients. Cancer 50, 1142–1150 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Han, X. et al. Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism 105, 154169 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Goncalves, M. D. et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Pro. Natl Acad. Sci. USA 115, E743–E752 (2018).

    Article  CAS  Google Scholar 

  30. Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Beck, S. A. & Tisdale, M. J. Effect of cancer cachexia on triacylglycerol/fatty acid substrate cycling in white adipose tissue. Lipids 39, 1187–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Dilman, V. M., Berstein, L. M., Ostroumova, M. N., Tsyrlina, Y. V. & Golubev, A. G. Peculiarities of hyperlipidaemia in tumour patients. Br. J. Cancer 43, 637–643 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kazemi-Bajestani, S. M., Mazurak, V. C. & Baracos, V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin. Cell Dev. Biol. 54, 2–10 (2016).

    Article  PubMed  Google Scholar 

  34. Stene, G. B. et al. Changes in skeletal muscle mass during palliative chemotherapy in patients with advanced lung cancer. Acta Oncol. 54, 340–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Antoun, S., Borget, I. & Lanoy, E. Impact of sarcopenia on the prognosis and treatment toxicities in patients diagnosed with cancer. Curr. Opin. Support. Palliat. Care 7, 383–389 (2013).

    Article  PubMed  Google Scholar 

  36. Couch, M. et al. Cancer cachexia syndrome in head and neck cancer patients: part I. Diagnosis, impact on quality of life and survival, and treatment. Head. Neck 29, 401–411 (2007).

    Article  PubMed  Google Scholar 

  37. Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

    Article  PubMed  Google Scholar 

  38. Anker, M. S. et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J. Cachexia Sarcopenia Muscle 10, 22–34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roeland, E. J. et al. Management of cancer cachexia: ASCO guideline. J. Clin. Oncol. 38, 2438–2453 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Segatto, M. et al. Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival. Nat. Commun. 8, 1707 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Raun, S. H., Knudsen, J. R., Han, X., Jensen, T. E. & Sylow, L. Cancer causes dysfunctional insulin signaling and glucose transport in a muscle-type-specific manner. FASEB J. 36, e22211 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Bohnert, K. R. et al. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. FASEB J. 30, 3053–3068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raun, S. H. et al. Adenosine monophosphate-activated protein kinase is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice. J. Cachexia Sarcopenia Muscle 14, 1631–1647 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Argilés, J. M., Fontes-Oliveira, C. C., Toledo, M., López-Soriano, F. J. & Busquets, S. Cachexia: a problem of energetic inefficiency. J. Cachexia Sarcopenia Muscle 5, 279–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sanchís, D. et al. Skeletal muscle UCP2 and UCP3 gene expression in a rat cancer cachexia model. FEBS Lett. 436, 415–418 (1998).

    Article  PubMed  Google Scholar 

  46. Kitaoka, Y., Miyazaki, M. & Kikuchi, S. Voluntary exercise prevents abnormal muscle mitochondrial morphology in cancer cachexia mice. Physiol. Rep. 9, e15016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shum, A. M. Y. et al. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget 9, 22001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. van der Ende, M. et al. Mitochondrial dynamics in cancer-induced cachexia. Biochim. Biophys. Acta Rev. Cancer 1870, 137–150 (2018).

    Article  PubMed  Google Scholar 

  49. VanderVeen, B. N., Fix, D. K. & Carson, J. A. Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: a role for inflammation. Oxid. Med. Cell. Longev. 2017, 3292087 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. White, J. P. et al. IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse. Skelet. Muscle 2, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, J. L. et al. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J. Cachexia Sarcopenia Muscle 8, 926–938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Beltrà, M., Pin, F., Ballarò, R., Costelli, P. & Penna, F. Mitochondrial dysfunction in cancer cachexia: impact on muscle health and regeneration. Cells 10, 3150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. de Castro, G. S. et al. Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle. Cancers 11, 1264 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Op den Kamp, C. M. et al. Preserved muscle oxidative metabolic phenotype in newly diagnosed non-small cell lung cancer cachexia. J. Cachexia Sarcopenia Muscle 6, 164–173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pin, F., Barreto, R., Couch, M. E., Bonetto, A. & O’Connell, T. M. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. J. Cachexia Sarcopenia Muscle 10, 140–154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Atkinson, D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 4030–4034 (1968).

    Article  CAS  PubMed  Google Scholar 

  57. Egan, B. & Zierath, J. R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–184 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Fix, D. K. et al. Wheel running improves fasting-induced AMPK signaling in skeletal muscle from tumor-bearing mice. Physiol. Rep. 9, e14924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ballarò, R. et al. Moderate exercise improves experimental cancer cachexia by modulating the redox homeostasis. Cancers 11, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ballarò, R. et al. Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations. FASEB J. 33, 5482–5494 (2019).

    Article  PubMed  Google Scholar 

  61. Wyart, E. et al. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Rep. 23, e53746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Velázquez, K. T. et al. Quercetin supplementation attenuates the progression of cancer cachexia in ApcMin/+ mice. J. Nutr. 144, 868–875 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Beltrà, M. et al. NAD+ repletion with niacin counteracts cancer cachexia. Nat. Commun. 14, 1849 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bujak, A. L. et al. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab. 21, 883–890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mikhail, A. I., Ng, S. Y., Mattina, S. R. & Ljubicic, V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol. Med. 29, 512–529 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Ozaki, Y. et al. Myonectin protects against skeletal muscle dysfunction in male mice through activation of AMPK/PGC1α pathway. Nat. Commun. 14, 4675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomas, M. M. et al. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. FASEB J. 28, 2098–2107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Neill, H. M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl Acad. Sci. USA 108, 16092–16097 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hall, D. T. et al. The AMPK agonist 5‐aminoimidazole‐4‐carboxamide ribonucleotide (AICAR), but not metformin, prevents inflammation‐associated cachectic muscle wasting. EMBO Mol. Med. 10, e8307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rohdenburg, G. L., Bernhard, A. & Krehbiel, O. Sugar tolerance in cancer. J. Am. Med. Assoc. 72, 1528–1530 (1919).

    Article  Google Scholar 

  71. Hwangbo, Y. et al. Incidence of diabetes after cancer development: a Korean National Cohort Study. JAMA Oncol. 4, 1099–1105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sylow, L. et al. Incidence of new-onset type 2 diabetes after cancer: a Danish Cohort Study. Diabetes Care 45, e105–e106 (2022).

    Article  PubMed  Google Scholar 

  73. Kjøbsted, R. et al. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 66, 598–612 (2017).

    Article  PubMed  Google Scholar 

  74. Kjøbsted, R. et al. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner. Diabetes 64, 2042–2055 (2015).

    Article  PubMed  Google Scholar 

  75. Pehmøller, C. et al. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 297, E665–E675 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kjøbsted, R. et al. TBC1D4 is necessary for enhancing muscle insulin sensitivity in response to AICAR and contraction. Diabetes 68, 1756–1766 (2019).

    Article  PubMed  Google Scholar 

  77. Sylow, L. et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 62, 1865–1875 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rudich, A. & Klip, A. Putting Rac1 on the path to glucose uptake. Diabetes 62, 1831–1832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sylow, L. et al. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell. Signal. 26, 323–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Sylow, L. et al. Rac1 in muscle is dispensable for improved insulin action after exercise in mice. Endocrinology 157, 3009–3015 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Small, L. et al. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am. J. Physiol. Endocrinol. Metab. 315, E258–E266 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Langer, H. T. et al. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Preprint at BioRxiv https://doi.org/10.1101/2023.07.31.551241 (2023).

  83. Frøsig, C. et al. AMPK and insulin action – responses to ageing and high fat diet. PLoS ONE 8, e62338 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fujii, N. et al. Ablation of AMP-activated protein kinase ɑ2 activity exacerbates insulin resistance induced by high-fat feeding of mice. Diabetes 57, 2958–2966 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lantier, L. et al. Reciprocity between skeletal muscle AMPK deletion and insulin action in diet-induced obese mice. Diabetes 69, 1636–1649 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Johanns, M. et al. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell. Signal. 36, 212–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Inoki, K., Zhu, T. & Guan, K.-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Bolster, D. R., Crozier, S. J., Kimball, S. R. & Jefferson, L. S. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 277, 23977–23980 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lantier, L. et al. Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J. 24, 3555–3561 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Kido, K. et al. AMPK is indispensable for overload-induced muscle glucose uptake and glycogenesis but dispensable for inducing hypertrophy in mice. FASEB J. 35, e21459 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Jang, T. et al. 5′‐AMP‐activated protein kinase activity is elevated early during primary brain tumor development in the rat. Int. J. Cancer 128, 2230–2239 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Godlewski, J. et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell 37, 620–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov. 8, 866–883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hart, P. C. et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat. Commun. 6, 6053 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Eichner, L. J. et al. Genetic analysis reveals AMPK is required to support tumor growth in murine Kras-dependent lung cancer models. Cell Metab. 29, 285–302 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. La Montagna, M. et al. AMPKα loss promotes KRAS-mediated lung tumorigenesis. Cell Death Differ. 28, 2673–2689 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Murray, C. W. et al. An LKB1-SIK axis suppresses lung tumor growth and controls differentiation. Cancer Discov. 9, 1590–1605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hardie, D. G. Molecular pathways: is AMPK a friend or a foe in cancer? Clin. Cancer Res. 21, 3836–3840 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, W., Saud, S. M., Young, M. R., Chen, G. & Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget 6, 7365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Faubert, B., Vincent, E. E., Poffenberger, M. C. & Jones, R. G. The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett. 356, 165–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Luo, Z., Saha, A. K., Xiang, X. & Ruderman, N. B. AMPK, the metabolic syndrome and cancer. Trends Pharmacol. Sci. 26, 69–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Zadra, G., Batista, J. L. & Loda, M. Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol. Cancer Res. 13, 1059–1072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pigna, E. et al. Aerobic exercise and pharmacological treatments counteract cachexia by modulating autophagy in colon cancer. Sci. Rep. 6, 26991 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Asp, M. L., Tian, M., Wendel, A. A. & Belury, M. A. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice. Int. J. Cancer 126, 756–763 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Chen, S.-Z. & Xiao, J.-D. Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model. Tumor Biol. 35, 323–332 (2014).

    Article  Google Scholar 

  107. Trobec, K. et al. Rosiglitazone reduces body wasting and improves survival in a rat model of cancer cachexia. Nutrition 30, 1069–1075 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Beluzi, M. et al. Pioglitazone treatment increases survival and prevents body weight loss in tumor-bearing animals: possible anti-cachectic effect. PLoS ONE 10, e0122660 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Morinaga, M. et al. Aerobic exercise ameliorates cancer cachexia-induced muscle wasting through adiponectin signaling. Int. J. Mol. Sci. 22, 3110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, X., Pickrell, A. M., Zimmers, T. A. & Moraes, C. T. Increase in muscle mitochondrial biogenesis does not prevent muscle loss but increased tumor size in a mouse model of acute cancer-induced cachexia. PLoS ONE 7, e33426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morena da Silva, F. et al. PGC-1α overexpression is not sufficient to mitigate cancer cachexia in either male or female mice. Appl. Physiol. Nutr. Metab. 47, 933–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bodine, S. C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014–1019 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Baar, K. & Esser, K. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am. J. Physiol. Cell Physiol. 276, C120–C127 (1999).

    Article  CAS  Google Scholar 

  114. Castets, P. et al. Sustained activation of mTORC1 in skeletal muscle inhibits constitutive and starvation-induced autophagy and causes a severe, late-onset myopathy. Cell Metab. 17, 731–744 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Joseph, G. A. et al. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with sarcopenia. Mol. Cell. Biol. 39, e00141-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ham, D. J. et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. Nat. Commun. 11, 4510 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Geremia, A. et al. Activation of Akt-mTORC1 signalling reverts cancer-dependent muscle wasting. J. Cachexia Sarcopenia Muscle 13, 648–661 (2022).

    Article  PubMed  Google Scholar 

  119. Hawley, S. A. et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 459, 275–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, M. et al. AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle. Clin. Sci. 134, 2381–2398 (2020).

    Article  CAS  Google Scholar 

  121. Han, F. et al. The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance. Nat. Commun. 9, 4728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kazyken, D. et al. AMPK directly activates mTORC2 to promote cell survival during acute energetic stress. Sci. Signal. 12, eaav3249 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Röhrig, F. & Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732–749 (2016).

    Article  PubMed  Google Scholar 

  124. Schönke, M., Massart, J. & Zierath, J. R. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J. Lipid Res. 59, 1276–1282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gauthier, M. S. et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J. Biol. Chem. 283, 16514–16524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mottillo, E. P. et al. Lack of adipocyte AMPK exacerbates insulin resistance and hepatic steatosis through brown and beige adipose tissue function. Cell Metab. 24, 118–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koh, H. J. et al. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem. J. 403, 473–481 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pulinilkunnil, T. et al. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 286, 8798–8809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moule, S. K. & Denton, R. M. The activation of p38 MAPK by the β-adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS Lett. 439, 287–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Hepp, D., Challoner, D. R. & Williams, R. H. Respiration in isolated fat cells and the effects of epinephrine. J. Biol. Chem. 243, 2321–2327 (1968).

    Article  CAS  PubMed  Google Scholar 

  131. Bihler, I. & Jeanrenaud, B. ATP content of isolated fat cells. Effects of insulin, ouabain, and lipolytic agents. Biochim. Biophys. Acta 202, 496–506 (1970).

    Article  CAS  PubMed  Google Scholar 

  132. Ahmad, B., Serpell, C. J., Fong, I. L. & Wong, E. H. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front. Mol. Biosci. 7, 76 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vila-Bedmar, R., Lorenzo, M. & Fernández-Veledo, S. Adenosine 5’-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151, 980–992 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Balaban, S. et al. Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5, 1 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Queiroz, A. L. et al. Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat. Commun. 13, 4633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fukawa, T. et al. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat. Med. 22, 666–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, S. J. et al. AMPK phosphorylates desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol. Cell. Biol. 36, 1961–1976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Daval, M. et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J. Biol. Chem. 280, 25250–25257 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Vaughan, M. The production and release of glycerol by adipose tissue incubated in vitro. J. Biol. Chem. 237, 3354–3358 (1962).

    Article  CAS  PubMed  Google Scholar 

  141. Zhang, T., Liu, J., Tong, Q. & Lin, L. SIRT3 acts as a positive autophagy regulator to promote lipid mobilization in adipocytes via activating AMPK. Int. J. Mol. Sci. 21, 372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Z. et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 5, 5493 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Fischer, A. W. et al. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment. Am. J. Physiol. Endocrinol. Metab. 312, E72–E87 (2017).

    Article  PubMed  Google Scholar 

  144. Qi, J. et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J. 27, 1537–1548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ji, H. et al. Development of a peptide drug restoring AMPK and adipose tissue functionality in cancer cachexia. Mol. Ther. 31, 2408–2421 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Bing, C. et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br. J. Cancer 95, 1028–1037 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sudo, Y. et al. Differential metabolic responses to adipose atrophy associated with cancer cachexia and caloric restriction in rats and the effect of rikkunshito in cancer cachexia. Int. J. Mol. Sci. 19, 3852 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jeon, S. M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 48, e245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wojtaszewski, J. F., Nielsen, P., Hansen, B. F., Richter, E. A. & Kiens, B. Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528, 221–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011).

    Article  PubMed  Google Scholar 

  151. Keys, A., Brožek, J., Henschel, A., Mickelsen, O. & Taylor, H. L. The Biology of Human Starvation Vol. 2 (University of Minnesota Press, 1950).

  152. Sponarova, J. et al. Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Lett. 579, 6105–6110 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Langer, H. T. et al. The proteasome regulates body weight and systemic nutrient metabolism during fasting. Am. J. Physiol. Endocrinol. Metab. 325, E500–E512 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Storoschuk, K. L. et al. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: a systematic review. Metabolism 152, 155768 (2023).

    Article  PubMed  Google Scholar 

  155. Nelson, M. E. et al. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J. 38, e102578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dreyer, H. C. et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 576, 613–624 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wilkinson, S. B. et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol. 586, 3701–3717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Langer, H. T. et al. Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci. Rep. 12, 7553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wojtaszewski, J. F. et al. 5’AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J. Physiol. 564, 563–573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, M. et al. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mech. Ageing Dev. 133, 655–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Apró, W. et al. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling. Am. J. Physiol. Endocrinol. Metab. 308, E470–E481 (2015).

    Article  PubMed  Google Scholar 

  162. Apró, W., Wang, L., Pontén, M., Blomstrand, E. & Sahlin, K. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 305, E22–E32 (2013).

    Article  PubMed  Google Scholar 

  163. Needham, E. J. et al. Personalized phosphoproteomics identifies functional signaling. Nat. Biotechnol. 40, 576–584 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Lantier, L. et al. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J. 28, 3211–3224 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Narkar, V. A. et al. AMPK and PPARδ agonists are exercise mimetics. Cell 134, 405–415 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Winder, W. W. et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88, 2219–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Sweegers, M. G. et al. Effects and moderators of exercise on muscle strength, muscle function and aerobic fitness in patients with cancer: a meta-analysis of individual patient data. Br. J. Sports Med. 53, 812 (2019).

    Article  PubMed  Google Scholar 

  169. Bourke, L. et al. Exercise for men with prostate cancer: a systematic review and meta-analysis. Eur. Urol. 69, 693–703 (2016).

    Article  PubMed  Google Scholar 

  170. Singh, B. et al. Exercise and colorectal cancer: a systematic review and meta-analysis of exercise safety, feasibility and effectiveness. Int. J. Behav. Nutr. Phys. Act. 17, 122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lopez, P., Taaffe, D. R., Newton, R. U. & Galvão, D. A. Resistance exercise dosage in men with prostate cancer: systematic review, meta-analysis, and meta-regression. Med. Sci. Sports Exerc. 53, 459–469 (2021).

    Article  PubMed  Google Scholar 

  172. Grande, A. J. et al. Exercise for cancer cachexia in adults. Cochrane Database Syst. Rev. 3, Cd010804 (2021).

    PubMed  Google Scholar 

  173. Hain, B. A., Xu, H. & Waning, D. L. Loss of REDD1 prevents chemotherapy‐induced muscle atrophy and weakness in mice. J. Cachexia Sarcopenia Muscle 12, 1597–1612 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hain, B. A. et al. REDD1 deletion attenuates cancer cachexia in mice. J. Appl. Physiol. 131, 1718–1730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hingst, J. R. et al. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol. Metab. 40, 101028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hardie, D. G. Targeting an energy sensor to treat diabetes. Science 357, 455–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bowker, S. L., Majumdar, S. R., Veugelers, P. & Johnson, J. A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006).

    Article  PubMed  Google Scholar 

  179. Vihervuori, V. J. et al. Antidiabetic drugs and prostate cancer prognosis in a Finnish population-based cohort. Cancer Epidemiol. Biomark. Prev. 30, 982–989 (2021).

    Article  CAS  Google Scholar 

  180. Lee, Y. et al. Randomized phase II study of platinum-based chemotherapy plus controlled diet with or without metformin in patients with advanced non-small cell lung cancer. Lung Cancer 151, 8–15 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Hunter, R. W. et al. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 24, 1395–1406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kjøbsted, R. et al. Metformin improves glycemia independently of skeletal muscle AMPK via enhanced intestinal glucose clearance. Preprint at BioRxiv https://doi.org/10.1101/2022.05.22.492936 (2022).

  183. Auger, C. et al. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol. Metab. 29, 12–23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Konopka, A. R. et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 18, e12880 (2019).

    Article  PubMed  Google Scholar 

  185. Oliveira, A. G. & Gomes-Marcondes, M. C. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats. BMC Cancer 16, 418 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hawley, S. A. et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Brunmair, B. et al. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53, 1052–1059 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. LeBrasseur, N. K. et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am. J. Physiol. Endocrinol. Metab. 291, E175–E181 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Cusi, K. et al. Efficacy and safety of PXL770, a direct AMP kinase activator, for the treatment of non-alcoholic fatty liver disease (STAMP-NAFLD): a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Gastroenterol. Hepatol. 6, 889–902 (2021).

    Article  PubMed  Google Scholar 

  191. Steneberg, P. et al. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 3, e99114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147–1159 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Ng, S. Y. et al. Acute, next-generation AMPK activation initiates a disease-resistant gene expression program in dystrophic skeletal muscle. FASEB J. 37, e22863 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Saha, A. K. et al. Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo. Biochem. Biophys. Res. Commun. 314, 580–585 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Maruyama, S. et al. Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. J. Biol. Chem. 286, 32790–32800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Konishi, M. et al. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation. Cardiovasc. Res. 89, 309–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Lee, C. G. et al. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care 34, 2381–2386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bray, G. A. et al. Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes. Metab. 15, 931–937 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Arad, M. et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109, 357–362 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dagorn, P. G. et al. A novel direct adenosine monophosphate kinase activator ameliorates disease progression in preclinical models of autosomal dominant polycystic kidney disease. Kidney Int. 103, 917–929 (2023).

    Article  CAS  PubMed  Google Scholar 

  202. Gluais-Dagorn, P. et al. Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis. Hepatol. Commun. 6, 101–119 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Wu, J. et al. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J. Biol. Chem. 288, 35904–35912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kopietz, F., Degerman, E. & Göransson, O. AMPKβ isoform expression patterns in various adipocyte models and in relation to body mass index. Front. Physiol. 13, 928964 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kopietz, F. et al. AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. Am. J. physiol. Endocrinol. Metab. 315, E1075–E1085 (2018).

    Article  CAS  PubMed  Google Scholar 

  206. Thornton, C., Snowden, M. A. & Carling, D. Identification of a novel AMP-activated protein kinase β subunit isoform that is highly expressed in skeletal muscle. J. Biol. Chem. 273, 12443–12450 (1998).

    Article  CAS  PubMed  Google Scholar 

  207. Ericsson, M., Steneberg, P., Nyrén, R. & Edlund, H. AMPK activator O304 improves metabolic and cardiac function, and exercise capacity in aged mice. Commun. Biol. 4, 1306 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Yavari, A. et al. Chronic activation of γ2 AMPK induces obesity and reduces β cell function. Cell Metab. 23, 821–836 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug. Discov. 18, 41–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Merrill, G. F., Kurth, E. J., Hardie, D. G. & Winder, W. W. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107–E1112 (1997).

    CAS  PubMed  Google Scholar 

  211. Cluzeau, T. et al. Acadesine circumvents azacitidine resistance in myelodysplastic syndrome and acute myeloid leukemia. Int. J. Mol. Sci. 21, 164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dzamko, N. et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J. Physiol. 586, 5819–5831 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhou, L. et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J. Biol. Chem. 284, 22426–22435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Mao, X. et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  215. Balasubramanian, P. et al. Adiponectin receptor agonist AdipoRon improves skeletal muscle function in aged mice. eLife 11, e71282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Selvais, C. M. et al. AdipoRon enhances healthspan in middle-aged obese mice: striking alleviation of myosteatosis and muscle degenerative markers. J. Cachexia Sarcopenia Muscle 14, 464–478 (2023).

    Article  PubMed  Google Scholar 

  217. Abou-Samra, M. et al. AdipoRon, a new therapeutic prospect for Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 11, 518–533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Feng, D. et al. Discovery of MK-8722: a systemic, direct pan-activator of AMP-activated protein kinase. ACS Med. Chem. Lett. 9, 39–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Calabrese, M. F. et al. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22, 1161–1172 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Quinn, B. J., Kitagawa, H., Memmott, R. M., Gills, J. J. & Dennis, P. A. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol. Metab. 24, 469–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Hawley, S. A. et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879–27887 (1996).

    Article  CAS  PubMed  Google Scholar 

  222. Drake, J. C. et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc. Natl Acad. Sci. USA 118, e2025932118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hardie, D. G. & Hawley, S. A. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23, 1112–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Green, M. F., Anderson, K. A. & Means, A. R. Characterization of the CaMKKβ–AMPK signaling complex. Cell. Signal. 23, 2005–2012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Vara-Ciruelos, D. et al. Genotoxic damage activates the AMPK-α1 isoform in the nucleus via Ca2+/CaMKK2 signaling to enhance tumor cell survival. Mol. Cancer Res. 16, 345–357 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Negoita, F. et al. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Mol. Metab. 75, 101761 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yang, Z., Kahn, B. B., Shi, H. & Xue, B. Z. Macrophage ɑ1 AMP-activated protein kinase (ɑ1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J. Biol. Chem. 285, 19051–19059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1ɑ and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  231. White, J. P. et al. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApcMin/+ mouse. PLoS ONE 6, e24650 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sylow, L., Kleinert, M., Richter, E. A. & Jensen, T. E. Exercise-stimulated glucose uptake – regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 13, 133–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Warburg, O. P., Posener, K. & Negelein, E. Über den Stoffwechsel der Carcinomzelle [German]. Biochem. Z. 152, 309–344 (1924).

    CAS  Google Scholar 

  234. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  235. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  236. Barone, B. B. et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300, 2754–2764 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Renehan, A. G., Zwahlen, M. & Egger, M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat. Rev. Cancer 15, 484–498 (2015).

    Article  CAS  PubMed  Google Scholar 

  238. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer – mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zhong, W. & Mao, Y. Daily insulin dose and cancer risk among patients with type 1 diabetes. JAMA Oncol. 8, 1356–1358 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Goodwin, P. J. et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol. 20, 42–51 (2002).

    Article  CAS  PubMed  Google Scholar 

  241. Zhang, A. M. Y. et al. Endogenous hyperinsulinemia contributes to pancreatic cancer development. Cell Metab. 30, 403–404 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Chovsepian, A. et al. Diabetes increases mortality in patients with pancreatic and colorectal cancer by promoting cachexia and its associated inflammatory status. Mol. Metab. 73, 101729 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Seki, T. et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 608, 421–428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Jung, S. M. et al. In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep. 36, 109459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Blondin, D. P. et al. Inhibition of intracellular triglyceride lipolysis suppresses cold-induced brown adipose tissue metabolism and increases shivering in humans. Cell Metab. 25, 438–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Kennedy, J. W. et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 48, 1192–1197 (1999).

    Article  CAS  PubMed  Google Scholar 

  248. Mikines, K. J., Sonne, B., Farrell, P. A., Tronier, B. & Galbo, H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am. J. Physiol. 254, E248–E259 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.T.L. and M.D.G. are funded as part of the CANCAN team supported by the Cancer Grand Challenges partnership funded by Cancer Research UK (CGCATF-2021/100022) and the National Cancer Institute (1 OT2 CA278685-01). L.S. received funding from The Novo Nordisk Foundation (grants NNF16OC0023418, NNF18OC0032082, NNF20OC0063577), Independent Research Council Denmark (DFF-4004-00233, 0169-00013B, 0169-00060B), the Danish Cancer Society (R302-A17605), and the Carlsberg Foundation (#CF21-0369). M.R. is funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (#949017), the Helmholtz Association – Initiative and Networking Fund, the European Foundation for the Study of Diabetes (EFSD)/ Novo Nordisk Foundation Future Leaders Award, and the German Center for Diabetes Research (DZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Tim Langer.

Ethics declarations

Competing interests

During revision of the manuscript H.T.L. started to work for Boehringer Ingelheim GmbH & Co. KG. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Gregory Steinberg, who co-reviewed with Andrew Mikhail; David Carling; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langer, H.T., Rohm, M., Goncalves, M.D. et al. AMPK as a mediator of tissue preservation: time for a shift in dogma?. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00992-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00992-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer