Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra’s seminal work

Abstract

An individual’s nutritional status has a powerful effect on sexual maturation. Puberty onset is delayed in response to chronic energy insufficiency and is advanced under energy abundance. The consequences of altered pubertal timing for human health are profound. Late puberty increases the chances of cardiometabolic, musculoskeletal and neurocognitive disorders, whereas early puberty is associated with increased risks of adult obesity, type 2 diabetes mellitus, cardiovascular diseases and various cancers, such as breast, endometrial and prostate cancer. Kennedy and Mitra’s trailblazing studies, published in 1963 and using experimental models, were the first to demonstrate that nutrition is a key factor in puberty onset. Building on this work, the field has advanced substantially in the past decade, which is largely due to the impressive development of molecular tools for experimentation and population genetics. In this Review, we discuss the latest advances in basic and translational sciences underlying the nutritional and metabolic control of pubertal development, with a focus on perspectives and future directions.

Key points

  • In 1963, Kennedy and Mitra published a seminal study in rats demonstrating that body weight is a major determinant of pubertal timing.

  • An increasing incidence of earlier ages at puberty has been documented; early pubertal timing favours the occurrence of type 2 diabetes mellitus, cardiovascular diseases and certain cancers in adulthood.

  • Macronutrients and hormones that modulate growth and/or signal adipose tissue mass serve as metabolic cues conveying the nutritional status and stored energy available for sexual maturation, differentiation and growth.

  • The effect of metabolic cues on puberty is mediated by neural targets upstream of GnRH neurons; considerable progress in defining the neuronal circuitry and glial components has been achieved.

  • A number of molecular pathways and epigenetic mechanisms have been identified as primary components in the modulation of pubertal timing by hormones and nutritional cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the neural pathways associated with leptin action in pubertal development in mice.
Fig. 2: Summary of the major signalling pathways engaged by hypothalamic long form of the leptin receptor in pubertal development.

Similar content being viewed by others

References

  1. Argente, J. et al. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol. 11, 203–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Avendano, M. S., Vazquez, M. J. & Tena-Sempere, M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum. Reprod. Update 23, 737–763 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Plant, T. M. & Barker-Gibb, M. L. Neurobiological mechanisms of puberty in higher primates. Hum. Reprod. Update 10, 67–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Sisk, C. L. & Foster, D. L. The neural basis of puberty and adolescence. Nat. Neurosci. 7, 1040–1047 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Tena-Sempere, M. The roles of kisspeptins and G protein-coupled receptor-54 in pubertal development. Curr. Opin. Pediatr. 18, 442–447 (2006).

    Article  PubMed  Google Scholar 

  6. Kennedy, G. C. & Mitra, J. Body weight and food intake as initiating factors for puberty in the rat. J. Physiol. 166, 408–418 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frisch, R. E. Fatness, menarche, and female fertility. Perspect. Biol. Med. 28, 611–633 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Frisch, R. E. The right weight: body fat, menarche and fertility. Proc. Nutr. Soc. 53, 113–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Schneider, J. E. Energy balance and reproduction. Physiol. Behav. 81, 289–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kaplowitz, P. Pubertal development in girls: secular trends. Curr. Opin. Obstet. Gynecol. 18, 487–491 (2006).

    Article  PubMed  Google Scholar 

  11. Biro, F. M. et al. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics 126, e583–e590 (2010).

    Article  PubMed  Google Scholar 

  12. Herman-Giddens, M. E. et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 99, 505–512 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Burt Solorzano, C. M. & McCartney, C. R. Obesity and the pubertal transition in girls and boys. Reproduction 140, 399–410 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Euling, S. Y. et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics 121, S172–S191 (2008).

    Article  PubMed  Google Scholar 

  15. Ahmed, M. L., Ong, K. K. & Dunger, D. B. Childhood obesity and the timing of puberty. Trends Endocrinol. Metab. 20, 237–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Reinehr, T. & Roth, C. L. Is there a causal relationship between obesity and puberty? Lancet Child. Adolesc. Health 3, 44–54 (2019).

    Article  PubMed  Google Scholar 

  17. Day, F. R., Elks, C. E., Murray, A., Ong, K. K. & Perry, J. R. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci. Rep. 5, 11208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freedman, D. S. et al. The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr. 3, 3 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hollis, B. et al. Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan. Nat. Commun. 11, 1536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, J. & Chan, Y. M. Adult consequences of self-limited delayed puberty. Pediatrics 139, e20163177 (2017).

    Article  PubMed  Google Scholar 

  22. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Mountjoy, M. et al. The IOC consensus statement: beyond the Female Athlete Triad–Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 48, 491–497 (2014).

    Article  PubMed  Google Scholar 

  24. Papadimitriou, A. The evolution of the age at menarche from prehistorical to modern times. J. Pediatr. Adolesc. Gynecol. 29, 527–530 (2016).

    Article  PubMed  Google Scholar 

  25. Piras, G. N. et al. The levelling-off of the secular trend of age at menarche among Italian girls. Heliyon 6, e04222 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parent, A. S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    Article  PubMed  Google Scholar 

  27. Jansen, E. C., Herran, O. F. & Villamor, E. Trends and correlates of age at menarche in Colombia: results from a nationally representative survey. Econ. Hum. Biol. 19, 138–144 (2015).

    Article  PubMed  Google Scholar 

  28. Pereira, A., Corvalan, C., Merino, P. M., Leiva, V. & Mericq, V. Age at pubertal development in a Hispanic-Latina female population: should the definitions be revisited? J. Pediatr. Adolesc. Gynecol. 32, 579–583 (2019).

    Article  PubMed  Google Scholar 

  29. Eckert-Lind, C. et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 174, e195881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosenfield, R. L., Lipton, R. B. & Drum, M. L. Thelarche, pubarche, and menarche attainment in children with normal and elevated body mass index. Pediatrics 123, 84–88 (2009).

    Article  PubMed  Google Scholar 

  31. Jasik, C. B. & Lustig, R. H. Adolescent obesity and puberty: the “perfect storm”. Ann. N. Y. Acad. Sci. 1135, 265–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Dunger, D. B., Ahmed, M. L. & Ong, K. K. Effects of obesity on growth and puberty. Best. Pract. Res. Clin. Endocrinol. Metab. 19, 375–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Hill, J. W. & Elias, C. F. Neuroanatomical framework of the metabolic control of reproduction. Physiol. Rev. 98, 2349–2380 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evans, M. C., Campbell, R. E. & Anderson, G. M. Physiological regulation of leptin as an integrative signal of reproductive readiness. Curr. Opin. Pharmacol. 67, 102321 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Casado, M. E., Collado-Perez, R., Frago, L. M. & Barrios, V. Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. Int. J. Mol. Sci. 24, 1422 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chehab, F. F., Lim, M. E. & Lu, R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat. Genet. 12, 318–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Farooqi, I. S. Leptin and the onset of puberty: insights from rodent and human genetics. Semin. Reprod. Med. 20, 139–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ahima, R. S., Dushay, J., Flier, S. N., Prabakaran, D. & Flier, J. S. Leptin accelerates the onset of puberty in normal female mice. J. Clin. Invest. 99, 391–395 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chehab, F. F., Mounzih, K., Lu, R. & Lim, M. E. Early onset of reproductive function in normal female mice treated with leptin. Science 275, 88–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Matsubara, M., Maruoka, S. & Katayose, S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur. J. Endocrinol. 147, 173–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Sitticharoon, C., Sukharomana, M., Likitmaskul, S., Churintaraphan, M. & Maikaew, P. Increased high molecular weight adiponectin, but decreased total adiponectin and kisspeptin, in central precocious puberty compared with aged-matched prepubertal girls. Reprod. Fertil. Dev. 29, 2466–2478 (2017).

    Article  PubMed  Google Scholar 

  44. Contreras, C. et al. Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Magnan, C., Levin, B. E. & Luquet, S. Brain lipid sensing and the neural control of energy balance. Mol. Cell Endocrinol. 418, 3–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Heras, V. et al. Central ceramide signaling mediates obesity-induced precocious puberty. Cell Metab. 32, 951–966 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Roa, J. et al. Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc. Natl Acad. Sci. USA 115, E10758–E10767 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Torsoni, M. A. et al. AMPKɑ2 in Kiss1 neurons is required for reproductive adaptations to acute metabolic challenges in adult female mice. Endocrinology 157, 4803–4816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franssen, D. et al. AMP-activated protein kinase (AMPK) signaling in GnRH neurons links energy status and reproduction. Metabolism 115, 154460 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Hayashida, T. et al. Ghrelin in neonatal rats: distribution in stomach and its possible role. J. Endocrinol. 173, 239–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Aguilar, E., Tena-Sempere, M. & Pinilla, L. Role of excitatory amino acids in the control of growth hormone secretion. Endocrine 28, 295–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Torres, P. J. et al. The role of intragestational ghrelin on postnatal development and reproductive programming in mice. Reproduction 156, 331–341 (2018).

    CAS  PubMed  Google Scholar 

  53. Velasquez, D. A. et al. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 60, 1177–1185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bergqvist, N. The gonadal function in female diabetics. Acta Endocrinol. Suppl. 19, 1–20 (1954).

    CAS  Google Scholar 

  55. Schriock, E. A., Winter, R. J. & Traisman, H. S. Diabetes mellitus and its effects on menarche. J. Adolesc. Health Care 5, 101–104 (1984).

    Article  CAS  PubMed  Google Scholar 

  56. Kjaer, K., Hagen, C., Sandø, S. H. & Eshøj, O. Epidemiology of menarche and menstrual disturbances in an unselected group of women with insulin-dependent diabetes mellitus compared to controls. J. Clin. Endocrinol. Metab. 75, 524–529 (1992).

    CAS  PubMed  Google Scholar 

  57. Codner, E., Merino, P. M. & Tena-Sempere, M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum. Reprod. Update 18, 568–585 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Gaete, X. et al. Earlier puberty in boys with type 1 diabetes mellitus compared to a simultaneously recruited group of control adolescents. Pediatr. Diabetes 20, 197–201 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Brüning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  PubMed  Google Scholar 

  60. Evans, M. C., Hill, J. W. & Anderson, G. M. Role of insulin in the neuroendocrine control of reproduction. J. Neuroendocrinol. 33, e12930 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Saleh, F. L. et al. Hyperinsulinemia induces early and dyssynchronous puberty in lean female mice. J. Endocrinol. 254, 121–135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manaserh, I. H. et al. Ablating astrocyte insulin receptors leads to delayed puberty and hypogonadism in mice. PLoS Biol. 17, e3000189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Evans, M. C., Rizwan, M., Mayer, C., Boehm, U. & Anderson, G. M. Evidence that insulin signalling in gonadotrophin-releasing hormone and kisspeptin neurones does not play an essential role in metabolic regulation of fertility in mice. J. Neuroendocrinol. 26, 468–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, C. et al. KLB, encoding β‐Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol. Med. 9, 1379–1397 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med. 19, 1153–1156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. MacLusky, N. J. et al. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling. Endocrinology 141, 752–762 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Outeirino-Iglesias, V., Romani-Perez, M., Gonzalez-Matias, L. C., Vigo, E. & Mallo, F. GLP-1 increases preovulatory LH source and the number of mature follicles, as well as synchronizing the onset of puberty in female rats. Endocrinology 156, 4226–4237 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Korpela, K. et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci. Rep. 11, 23297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sisk-Hackworth, L., Kelley, S. T. & Thackray, V. G. Sex, puberty, and the gut microbiome. Reproduction 165, R61–R74 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ilyes, T., Silaghi, C. N. & Craciun, A. M. Diet-related changes of short-chain fatty acids in blood and feces in obesity and metabolic syndrome. Biology 11, 1556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, L. et al. Gut microbiota and its derived SCFAs regulate the HPGA to reverse obesity-induced precocious puberty in female rats. Front. Endocrinol. 13, 1051797 (2022).

    Article  Google Scholar 

  72. Yuan, X., Shangguan, H., Zhang, Y., Lin, X. & Chen, R. Intervention effect of probiotics on the early onset of puberty induced by daidzein in female mice. Mol. Nutr. Food Res. 67, e2200501 (2023).

    Article  PubMed  Google Scholar 

  73. Bo, T. et al. Effects of high-fat diet during childhood on precocious puberty and gut microbiota in mice. Front. Microbiol. 13, 930747 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang, M. et al. Microbial reconstitution reverses early female puberty induced by maternal high-fat diet during lactation. Endocrinology 161, bqz041 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Martha, P. M. Jr. et al. Alterations in the pulsatile properties of circulating growth hormone concentrations during puberty in boys. J. Clin. Endocrinol. Metab. 69, 563–570 (1989).

    Article  CAS  PubMed  Google Scholar 

  76. Cemeroglu, A. P., Barkan, A. L., Kletter, G. B., Beitins, I. Z. & Foster, C. M. Changes in serum immunoreactive and bioactive growth hormone concentrations in boys with advancing puberty and in response to a 20-hour estradiol infusion. J. Clin. Endocrinol. Metab. 82, 2166–2171 (1997).

    CAS  PubMed  Google Scholar 

  77. Batch, J. A. & Werther, G. A. Changes in growth hormone concentrations during puberty in adolescents with insulin dependent diabetes. Clin. Endocrinol. 36, 411–416 (1992).

    Article  CAS  Google Scholar 

  78. Sabin, M. A. et al. Insulin and BMI as predictors of adult type 2 diabetes mellitus. Pediatrics 135, 144–151 (2015).

    Article  Google Scholar 

  79. Cavarzere, P. et al. Growth hormone retesting during puberty: a cohort study. Eur. J. Endocrinol. 182, 559–567 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Juul, A. & Skakkebæk, N. E. Why do normal children have acromegalic levels of IGF-I during puberty? J. Clin. Endocrinol. Metab. 104, 2770–2776 (2019).

    Article  PubMed  Google Scholar 

  81. Orçun, A., Yildiz, Z. & Köroğlu Dağdelen, L. Pediatric reference intervals for free testosterone, 17-OH progesterone, androstenedione, and IGF-1 with chemiluminescence immunoassay. Steroids 186, 109078 (2022).

    Article  PubMed  Google Scholar 

  82. Baumgartner, M. et al. Plasma myostatin increases with age in male youth and negatively correlates with vitamin D in severe pediatric obesity. Nutrients 14, 2133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reinehr, T., Elfers, C., Lass, N. & Roth, C. L. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis. J. Clin. Endocrinol. Metab. 100, 2123–2130 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, Y., Li, M., Liao, B., Zhong, J. & Lan, D. Serum irisin levels increase in girls with central precocious puberty not dependent on BMI: a pilot study. Endocr. Connect. 11, e220028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kutlu, E. et al. Serum irisin levels in central precocious puberty and its variants. J. Clin. Endocrinol. Metab. 106, e247–e254 (2021).

    Article  PubMed  Google Scholar 

  86. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. DiVall, S. A. et al. Divergent roles of growth factors in the GnRH regulation of puberty in mice. J. Clin. Invest. 120, 2900–2909 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Decourt, C., Evans, M. C., Inglis, M. A. & Anderson, G. M. Central irisin signaling Is required for normal timing of puberty in female mice. Endocrinology 164, bqac208 (2023).

    Article  Google Scholar 

  89. Bohlen, T. M. et al. Central growth hormone signaling is not required for the timing of puberty. J. Endocrinol. 243, 161–173 (2019).

    Article  CAS  Google Scholar 

  90. Savage, M. O. et al. Clinical features and endocrine status in patients with growth hormone insensitivity (Laron syndrome). J. Clin. Endocrinol. Metab. 77, 1465–1471 (1993).

    CAS  PubMed  Google Scholar 

  91. Juul, A. et al. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 levels are increased in central precocious puberty: effects of two different treatment regimens with gonadotropin-releasing hormone agonists, without or in combination with an antiandrogen (cyproterone acetate). J. Clin. Endocrinol. Metab. 80, 3059–3067 (1995).

    CAS  PubMed  Google Scholar 

  92. Baier, I., Pereira, A., Ferrer, P., Iniguez, G. & Mericq, V. Higher prepubertal IGF-1 concentrations associate to earlier pubertal tempo in both sexes. Horm. Res. Paediatr. 96, 404–411 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Hiney, J. K., Srivastava, V., Nyberg, C. L., Ojeda, S. R. & Dees, W. L. Insulin-like growth factor I of peripheral origin acts centrally to accelerate the initiation of female puberty. Endocrinology 137, 3717–3728 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Pazos Fanchez-Franco, F., Balsa, J., Lopez-Fernandez, J., Escalada, J. & Cacicedo, L. Regulation of gonadal and somatotropic axis by chronic intraventricular infusion of insulin-like growth factor 1 antibody at the initiation of puberty in male rats. Neuroendocrinology 69, 408–416 (1999).

    Article  Google Scholar 

  95. Balint, F., Csillag, V., Vastagh, C., Liposits, Z. & Farkas, I. Insulin-like growth factor 1 increases GABAergic neurotransmission to GnRH neurons via suppressing the retrograde tonic endocannabinoid signaling pathway in mice. Neuroendocrinology 111, 1219–1230 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Gemelli, I. F. B., Farias, E. D. S. & Spritzer, P. M. Association of body composition and age at menarche in girls and adolescents in the Brazilian Legal Amazon. J. Pediatr. 96, 240–246 (2020).

    Article  Google Scholar 

  97. Rosales Nieto, C. A. et al. Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs. Animal 7, 990–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Boyne, M. S. et al. Growth, body composition, and the onset of puberty: longitudinal observations in Afro-Caribbean children. J. Clin. Endocrinol. Metab. 95, 3194–3200 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. de Ridder, C. M. et al. Body fat mass, body fat distribution, and plasma hormones in early puberty in females. J. Clin. Endocrinol. Metab. 70, 888–893 (1990).

    Article  PubMed  Google Scholar 

  100. Han, S. Z. et al. Reproduction traits of heterozygous myostatin knockout sows crossbred with homozygous myostatin knockout boars. Reprod. Domest. Anim. 56, 26–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Cheng, H. L. et al. Impact of growth, gonadal hormones, adiposity and the sodium-to-potassium ratio on longitudinal adolescent measures of blood pressure at puberty. J. Hum. Hypertens. 37, 835–843 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Vanacker, C. et al. Neuropilin-1 expression in GnRH neurons regulates prepubertal weight gain and sexual attraction. EMBO J. 39, e104633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Quennell, J. H. et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 150, 2805–2812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Elias, C. F. & Purohit, D. Leptin signaling and circuits in puberty and fertility. Cell. Mol. life Sci. 70, 841–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Allison, M. B. & Myers, M. G. Jr. 20 years of leptin: connecting leptin signaling to biological function. J. Endocrinol. 223, T25–T35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Banks, W. A. The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B. & Maness, L. M. Leptin enters the brain by a saturable system independent of insulin. Peptides 17, 305–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Popa, S. M., Clifton, D. K. & Steiner, R. A. The role of kisspeptins and GPR54 in the neuroendocrine regulation of reproduction. Annu. Rev. Physiol. 70, 213 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Seminara, S. B. & Crowley, W. F. Jr. Kisspeptin and GPR54: discovery of a novel pathway in reproduction. J. Neuroendocrinol. 20, 727–731 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P. & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol. Rev. 92, 1235–1316 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Comninos, A. N., Jayasena, C. N. & Dhillo, W. S. The relationship between gut and adipose hormones, and reproduction. Hum. Reprod. Update 20, 153–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Manfredi-Lozano, M., Roa, J. & Tena-Sempere, M. Connecting metabolism and gonadal function: novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front. Neuroendocrinol. 48, 37–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Navarro, V. M. et al. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J. Neurosci. 29, 11859–11866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cravo, R. M. et al. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS ONE 8, e58698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zuure, W. A., Roberts, A. L., Quennell, J. H. & Anderson, G. M. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J. Neurosci. 33, 17874–17883 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Martin, C. et al. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J. Neurosci. 34, 6047–6056 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tritos, N. A., Elmquist, J. K., Mastaitis, J. W., Flier, J. S. & Maratos-Flier, E. Characterization of expression of hypothalamic appetite-regulating peptides in obese hyperleptinemic brown adipose tissue-deficient (uncoupling protein-promoter-driven diphtheria toxin A) mice. Endocrinology 139, 4634–4641 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Mizuno, T. M. et al. Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology 140, 4551–4557 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Cone, R. D. et al. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 25, S63–S67 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Egan, O. K., Inglis, M. A. & Anderson, G. M. Leptin signaling in AgRP neurons modulates puberty onset and adult fertility in mice. J. Neurosci. 37, 3875–3886 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Padilla, S. L. et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc. Natl Acad. Sci. USA 114, 2413–2418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ellacott, K. L. & Cone, R. D. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis. Recent. Prog. Horm. Res. 59, 395–408 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hohmann, J. G. et al. Differential role of melanocortins in mediating leptin’s central effects on feeding and reproduction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R50–R59 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Manfredi-Lozano, M. et al. Defining a novel leptin–melanocortin–kisspeptin pathway involved in the metabolic control of puberty. Mol. Metab. 5, 844–857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duckett, K. et al. Prevalence of deleterious variants in MC3R in patients with constitutional delay of growth and puberty. J. Clin. Endocrinol. Metab. 20, dgad373 (2023).

    Google Scholar 

  129. Lam, B. Y. H. et al. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 599, 436–441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chachlaki, K. et al. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci. Transl. Med. 14, eabh2369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Donato, J. Jr et al. The ventral premammillary nucleus links fasting-induced changes in leptin levels and coordinated luteinizing hormone secretion. J. Neurosci. 29, 5240–5250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Donato, J. Jr. et al. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J. Clin. Invest. 121, 355–368 (2011).

    Article  PubMed  Google Scholar 

  133. Williams, K. W. et al. The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J. Neurosci. 31, 13147–13156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Donato, J. Jr., Frazao, R., Fukuda, M., Vianna, C. R. & Elias, C. F. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 151, 5415–5427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Leshan, R. L. et al. Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus. J. Neurosci. 29, 3138–3147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Clasadonte, J., Poulain, P., Beauvillain, J. C. & Prevot, V. Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: a possible local synchronizing signal. Endocrinology 149, 587–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Chachlaki, K. et al. Phenotyping of nNOS neurons in the postnatal and adult female mouse hypothalamus. J. Comp. Neurol. 525, 3177–3189 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Delli, V. et al. Male minipuberty involves the gonad-independent activation of preoptic nNOS neurons. Free. Radic. Biol. Med. 194, 199–208 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Yu, W. H., Walczewska, A., Karanth, S. & McCann, S. M. Nitric oxide mediates leptin-induced luteinizing hormone-releasing hormone (LHRH) and LHRH and leptin-induced LH release from the pituitary gland. Endocrinology 138, 5055–5058 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Bellefontaine, N. et al. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J. Clin. Invest. 124, 2550–2559 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18, 820–823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ross, R. A. et al. PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. eLife 7, e35960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Han, X. et al. Hypothalamic and cell-specific transcriptomes unravel a dynamic neuropil remodeling in leptin-induced and typical pubertal transition in female mice. iScience 23, 101563 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Prevot, V. Glial control of neuronal function. Nat. Rev. Endocrinol. 18, 195 (2022).

    Article  PubMed  Google Scholar 

  145. Nampoothiri, S., Nogueiras, R., Schwaninger, M. & Prevot, V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat. Metab. 4, 813–825 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    Article  PubMed  Google Scholar 

  147. Pellegrino, G. et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat. Neurosci. 24, 1660–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Clasadonte, J. et al. Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl Acad. Sci. USA 108, 16104–16109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vanacker, C., Defazio, R. A., Sykes, C. M. & Moenter, S. M. A role for glial fibrillary acidic protein (GFAP)-expressing cells in the regulation of gonadotropin-releasing hormone (GnRH) but not arcuate kisspeptin neuron output in male mice. eLife 10, e68205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Prevot, V. et al. Normal female sexual development requires neuregulin–erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ma, Y. J., Junier, M. P., Costa, M. E. & Ojeda, S. R. Transforming growth factor-ɑ gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9, 657–670 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. Moeller-Gnangra, H., Ernst, J., Pfeifer, M. & Heger, S. ErbB4 point mutation in CU3 inbred rats affects gonadotropin-releasing-hormone neuronal function via compromised neuregulin-stimulated prostaglandin E2 release from astrocytes. Glia 67, 309–320 (2019).

    Article  PubMed  Google Scholar 

  153. Verkhratsky, A. & Zorec, R. Astroglial signalling in health and disease. Neurosci. Lett. 689, 1–4 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Sloan, S. A. & Barres, B. A. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr. Opin. Neurobiol. 27, 75–81 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pena-Leon, V. et al. Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat. Metab. 4, 901–917 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rodriguez-Cortes, B. et al. Suprachiasmatic nucleus-mediated glucose entry into the arcuate nucleus determines the daily rhythm in blood glycemia. Curr. Biol. 32, 796–805 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Duquenne, M. et al. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat. Metab. 3, 1071–1090 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Imbernon, M. et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab. 34, 1054–1063 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Porniece Kumar, M. et al. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity. Nat. Metab. 3, 1662–1679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Clasadonte, J., Scemes, E., Wang, Z., Boison, D. & Haydon, P. G. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95, 1365–1380 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lhomme, T. et al. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J. Clin. Invest. 131, e140521 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Banks, W. A., Owen, J. B. & Erickson, M. A. Insulin in the brain: there and back again. Pharmacol. Ther. 136, 82–93 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Collden, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol. Metab. 4, 15–24 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Ogassawara, T. B. et al. Food deprivation in F0 generation and hypercaloric diet in F1 generation reduce F2 generation astrogliosis in several brain areas after immune challenge. Int. J. Dev. Neurosci. 64, 29–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Contu, L., Nizari, S., Heath, C. J. & Hawkes, C. A. Pre- and post-natal high fat feeding differentially affects the structure and integrity of the neurovascular unit of 16-month old male and female mice. Front. Neurosci. 13, 1045 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Evans, M. C., Lord, R. A. & Anderson, G. M. Multiple leptin signalling pathways in the control of metabolism and fertility: a means to different ends? Int. J. Mol. Sci. 22, 9210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Singireddy, A. V., Inglis, M. A., Zuure, W. A., Kim, J. S. & Anderson, G. M. Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin’s effects on fertility in mice. Endocrinology 154, 2434–2445 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Piper, M. L., Unger, E. K., Myers, M. G. & Xu, A. W. Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons. Mol. Endocrinol. 22, 751–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661–4666 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee, J. Y. et al. Loss of cytokine-STAT5 signaling in the CNS and pituitary gland alters energy balance and leads to obesity. PLoS ONE 3, e1639 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Patterson, C. M. et al. Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction. Mol. Metab. 1, 61–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, S. Q. et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

    Article  PubMed  Google Scholar 

  175. Garcia-Galiano, D. et al. PI3Kɑ inactivation in leptin receptor cells increases leptin sensitivity but disrupts growth and reproduction. JCI Insight 2, e96728 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kitamura, T. et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat. Med. 12, 534–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Yang, G. et al. FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. J. Biol. Chem. 284, 3719–3727 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Kim, M. S. et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat. Neurosci. 9, 901–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Xu, J., Ji, J. & Yan, X. H. Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food Sci. Nutr. 52, 373–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Roa, J. et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 150, 5016–5026 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Lomniczi, A. et al. Epigenetic control of female puberty. Nat. Neurosci. 16, 281–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wright, H., Aylwin, C. F., Toro, C. A., Ojeda, S. R. & Lomniczi, A. Polycomb represses a gene network controlling puberty via modulation of histone demethylase Kdm6b expression. Sci. Rep. 11, 1996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Vazquez, M. J. et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nat. Commun. 9, 4194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gaytan, F. et al. Distinct expression patterns predict differential roles of the miRNA-binding proteins, Lin28 and Lin28b, in the mouse testis: studies during postnatal development and in a model of hypogonadotropic hypogonadism. Endocrinology 154, 1321–1336 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Wang, J. M. & Zhang, K. Microarray analysis of microRNA expression in bone marrow-derived progenitor cells from mice with type 2 diabetes. Genom. Data 7, 86–87 (2016).

    Article  PubMed  Google Scholar 

  186. Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Manfredi-Lozano, M. et al. GnRH replacement rescues cognition in Down syndrome. Science 377, eabq4515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Roa, J. et al. Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice. Nat. Commun. 13, 4663 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Heras, V. et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biol. 17, e3000532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Abreu, A. P. et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467–2475 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mumby, H. S. et al. Mendelian randomisation study of childhood BMI and early menarche. J. Obes. 2011, 180729 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Cousminer, D. L. et al. Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Hum. Mol. Genet. 23, 4452–4464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Katherine, A. K. et al. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Preprint at medRxiv www.medrxiv.org/content/10.1101/2023.06.14.23291322v1 (2023).

  195. Kelsey, M. M. & Zeitler, P. S. Insulin resistance of puberty. Curr. Diabetes Rep. 16, 64 (2016).

    Article  Google Scholar 

  196. Abreu, A. P. et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J. Clin. Invest. 130, 4486–4500 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Naule, L. et al. MKRN3 inhibits puberty onset via interaction with IGF2BP1 and regulation of hypothalamic plasticity. JCI Insight 8, e164178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Roberts, S. A. et al. Hypothalamic overexpression of makorin ring finger protein 3 results in delayed puberty in female mice. Endocrinology 163, bqac132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Roberts, S. A. et al. The peripubertal decline in makorin ring finger protein 3 expression is independent of leptin action. J. Endocr. Soc. 4, bvaa059 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Eren, S. E. & Simsek, E. Comparison of makorin ring finger protein 3 levels between obese and normal weight patients with central precocious puberty. J. Clin. Res. Pediatr. Endocrinol. 15, 182–189 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Dauber, A. et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J. Clin. Endocrinol. Metab. 102, 1557–1567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. da Silva, C., Durandt, C., Kallmeyer, K., Ambele, M. A. & Pepper, M. S. The role of pref-1 during adipogenic differentiation: an overview of suggested mechanisms. Int. J. Mol. Sci. 21, 4104 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Gomes, L. G. et al. DLK1 is a novel link between reproduction and metabolism. J. Clin. Endocrinol. Metab. 104, 2112–2120 (2019).

    Article  PubMed  Google Scholar 

  204. Frisch, R. E. & McArthur, J. W. Menstrual cycles: fatness as a determinant of minimum weight for height necessary for their maintenance or onset. Science 185, 949–951 (1974).

    Article  CAS  PubMed  Google Scholar 

  205. Bessa, D. S. et al. Methylome profiling of healthy and central precocious puberty girls. Clin. Epigenetics 10, 146 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Toro, C. A., Wright, H., Aylwin, C. F., Ojeda, S. R. & Lomniczi, A. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat. Commun. 9, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lopez-Rodriguez, D. et al. Multi- and transgenerational outcomes of an exposure to a mixture of endocrine-disrupting chemicals (EDCs) on puberty and maternal behavior in the female rat. Env. Health Perspect. 129, 87003 (2021).

    Article  CAS  Google Scholar 

  208. Perry, J. R. et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. He, C. et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 41, 724–728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sulem, P. et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41, 734–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  211. Ong, K. K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Osinubi, A., Lewis-de los Angeles, C. P., Poitevien, P. & Topor, L. S. Are black girls exhibiting puberty earlier? Examining implications of race-based guidelines. Pediatrics 150, e2021055595 (2022).

    Article  PubMed  Google Scholar 

  213. Parnell, W., Scragg, R., Wilson, N., Schaaf, D. & Fitzgerald, E. NZ food NZ children. Key results of the 2002 National Children’s Nutrition Survey. Ministry of Health https://www.health.govt.nz/system/files/documents/publications/nzfoodnzchildren.pdf (2003).

  214. Cabrera, S. M., Bright, G. M., Frane, J. W., Blethen, S. L. & Lee, P. A. Age of thelarche and menarche in contemporary US females: a cross-sectional analysis. J. Pediatr. Endocrinol. Metab. 27, 47–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Staiano, A. E., Broyles, S. T., Gupta, A. K. & Katzmarzyk, P. T. Ethnic and sex differences in visceral, subcutaneous, and total body fat in children and adolescents. Obesity 21, 1251–1255 (2013).

    Article  CAS  PubMed  Google Scholar 

  216. Goran, M. I. et al. Visceral fat in white and African American prepubertal children. Am. J. Clin. Nutr. 65, 1703–1708 (1997).

    Article  CAS  PubMed  Google Scholar 

  217. Rush, E. C., Plank, L. D., Davies, P. S., Watson, P. & Wall, C. R. Body composition and physical activity in New Zealand Maori, Pacific and European children aged 5-14 years. Br. J. Nutr. 90, 1133–1139 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Royal Society of New Zealand #UOO1706 (G.M.A.), of NIH grants R01HD104418 (J.W.H.), R37HD019938, R01HD082314, R21HD098684 (U.B.K.) R01HD090151, R01HD099084, R01DK133760 (V.M.N.), U54AG062322 (V.M.N. and U.B.K.), R01HD069702, R01HD096324 (C.F.E.), from Agencia Estatal de Investigación, Spain PID2020-118660GB-I00; co-funded with EU funds from FEDER Program (M.T.-S.), from the European Commission, Program Horizon Europe HE-ERC-2022-ADG-101096793 (M.T.-S.), the European Union Horizon 2020 research and innovation programme no. 847941 miniNO (V.P.) and no. 810331 WATCH ERC Synergy (V.P.) and the Medical Research Council unit programmes MC_UU_12015/2, MC_UU_00006/2 (J.R.B.P. and K.K.O.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this review.

Corresponding authors

Correspondence to Manuel Tena-Sempere or Carol F. Elias.

Ethics declarations

Competing interests

J.R.B.P. is an employee of Insmed Innovation UK, holds stock/stock options in Insmed, and receives research funding from GSK. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Ei Terasawa, Veronica Mericq and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, G.M., Hill, J.W., Kaiser, U.B. et al. Metabolic control of puberty: 60 years in the footsteps of Kennedy and Mitra’s seminal work. Nat Rev Endocrinol 20, 111–123 (2024). https://doi.org/10.1038/s41574-023-00919-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00919-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing