Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit

Abstract

The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1β, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.

Key points

  • The insulin-like growth factor (IGF) acid-labile subunit (ALS), encoded by IGFALS, forms a circulating ternary complex with IGF binding protein (IGFBP)-3 or IGFBP-5, and IGF-1 or IGF-2.

  • This ternary complex acts as a reservoir of IGF-1 and IGF-2 in the bloodstream and has a central role in regulating their endocrine transport and tissue bioavailability.

  • Owing to the induction of its expression by growth hormone and suppression by IL-1β, ALS might serve as a marker of growth hormone secretion and/or activity and of inflammation.

  • Mutation, deletion or inactivation of the gene that encodes ALS in humans and mice decreases circulating levels of IGF-1 and IGFBP-3, causing moderate growth deficiency and abnormalities in bone and carbohydrate metabolism.

  • As a marker of inflammation and sepsis, ALS levels are low in critical illness, cardiovascular disease and COVID-19; in some conditions, ALS levels might predict disease progression and mortality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the acid-labile subunit.
Fig. 2: Complex formation by the acid-labile subunit.
Fig. 3: The acid-labile subunit and ageing.
Fig. 4: Regulation of acid-labile subunit synthesis.

Similar content being viewed by others

References

  1. Bürgi, H., Müller, W. A., Humbel, R. E., Labhart, A. & Froesch, E. R. Non-suppressible insulin-like activity of human serum. I. Physicochemical properties, extraction and partial purification. Biochim. Biophys. Acta 121, 349–359 (1966).

    Article  PubMed  Google Scholar 

  2. Zapf, J., Waldvogel, M. & Froesch, E. R. Binding of nonsuppressible insulin-like activity to human serum. Evidence for a carrier protein. Arch. Biochem. Biophys. 168, 638–645 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Hintz, R. L. & Liu, F. Demonstration of specific plasma protein binding sites for somatomedin. J. Clin. Endocrinol. Metab. 45, 988–995 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Wilkins, J. R. & D’Ercole, A. J. Affinity-labeled plasma somatomedin-C/insulin-like growth factor I binding proteins. Evidence of growth hormone dependence and subunit structure. J. Clin. Invest. 75, 1350–1358 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furlanetto, R. W. The somatomedin C binding protein: evidence for a heterologous subunit structure. J. Clin. Endocrinol. Metab. 51, 12–19 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Hintz, R. L. Plasma forms of somatomedin and the binding protein phenomenon. Clin. Endocrinol. Metab. 13, 31–42 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Martin, J. L. & Baxter, R. C. Insulin-like growth factor-binding protein from human plasma. Purification and characterization. J. Biol. Chem. 261, 8754–8760 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Wood, W. I. et al. Cloning and expression of the growth hormone-dependent insulin-like growth factor-binding protein. Mol. Endocrinol. 2, 1176–1185 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Baxter, R. C. Characterization of the acid-labile subunit of the growth hormone-dependent insulin-like growth factor binding protein complex. J. Clin. Endocrinol. Metab. 67, 265–272 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Baxter, R. C., Martin, J. L. & Beniac, V. A. High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J. Biol. Chem. 264, 11843–11848 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Leong, S. R., Baxter, R. C., Camerato, T., Dai, J. & Wood, W. I. Structure and functional expression of the acid-labile subunit of the insulin-like growth factor-binding protein complex. Mol. Endocrinol. 6, 870–876 (1992).

    CAS  PubMed  Google Scholar 

  12. Baxter, R. C. & Martin, J. L. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity-labeling. Proc. Natl Acad. Sci. USA 86, 6898–6902 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohen, K. L. & Nissley, S. P. The serum half-life of somatomedin activity: evidence for growth hormone dependence. Acta Endocrinol. 83, 243–258 (1976).

    CAS  Google Scholar 

  14. Franklin, R. C., Rennie, G. C., Burger, H. G. & Cameron, D. P. Changes in NSILA-S in response to somatotropin administration and hypophysectomy. J. Clin. Endocrinol. Metab. 47, 91–96 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Baxter, R. C. & Martin, J. L. Radioimmunoassay of growth hormone-dependent insulin-like growth factor binding protein in human plasma. J. Clin. Invest. 78, 1504–1512 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baxter, R. C. Circulating levels and molecular distribution of the acid-labile (alpha) subunit of the high molecular weight insulin-like growth factor-binding protein complex. J. Clin. Endocrinol. Metab. 70, 1347–1353 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Bella, J., Hindle, K. L., McEwan, P. A. & Lovell, S. C. The leucine-rich repeat structure. Cell Mol. Life Sci. 65, 2307–2333 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Matsushima, N., Takatsuka, S., Miyashita, H. & Kretsinger, R. H. Leucine rich repeat proteins: sequences, mutations, structures and diseases. Protein Pept. Lett. 26, 108–131 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Janosi, J. B. et al. The acid-labile subunit of the serum insulin-like growth factor-binding protein complexes. Structural determination by molecular modeling and electron microscopy. J. Biol. Chem. 274, 23328–23332 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. David, A., Kelley, L. A. & Sternberg, M. J. A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations. J. Mol. Endocrinol. 49, 213–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. et al. Structural basis for assembly and disassembly of the IGF/IGFBP/ALS ternary complex. Nat. Commun. 13, 4434 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Swanson, L. E. et al. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization. Genetics 181, 1281–1290 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rotwein, P. Large-scale analysis of variation in the insulin-like growth factor family in humans reveals rare disease links and common polymorphisms. J. Biol. Chem. 292, 9252–9261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Janosi, J. B., Firth, S. M., Bond, J. J., Baxter, R. C. & Delhanty, P. J. N-linked glycosylation and sialylation of the acid-labile subunit. Role in complex formation with insulin-like growth factor (IGF)-binding protein-3 and the IGFs. J. Biol. Chem. 274, 5292–5298 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Holman, S. R. & Baxter, R. C. Insulin-like growth factor binding protein-3: factors affecting binary and ternary complex formation. Growth Regul. 6, 42–47 (1996).

    CAS  PubMed  Google Scholar 

  26. Lee, C. Y. & Rechler, M. M. Purified rat acid-labile subunit and recombinant human insulin-like growth factor (IGF)-binding protein-3 can form a 150-kilodalton binary complex in vitro in the absence of IGFs. Endocrinology 136, 4982–4989 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Choi, K. Y. & Lee, D. H. Interaction between acid-labile subunit and insulin-like growth factor binding protein 3 expressed in Xenopus oocytes. J. Biochem. Mol. Biol. 35, 186–193 (2002).

    CAS  PubMed  Google Scholar 

  28. Firth, S. M., Ganeshprasad, U. & Baxter, R. C. Structural determinants of ligand and cell surface binding of insulin-like growth factor-binding protein-3. J. Biol. Chem. 273, 2631–2638 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Twigg, S. M. & Baxter, R. C. Insulin-like growth factor (IGF)-binding protein 5 forms an alternative ternary complex with IGFs and the acid-labile subunit. J. Biol. Chem. 273, 6074–6079 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Twigg, S. M., Kiefer, M. C., Zapf, J. & Baxter, R. C. Insulin-like growth factor-binding protein 5 complexes with the acid-labile subunit. Role of the carboxyl-terminal domain. J. Biol. Chem. 273, 28791–28798 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Chin, E., Zhou, J., Dai, J., Baxter, R. C. & Bondy, C. A. Cellular localization and regulation of gene expression for components of the insulin-like growth factor ternary binding protein complex. Endocrinology 134, 2498–2504 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, J. W. et al. Isolation of the cDNA encoding the acid labile subunit (ALS) of the 150 kDa IGF-binding protein complex in cattle and ALS regulation during the transition from pregnancy to lactation. J. Endocrinol. 189, 583–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, C. Y. et al. Molecular cloning of the porcine acid-labile subunit (ALS) of the insulin-like growth factor-binding protein complex and detection of ALS gene expression in hepatic and non-hepatic tissues. J. Mol. Endocrinol. 26, 135–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Landi, E. et al. Expression of acid-labile subunit (ALS) in developing and adult zebrafish and its role in dorso-ventral patterning during development. Gen. Comp. Endocrinol. 299, 113591 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, W. et al. The matrisome genes from hepatitis B-related hepatocellular carcinoma unveiled. Hepatol. Commun. 5, 1571–1585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Naba, A. et al. The extracellular matrix: tools and insights for the ‘omics’ era. Matrix Biol. 49, 10–24 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Ouni, E., Vertommen, D., Chiti, M. C., Dolmans, M. M. & Amorim, C. A. A draft map of the human ovarian proteome for tissue engineering and clinical applications. Mol. Cell Proteom. 18, S159–S173 (2019).

    Article  CAS  Google Scholar 

  38. Wilczak, N. et al. Insulin-like growth factor (IGF)-I binding to a cell membrane associated IGF binding protein-3 acid-labile subunit complex in human anterior pituitary gland. J. Neurochem. 82, 430–438 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Lewitt, M. S. et al. Regulation of insulin-like growth factor-binding protein-3 ternary complex formation in pregnancy. J. Endocrinol. 159, 265–274 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Lo, H. C. et al. Relation of cord serum levels of growth hormone, insulin-like growth factors, insulin-like growth factor binding proteins, leptin, and interleukin-6 with birth weight, birth length, and head circumference in term and preterm neonates. Nutrition 18, 604–608 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Juul, A. et al. The acid-labile subunit of human ternary insulin-like growth factor binding protein complex in serum: hepatosplanchnic release, diurnal variation, circulating concentrations in healthy subjects, and diagnostic use in patients with growth hormone deficiency. J. Clin. Endocrinol. Metab. 83, 4408–4415 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Stadler, S. et al. Monoclonal anti-acid-labile subunit oligopeptide antibodies and their use in a two-site immunoassay for ALS measurement in humans. J. Immunol. Methods 252, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Frystyk, J. et al. Developmental changes in serum levels of free and total insulin-like growth factor I (IGF-I), IGF-binding protein-1 and -3, and the acid-labile subunit in rats. Endocrinology 139, 4286–4292 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Baxter, R. C. & Dai, J. Purification and characterization of the acid-labile subunit of rat serum insulin-like growth factor binding protein complex. Endocrinology 134, 848–852 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Hwang, D. L., Lee, P. D. & Cohen, P. Quantitative ontogeny of murine insulin-like growth factor (IGF)-I, IGF-binding protein-3 and the IGF-related acid-labile subunit. Growth Horm. IGF Res. 18, 65–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Baxter, R. C. Signaling pathways of the insulin-like growth factor binding proteins. Endocr. Rev. 44, 753–778 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santos-Lozano, A. et al. Successful aging: insights from proteome analyses of healthy centenarians. Aging 12, 3502–3515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai, J. & Baxter, R. C. Regulation in vivo of the acid-labile subunit of the rat serum insulin-like growth factor-binding protein complex. Endocrinology 135, 2335–2341 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, C. Y., Cohen, F. J., Wu, H. B., Ooi, G. T. & Rechler, M. M. The absence of 150-kDa insulin-like growth factor complexes in fetal rat serum is not due to a lack of functional acid-labile subunit. Horm. Metab. Res. 31, 182–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Schreiter, T. et al. Transcriptome-wide analysis of human liver reveals age-related differences in the expression of select functional gene clusters and evidence for a PPP1R10-governed ‘aging cascade’. Pharmaceutics 13, 2009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mandel, S. H., Moreland, E., Rosenfeld, R. G. & Gargosky, S. E. The effect of GH therapy on the immunoreactive forms and distribution of IGFBP-3, IGF-I, the acid-labile subunit, and growth rate in GH-deficient children. Endocrine 7, 351–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Gargosky, S. E., Tapanainen, P. & Rosenfeld, R. G. Administration of growth hormone (GH), but not insulin-like growth factor-I (IGF-I), by continuous infusion can induce the formation of the 150-kilodalton IGF-binding protein-3 complex in GH-deficient rats. Endocrinology 134, 2267–2276 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Scharf, J., Ramadori, G., Braulke, T. & Hartmann, H. Synthesis of insulin-like growth factor binding proteins and of the acid-labile subunit in primary cultures of rat hepatocytes, of Kupffer cells, and in cocultures: regulation by insulin, insulinlike growth factor, and growth hormone. Hepatology 23, 818–827 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Olivecrona, H. et al. Acute and short-term effects of growth hormone on insulin-like growth factors and their binding proteins: serum levels and hepatic messenger ribonucleic acid responses in humans. J. Clin. Endocrinol. Metab. 84, 553–560 (1999).

    CAS  PubMed  Google Scholar 

  55. Dai, J., Scott, C. D. & Baxter, R. C. Regulation of the acid-labile subunit of the insulin-like growth factor complex in cultured rat hepatocytes. Endocrinology 135, 1066–1072 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Ooi, G. T., Cohen, F. J., Tseng, L. Y., Rechler, M. M. & Boisclair, Y. R. Growth hormone stimulates transcription of the gene encoding the acid-labile subunit (ALS) of the circulating insulin-like growth factor-binding protein complex and ALS promoter activity in rat liver. Mol. Endocrinol. 11, 997–1007 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Ooi, G. T., Hurst, K. R., Poy, M. N., Rechler, M. M. & Boisclair, Y. R. Binding of STAT5a and STAT5b to a single element resembling a gamma-interferon-activated sequence mediates the growth hormone induction of the mouse acid-labile subunit promoter in liver cells. Mol. Endocrinol. 12, 675–687 (1998).

    CAS  PubMed  Google Scholar 

  58. Sos, B. C. et al. Abrogation of growth hormone secretion rescues fatty liver in mice with hepatocyte-specific deletion of JAK2. J. Clin. Invest. 121, 1412–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barreca, A. et al. Functions and regulation of the acid-labile subunit of the 150 K complex. Prog. Growth Factor. Res. 6, 231–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Scharf, J. G., Braulke, T., Hartmann, H. & Ramadori, G. Regulation of the components of the 150 kDa IGF binding protein complex in cocultures of rat hepatocytes and Kupffer cells by 3′,5′-cyclic adenosine monophosphate. J. Cell Physiol. 186, 425–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Delhanty, P. J. & Baxter, R. C. The regulation of acid-labile subunit gene expression and secretion by cyclic adenosine 3′,5′-monophosphate. Endocrinology 139, 260–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Delhanty, P. J. Interleukin-1 beta suppresses growth hormone-induced acid-labile subunit mRNA levels and secretion in primary hepatocytes. Biochem. Biophys. Res. Commun. 243, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Barreca, A., Ketelslegers, J. M., Arvigo, M., Minuto, F. & Thissen, J. P. Decreased acid-labile subunit (ALS) levels by endotoxin in vivo and by interleukin-1beta in vitro. Growth Horm. IGF Res. 8, 217–223 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Hynes, R. O. & Naba, A. Overview of the matrisome — an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fernqvist-Forbes, E., Ekberg, K., Lindgren, B. F. & Brismar, K. Splanchnic exchange of insulin-like growth factor binding protein-1 (IGFBP-1), IGF-I and acid-labile subunit (ALS) during normo- and hyper-insulinaemia in healthy subjects. Clin. Endocrinol. 51, 327–332 (1999).

    Article  CAS  Google Scholar 

  66. Juul, A. et al. Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J. Clin. Endocrinol. Metab. 80, 2534–2542 (1995).

    CAS  PubMed  Google Scholar 

  67. Van den Berghe, G. et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J. Clin. Endocrinol. Metab. 84, 1311–1323 (1999).

    PubMed  Google Scholar 

  68. Lewitt, M. S., Saunders, H., Phuyal, J. L. & Baxter, R. C. Complex formation by human insulin-like growth factor-binding protein-3 and human acid-labile subunit in growth hormone-deficient rats. Endocrinology 134, 2404–2409 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Lewitt, M. S., Saunders, H. & Baxter, R. C. Bioavailability of insulin-like growth factors (IGFs) in rats determined by the molecular distribution of human IGF-binding protein-3. Endocrinology 133, 1797–1802 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Zapf, J., Hauri, C., Waldvogel, M. & Froesch, E. R. Acute metabolic effects and half-lives of intravenously administered insulin-like growth factors I and II in normal and hypophysectomized rats. J. Clin. Invest. 77, 1768–1775 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Firth, S. M., McDougall, F., McLachlan, A. J. & Baxter, R. C. Impaired blockade of insulin-like growth factor I (IGF-I)-induced hypoglycemia by IGF binding protein-3 analog with reduced ternary complex-forming ability. Endocrinology 143, 1669–1676 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Payet, L. D., Firth, S. M. & Baxter, R. C. The role of the acid-labile subunit in regulating insulin-like growth factor transport across human umbilical vein endothelial cell monolayers. J. Clin. Endocrinol. Metab. 89, 2382–2389 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Xu, S. et al. Insulin-like growth factors (IGFs) and IGF-binding proteins in human skin interstitial fluid. J. Clin. Endocrinol. Metab. 80, 2940–2945 (1995).

    CAS  PubMed  Google Scholar 

  74. Hughes, S. C., Mason, H. D., Franks, S. & Holly, J. M. The insulin-like growth factors (IGFs) in follicular fluid are predominantly bound in the ternary complex. J. Endocrinol. 155, R1–R4 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Khosravi, M. J., Diamandi, A., Mistry, J., Krishna, R. G. & Khare, A. Acid-labile subunit of human insulin-like growth factor-binding protein complex: measurement, molecular, and clinical evaluation. J. Clin. Endocrinol. Metab. 82, 3944–3951 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Labarta, J. I. et al. Immunoblot studies of the acid-labile subunit (ALS) in biological fluids, normal human serum and in children with GH deficiency and GH receptor deficiency before and after long-term therapy with GH or IGF-I respectively. Clin. Endocrinol. 47, 657–666 (1997).

    Article  CAS  Google Scholar 

  77. Wandji, S. A., Gadsby, J. E., Simmen, F. A., Barber, J. A. & Hammond, J. M. Porcine ovarian cells express messenger ribonucleic acids for the acid-labile subunit and insulin-like growth factor binding protein-3 during follicular and luteal phases of the estrous cycle. Endocrinology 141, 2638–2647 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Moon, J. S. & Choi, Y. H. Multiplex PCR for the rapid detection of insulin-like growth factor in the Pacific oyster, Crassostrea gigas: a useful indicator for growth assessment. Mol. Biol. Rep. 46, 1023–1031 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Hetz, J. A. et al. Growth axis maturation is linked to nutrition, growth and developmental rate. Mol. Cell Endocrinol. 411, 38–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Arquier, N. et al. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab. 7, 333–338 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Ueki, I. et al. Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system. Proc. Natl Acad. Sci. USA 97, 6868–6873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yakar, S. et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yakar, S. et al. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J. Endocrinol. 189, 289–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Fritton, J. C. et al. The insulin-like growth factor-1 binding protein acid-labile subunit alters mesenchymal stromal cell fate. J. Biol. Chem. 285, 4709–4714 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Courtland, H. W. et al. Low levels of plasma IGF-1 inhibit intracortical bone remodeling during aging. Age 35, 1691–1703 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Swindell, W. R. Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging. BMC Genomics 8, 353 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mariño, G. et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc. Natl Acad. Sci. USA 107, 16268–16273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kim, Y. W. et al. Harnessing the paradoxical phenotypes of APOE ɛ2 and APOE ɛ4 to identify genetic modifiers in Alzheimer’s disease. Alzheimers Dement. 17, 831–846 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Domené, H. M. et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 350, 570–577 (2004).

    Article  PubMed  Google Scholar 

  90. Hwa, V. et al. Total absence of functional acid labile subunit, resulting in severe insulin-like growth factor deficiency and moderate growth failure. J. Clin. Endocrinol. Metab. 91, 1826–1831 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Firth, S. M., Yan, X. & Baxter, R. C. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. Mol. Endocrinol. 25, 307–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Domené, H. M. et al. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences. Horm. Res. 72, 129–141 (2009).

    PubMed  Google Scholar 

  93. Fofanova-Gambetti, O. V. et al. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J. Clin. Endocrinol. Metab. 95, 4184–4191 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. van Duyvenvoorde, H. A. et al. Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit. Eur. J. Endocrinol. 159, 113–120 (2008).

    Article  PubMed  Google Scholar 

  95. Hess, O. et al. A novel mutation in IGFALS, c.380T>C (p.L127P), associated with short stature, delayed puberty, osteopenia and hyperinsulinaemia in two siblings: insights into the roles of insulin growth factor-1 (IGF1). Clin. Endocrinol. 79, 838–844 (2013).

    Article  CAS  Google Scholar 

  96. Domené, H. M. et al. Heterozygous IGFALS gene variants in idiopathic short stature and normal children: impact on height and the IGF system. Horm. Res. Paediatr. 80, 413–423 (2013).

    Article  PubMed  Google Scholar 

  97. Işık, E. et al. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur. J. Endocrinol. 176, 657–667 (2017).

    Article  PubMed  Google Scholar 

  98. Kumar, A. et al. Pathogenic/likely pathogenic variants in the SHOX, GHR and IGFALS genes among Indian children with idiopathic short stature. J. Pediatr. Endocrinol. Metab. 33, 79–88 (2020).

    Article  PubMed  Google Scholar 

  99. Franzoni, A. et al. Novel IGFALS mutations with predicted pathogenetic effects by the analysis of AlphaFold structure. Endocrine 79, 292–295 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Domené, S. & Domené, H. M. The role of acid-labile subunit (ALS) in the modulation of GH-IGF-I action. Mol. Cell Endocrinol. 518, 111006 (2020).

    Article  PubMed  Google Scholar 

  101. Högler, W. et al. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. J. Clin. Endocrinol. Metab. 99, E703–E712 (2014).

    Article  PubMed  Google Scholar 

  102. Grandone, A. et al. Clinical features of a new acid-labile subunit (IGFALS) heterozygous mutation: anthropometric and biochemical characterization and response to growth hormone administration. Horm. Res. Paediatr. 81, 67–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Haluzik, M. et al. Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes 52, 2483–2489 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. de Boer, H. et al. Monitoring of growth hormone replacement therapy in adults, based on measurement of serum markers. J. Clin. Endocrinol. Metab. 81, 1371–1377 (1996).

    PubMed  Google Scholar 

  105. Thorén, M. et al. Serum insulin-like growth factor I (IGF-I), IGF-binding protein-1 and -3, and the acid-labile subunit as serum markers of body composition during growth hormone (GH) therapy in adults with GH deficiency. J. Clin. Endocrinol. Metab. 82, 223–228 (1997).

    PubMed  Google Scholar 

  106. Drake, W. M. et al. Optimizing growth hormone replacement therapy by dose titration in hypopituitary adults. J. Clin. Endocrinol. Metab. 83, 3913–3919 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Marzullo, P. et al. Usefulness of different biochemical markers of the insulin-like growth factor (IGF) family in diagnosing growth hormone excess and deficiency in adults. J. Clin. Endocrinol. Metab. 86, 3001–3008 (2001).

    CAS  PubMed  Google Scholar 

  108. Fukuda, I. et al. Acid-labile subunit in growth hormone excess and deficiency in adults: evaluation of its diagnostic value in comparison with insulin-like growth factor (IGF)-I and IGF-binding protein-3. Endocr. J. 49, 379–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Barrios, V. et al. Diagnostic interest of acid-labile subunit measurement in relationship to other components of the IGF system in pediatric patients with growth or eating disorders. Eur. J. Endocrinol. 144, 245–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Ertl, D. A. et al. Diagnostic value of serum acid-labile subunit alone and in combination with IGF-I and IGFBP-3 in the diagnosis of growth hormone deficiency. Horm. Res. Paediatr. 93, 371–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Yuen, K. C. J. et al. Diagnosis and testing for growth hormone deficiency across the ages: a global view of the accuracy, caveats, and cut-offs for diagnosis. Endocr. Connect. 12, e220504 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Arosio, M. et al. Diagnostic value of the acid-labile subunit in acromegaly: evaluation in comparison with insulin-like growth factor (IGF) I, and IGF-binding protein-1, -2, and -3. J. Clin. Endocrinol. Metab. 86, 1091–1098 (2001).

    CAS  PubMed  Google Scholar 

  113. Morrison, K. M., Wu, Z., Bidlingmaier, M. & Strasburger, C. J. Findings and theoretical considerations on the usefulness of the acid-labile subunit in the monitoring of acromegaly. Growth Horm. IGF Res. 11, S61–S63 (2001).

    Article  PubMed  Google Scholar 

  114. Giustina, A. et al. Multidisciplinary management of acromegaly: a consensus. Rev. Endocr. Metab. Disord. 21, 667–678 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wallace, J. D. et al. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J. Clin. Endocrinol. Metab. 84, 3591–3601 (1999).

    CAS  PubMed  Google Scholar 

  116. Equey, T. et al. Application of the athlete biological passport approach to the detection of growth hormone doping. J. Clin. Endocrinol. Metab. 107, 649–659 (2022).

    Article  PubMed  Google Scholar 

  117. Neumann, O. et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 56, 1817–1827 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Udali, S. et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin. Epigenet. 7, 43 (2015).

    Article  Google Scholar 

  119. Marquardt, J. U. et al. Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. J. Hepatol. 60, 346–353 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Yu, J., Zhang, H., Zhang, Y. & Zhang, X. Integrated analysis of the altered lncRNA, microRNA, and mRNA expression in HBV-positive hepatocellular carcinoma. Life 12, 701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ge, S. et al. Identification of the diagnostic biomarker VIPR1 in hepatocellular carcinoma based on machine learning algorithm. J. Oncol. 2022, 2469592 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ye, J. et al. Prognosis-related molecular subtypes and immune features associated with hepatocellular carcinoma. Cancers 14, 5721 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang, J. et al. Novel potential biomarkers for severe alcoholic liver disease. Front. Immunol. 13, 1051353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mucci, L. A. et al. Plasma levels of acid-labile subunit, free insulin-like growth factor-I, and prostate cancer risk: a prospective study. Cancer Epidemiol. Biomark. Prev. 19, 484–491 (2010).

    Article  CAS  Google Scholar 

  125. Ma, C. et al. Circulating insulin-like growth factor 1-related biomarkers and risk of lethal prostate cancer. JNCI Cancer Spectr. 6, pkab091 (2022).

    Article  PubMed  Google Scholar 

  126. Johansson, M. et al. Genetic and plasma variation of insulin-like growth factor binding proteins in relation to prostate cancer incidence and survival. Prostate 69, 1281–1291 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Cao, Y. et al. Insulin-like growth factor pathway genetic polymorphisms, circulating IGF1 and IGFBP3, and prostate cancer survival. J. Natl Cancer Inst. 106, dju085 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen, J. et al. High-resolution bisulfite-sequencing of peripheral blood DNA methylation in early-onset and familial risk breast cancer patients. Clin. Cancer Res. 25, 5301–5314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, F., Tang, C., Gao, X. & Xu, J. Identification of a six-gene signature associated with tumor mutation burden for predicting prognosis in patients with invasive breast carcinoma. Ann. Transl. Med. 8, 453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao, Y., Zhang, Y., Dai, C., Hong, K. & Guo, Y. A signature constructed with mitophagy-related genes to predict the prognosis and therapy response for breast cancer. Aging 14, 6169–6186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Canzian, F. et al. Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study. Br. J. Cancer 94, 299–307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Deming, S. L. et al. Genetic variation in IGF1, IGF-1R, IGFALS, and IGFBP3 in breast cancer survival among Chinese women: a report from the Shanghai Breast Cancer Study. Breast Cancer Res. Treat. 104, 309–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Taverne, C. W. et al. Common genetic variation of insulin-like growth factor-binding protein 1 (IGFBP-1), IGFBP-3, and acid labile subunit in relation to serum IGF-I levels and mammographic density. Breast Cancer Res. Treat. 123, 843–855 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Daughaday, W. H. & Trivedi, B. Measurement of derivatives of proinsulin-like growth factor-II in serum by a radioimmunoassay directed against the E-domain in normal subjects and patients with nonislet cell tumor hypoglycemia. J. Clin. Endocrinol. Metab. 75, 110–115 (1992).

    CAS  PubMed  Google Scholar 

  135. Zapf, J., Futo, E., Peter, M. & Froesch, E. R. Can ‘big’ insulin-like growth factor II in serum of tumor patients account for the development of extrapancreatic tumor hypoglycemia? J. Clin. Invest. 90, 2574–2584 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dynkevich, Y. et al. Tumors, IGF-2, and hypoglycemia: insights from the clinic, the laboratory, and the historical archive. Endocr. Rev. 34, 798–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Baxter, R. C. & Daughaday, W. H. Impaired formation of the ternary insulin-like growth factor-binding protein complex in patients with hypoglycemia due to nonislet cell tumors. J. Clin. Endocrinol. Metab. 73, 696–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Daughaday, W. H., Trivedi, B. & Baxter, R. C. Abnormal serum IGF-II transport in non-islet cell tumor hypoglycemia results from abnormalities of both IGF binding protein-3 and acid labile subunit and leads to elevation of serum free IGF-II. Endocrine 3, 425–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Teale, J. D., Blum, W. F. & Marks, V. Alleviation of non-islet cell tumour hypoglycaemia by growth hormone therapy is associated with changes in IGF binding protein-3. Ann. Clin. Biochem. 29, 314–323 (1992).

    Article  PubMed  Google Scholar 

  140. Baxter, R. C. et al. Regulation of the insulin-like growth factors and their binding proteins by glucocorticoid and growth hormone in nonislet cell tumor hypoglycemia. J. Clin. Endocrinol. Metab. 80, 2700–2708 (1995).

    CAS  PubMed  Google Scholar 

  141. Katz, L. E. et al. The effect of growth hormone treatment on the insulin-like growth factor axis in a child with nonislet cell tumor hypoglycemia. J. Clin. Endocrinol. Metab. 81, 1141–1146 (1996).

    CAS  PubMed  Google Scholar 

  142. Bond, J. J., Meka, S. & Baxter, R. C. Binding characteristics of pro-insulin-like growth factor-II from cancer patients: binary and ternary complex formation with IGF binding proteins-1 to -6. J. Endocrinol. 165, 253–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Boisclair, Y. R., Wang, J., Shi, J., Hurst, K. R. & Ooi, G. T. Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1beta on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J. Biol. Chem. 275, 3841–3847 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Kong, S. E., Firth, S. M., Baxter, R. C. & Delhanty, P. J. Regulation of the acid-labile subunit in sustained endotoxemia. Am. J. Physiol. Endocrinol. Metab. 283, E692–E701 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Baxter, R. C., Hawker, F. H., To, C., Stewart, P. M. & Holman, S. R. Thirty-day monitoring of insulin-like growth factors and their binding proteins in intensive care unit patients. Growth Horm. IGF Res. 8, 455–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Van den Berghe, G. et al. A paradoxical gender dissociation within the growth hormone/insulin-like growth factor I axis during protracted critical illness. J. Clin. Endocrinol. Metab. 85, 183–192 (2000).

    PubMed  Google Scholar 

  147. Flannery, B. M., Amuzie, C. J. & Pestka, J. J. Evaluation of insulin-like growth factor acid-labile subunit as a potential biomarker of effect for deoxynivalenol-induced proinflammatory cytokine expression. Toxicology 304, 192–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Ruiz-Sanmartín, A. et al. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock. PLoS ONE 17, e0278708 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Salie, M. T. et al. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin. Proteom. 19, 7 (2022).

    Article  CAS  Google Scholar 

  150. Xu, G. et al. Virus-inducible IGFALS facilitates innate immune responses by mediating IRAK1 and TRAF6 activation. Cell Mol. Immunol. 18, 1587–1589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, J. S. et al. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression. Proteomics 21, e2000278 (2021).

    Article  PubMed  Google Scholar 

  152. Richard, V. R. et al. Early prediction of COVID-19 patient survival by targeted plasma multi-omics and machine learning. Mol. Cell Proteom. 21, 100277 (2022).

    Article  CAS  Google Scholar 

  153. Kimura, Y. et al. Identification of serum prognostic biomarkers of severe COVID-19 using a quantitative proteomic approach. Sci. Rep. 11, 20638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Völlmy, F. et al. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci. Alliance 4, e202101099 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Calvet, J. et al. Biomarker candidates for progression and clinical management of COVID-19 associated pneumonia at time of admission. Sci. Rep. 12, 640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fischer, F. et al. Associations of insulin-like growth factors, insulin-like growth factor binding proteins and acid-labile subunit with coronary heart disease. Clin. Endocrinol. 61, 595–602 (2004).

    Article  CAS  Google Scholar 

  157. Prentice, R. L. et al. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome Med. 2, 48 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chen, H. et al. Systemic biomarkers and unique pathways in different phenotypes of heart failure with preserved ejection fraction. Biomolecules 12, 1419 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Heyse, W. et al. Identification of patient subtypes based on protein expression for prediction of heart failure after myocardial infarction. iScience 26, 106171 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Wysokinski, W. E. et al. Impact of atrial fibrillation on platelet gene expression. Eur. J. Haematol. 98, 615–621 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Bereket, A. et al. Regulation of the acid-labile subunit of the insulin-like growth factor ternary complex in patients with insulin-dependent diabetes mellitus and severe burns. Clin. Endocrinol. 44, 525–532 (1996).

    Article  CAS  Google Scholar 

  162. Lai, Y. C., Li, H. Y., Wu, T. J., Jeng, C. Y. & Chuang, L. M. Correlation of circulating acid-labile subunit levels with insulin sensitivity and serum LDL cholesterol in patients with type 2 diabetes: findings from a prospective study with rosiglitazone. PPAR Res. 2014, 917823 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kershaw, N. J. et al. SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nat. Struct. Mol. Biol. 20, 469–476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Woolson, H. D., Thomson, V. S., Rutherford, C., Yarwood, S. J. & Palmer, T. M. Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3. Cell Signal. 21, 1706–1715 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Cocolakis, E. et al. Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J. Biol. Chem. 283, 1293–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Bianchi, M., Meng, C. & Ivashkiv, L. B. Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc. Natl Acad. Sci. USA 97, 9573–9578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wei, S. & Qiu, Y. MiR-210-5p regulates STAT3 activation by targeting STAT5A in the differentiation of dermal fibroblasts. 3 Biotech 11, 243 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. D’Alessandro, A. et al. Serum proteomics in COVID-19 patients: altered coagulation and complement status as a function of IL-6 level. J. Proteome Res. 19, 4417–4427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Baxter.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Horacio Domene, Briony Forbes and Shoshana Yakar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Gene Mutation Database: www.hgmd.cf.ac.uk

The Human Protein Atlas: www.proteinatlas.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baxter, R.C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-00970-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-00970-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing