Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inter-organ crosstalk during development and progression of type 2 diabetes mellitus

Abstract

Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.

Key points

  • Crosstalk between adipose tissue, liver, skeletal muscle, pancreas and intestine plays a key role in pathogenesis of insulin resistance and β-cell dysfunction, both of which characterize type 2 diabetes mellitus (T2DM).

  • Among metabolic mediators, bioactive lipids such as diacylglycerols and ceramides are the best described inhibitors of insulin signalling, but fatty acids such palmitic acid and myristic acid, also contribute to metabolic alterations via post-translational protein modification.

  • The current concept of the pathogenesis of T2DM postulates that adipose tissue dysfunction initiates insulin resistance and ectopic lipid storage, but also contributes to pancreatic β-cell dysfunction via long-term excessive exposure to fatty acids and glucose.

  • Multi-omics studies based on previously identified crosstalk mediators have proposed multimarker signatures, which could, in the future, help improve the prediction of risk and progression of T2DM and its subtypes, and the risk of complications.

  • Mendelian randomization studies have identified causal associations between established and novel biomarkers and the risk of T2DM and its complications, but are also critically revising previously accepted roles of several crosstalk mediators, underlining the concept of reverse causality.

  • Current studies also focus on the relevance of crosstalk mediators in understanding the subtypes of prediabetes and diabetes mellitus and for the subtype-specific differences in diabetes mellitus-related comorbidities and complications to pave the way for future precision diabetology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk mechanisms mediated by metabolites in the pathogenesis of type 2 diabetes mellitus.
Fig. 2: Crosstalk mechanisms mediated by cytokines in the pathogenesis of type 2 diabetes mellitus.
Fig. 3: The role of mediators originating from adipose tissue and skeletal muscle in inter-organ crosstalk.
Fig. 4: The role of mediators originating from the liver, intestine and pancreas in inter-organ crosstalk.

Similar content being viewed by others

References

  1. ElSayed, N. A. et al. 2. Classification and diagnosis of diabetes: standards of care in diabetes – 2023. Diabetes Care 46, S19–S40 (2022).

    Article  PubMed Central  Google Scholar 

  2. Szendroedi, J. et al. Cohort profile: the German Diabetes Study (GDS). Cardiovasc. Diabetol. 15, 59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tabák, A. G. et al. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373, 2215–2221 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019). A comprehensive review describing the current understanding of the development of T2DM, specifically addressing the role of lipid mediators.

    Article  CAS  PubMed  Google Scholar 

  5. He, X., Kuang, G., Wu, Y. & Ou, C. Emerging roles of exosomal miRNAs in diabetes mellitus. Clin. Transl. Med. 11, e468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agbu, P. & Carthew, R. W. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol. 22, 425–438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mastrototaro, L. & Roden, M. Insulin resistance and insulin sensitizing agents. Metabolism 125, 154892 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Isaac, R., Reis, F. C. G., Ying, W. & Olefsky, J. M. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33, 1744–1762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. James, D. E., Stöckli, J. & Birnbaum, M. J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 22, 751–771 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. White, M. F. & Kahn, C. R. Insulin action at a molecular level – 100 years of progress. Mol. Metab. 52, 101304 (2021). A review focusing on the molecular biology of the insulin signalling cascade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).

    Article  PubMed  Google Scholar 

  12. Donath, M. Y., Dinarello, C. A. & Mandrup-Poulsen, T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat. Rev. Immunol. 19, 734–746 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Mirzadeh, Z., Faber, C. L. & Schwartz, M. W. Central nervous system control of glucose homeostasis: a therapeutic target for type 2 diabetes? Annu. Rev. Pharmacol. Toxicol. 62, 55–84 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rinella, M. E. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Hepatology https://doi.org/10.1016/j.jhep.2023.06.003 (2023).

    Article  PubMed  Google Scholar 

  15. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  16. Herder, C. & Roden, M. A novel diabetes typology: towards precision diabetology from pathogenesis to treatment. Diabetologia 65, 770–1781 (2022).

    Article  Google Scholar 

  17. Morze, J. et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care 45, 1013–1024 (2022). This meta-analysis illustrates the association of numerous lipids and amino acids with increased risk of insulin resistance and T2DM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steinhauser, M. L. et al. The circulating metabolome of human starvation. JCI Insight 3, e121434 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yuan, S., Merino, J. & Larsson, S. C. Causal factors underlying diabetes risk informed by Mendelian randomisation analysis: evidence, opportunities and challenges. Diabetologia 66, 800–812 (2023). This review discusses the findings of Mendelian randomization studies with regard to causality in the development of T2DM.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gancheva, S., Jelenik, T., Álvarez-Hernández, E. & Roden, M. Interorgan metabolic crosstalk in human insulin resistance. Physiol. Rev. 98, 1371–1415 (2018). This review addresses the mechanisms by which metabolites contribute to inter-organ crosstalk in the context of insulin resistance.

    Article  CAS  PubMed  Google Scholar 

  21. Gassaway, B. M. et al. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc. Natl Acad. Sci. USA 115, e8996–e9005 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roden, M. et al. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97, 2859–2865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stingl, H. et al. Lipid-dependent control of hepatic glycogen stores in healthy humans. Diabetologia 44, 48–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Boden, G. & Chen, X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J. Clin. Invest. 96, 1261–1268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szendroedi, J. et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl Acad. Sci. USA 111, 9597–9602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nowotny, B. et al. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans. Diabetes 62, 2240–2248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarabhai, T. et al. Dietary palmitate and oleate differently modulate insulin sensitivity in human skeletal muscle. Diabetologia 65, 301–314 (2022). This clinical study shows how differently saturated lipids activate specific cellular pathways to induce insulin resistance in healthy humans.

    Article  CAS  PubMed  Google Scholar 

  28. Lyu, K. et al. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab. 32, 654–664.e5 (2020). An interesting study showing the deleterious role of sn-1,2-diacylglycerol in insulin signalling pathways, in humans indirectly by its high levels in the circulation of people with insulin resistance, and in animals directly by showing its mechanism of action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lyu, K. et al. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight 6, e139946 (2021).

    PubMed  PubMed Central  Google Scholar 

  30. Jelenik, T. et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver. Diabetes 66, 2241–2253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jelenik, T. et al. Insulin resistance and vulnerability to cardiac ischemia. Diabetes 67, 2695–2702 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brandon, A. E. et al. Protein kinase C epsilon deletion in adipose tissue, but not in liver, improves glucose tolerance. Cell Metab. 29, 183–191.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Bódis, K. & Roden, M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Invest. 48, e13017 (2018).

    Article  PubMed  Google Scholar 

  34. Iqbal, J., Walsh, M. T., Hammad, S. M. & Hussain, M. M. Sphingolipids and lipoproteins in health and metabolic disorders. Trends Endocrinol. Metab. 28, 506–518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mah, M., Febbraio, M. & Turpin-Nolan, S. Circulating ceramides – are origins important for sphingolipid biomarkers and treatments? Front. Endocrinol. 12, 684448 (2021).

    Article  Google Scholar 

  36. Zarini, S. et al. Serum dihydroceramides correlate with insulin sensitivity in humans and decrease insulin sensitivity in vitro. J. Lipid Res. 63, 100270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, Q., Vijayakumar, A. & Kahn, B. B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 19, 654–672 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rocha, M., Apostolova, N., Diaz-Rua, R., Muntane, J. & Victor, V. M. Mitochondria and T2D: role of autophagy, ER stress, and inflammasome. Trends Endocrinol. Metab. 31, 725–741 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sarabhai, T. et al. Monounsaturated fat rapidly induces hepatic gluconeogenesis and whole-body insulin resistance. JCI Insight 5, e134520 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hernández, E. et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Invest. 127, 695–708 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Misheva, M., Johnson, J. & McCullagh, J. Role of oxylipins in the inflammatory-related diseases NAFLD, obesity, and type 2 diabetes. Metabolites 12, 1238 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Massey, W. & Brown, J. M. The gut microbial endocrine organ in type 2 diabetes. Endocrinology 162, bqaa235 (2021).

    Article  PubMed  Google Scholar 

  45. Wu, X. et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal. Transduct. Target. Ther. 8, 220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ren, W., Sun, Y. & Du, K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem. Biophys. Res. Commun. 460, 709–714 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. White, P. J. et al. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol. Metab. 52, 101261 (2021). This review article discusses the contribution of amino acids to T2DM pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Welsh, P. et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 61, 1581–1591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kahl, S. & Roden, M. Amino acids – lifesaver or killer in patients with diabetes? Nat. Rev. Endocrinol. 14, 449–451 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Lackey, D. E. et al. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am. J. Physiol. Endocrinol. Metab. 304, E1175–E1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krebs, M. et al. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51, 599–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Tremblay, F. et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 104, 14056–14061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krebs, M. et al. Direct and indirect effects of amino acids on hepatic glucose metabolism in humans. Diabetologia 46, 917–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Karusheva, Y. et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am. J. Clin. Nutr. 110, 1098–1107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Laeger, T. et al. FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 124, 3913–3922 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhou, Q. et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat. Commun. 13, 4291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herder, C., Carstensen, M. & Ouwens, D. M. Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes Obes. Metab. 15, 39–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zatterale, F. et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 10, 1607 (2019).

    Article  PubMed  Google Scholar 

  61. Lee, YunS. et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 157, 1339–1352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He, F. et al. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J. Exp. Med. 218, e20201416 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. White, M. F. et al. Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell 54, 641–649 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Eguchi, K. & Nagai, R. Islet inflammation in type 2 diabetes and physiology. J. Clin. Invest. 127, 14–23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yong, J., Johnson, J. D., Arvan, P., Han, J. & Kaufman, R. J. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 17, 455–467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ying, W. et al. Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metab. 29, 457–474.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Pafili, K. & Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 50, 101122 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Daryabor, G., Atashzar, M. R., Kabelitz, D., Meri, S. & Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 11, 1582 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ying, W. et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 33, 781–790.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Semnani-Azad, Z. et al. The macrophage activation marker soluble CD163 is longitudinally associated with insulin sensitivity and β-cell function. J. Clin. Endocrinol. Metab. 105, e285–e294 (2020).

    Article  PubMed  Google Scholar 

  74. Semnani-Azad, Z. et al. Adipose tissue insulin resistance is longitudinally associated with adipose tissue dysfunction, circulating lipids, and dysglycemia: the PROMISE cohort. Diabetes Care 44, 1682–1691 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Funcke, J. B. & Scherer, P. E. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 60, 1648–1684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Caron, A., Lee, S., Elmquist, J. K. & Gautron, L. Leptin and brain-adipose crosstalks. Nat. Rev. Neurosci. 19, 153–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pereira, S., Cline, D. L., Glavas, M. M., Covey, S. D. & Kieffer, T. J. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr. Rev. 42, 1–28 (2021).

    Article  PubMed  Google Scholar 

  79. Straub, L. G. & Scherer, P. E. Metabolic messengers: adiponectin. Nat. Metab. 1, 334–339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Perry, R. J. & Shulman, G. I. The role of leptin in maintaining plasma glucose during starvation. Postdoc J. 6, 3–19 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Metz, M. et al. Leptin increases hepatic triglyceride export via a vagal mechanism in humans. Cell Metab. 34, 1719–1731.e5 (2022). This study shows how a brain–vagus-nerve–liver crosstalk explains a novel effect of leptin.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, X., Jia, J. & Huang, T. Shared genetic architecture and casual relationship between leptin levels and type 2 diabetes: large-scale cross-trait meta-analysis and Mendelian randomization analysis. BMJ Open. Diabetes Res. Care 8, e001140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Awazawa, M. et al. Adiponectin suppresses hepatic SREBP1c expression in an adipoR1/LKB1/AMPK dependent pathway. Biochem. Biophys. Res. Commun. 382, 51–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Yaghootkar, H. et al. Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes 62, 3589–3598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, H. et al. Evidence of a causal relationship between adiponectin levels and insulin sensitivity: a Mendelian randomization study. Diabetes 62, 1338–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Borges, M. C. et al. Metabolic profiling of adiponectin levels in adults: Mendelian randomization analysis. Circ. Cardiovasc. Genet. 10, e001837 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ortega Moreno, L. et al. Evidence of a causal relationship between high serum adiponectin levels and increased cardiovascular mortality rate in patients with type 2 diabetes. Cardiovasc. Diabetol. 15, 17 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nielsen, M. B., Çolak, Y., Benn, M. & Nordestgaard, B. G. Low plasma adiponectin in risk of type 2 diabetes: observational analysis and one- and two-sample Mendelian randomization analyses 756,219 individuals. Diabetes 70, 2694–2705 (2021). This Mendelian randomization analysis provides evidence for a causal association between low adiponectin levels and higher risk of T2DM.

    Article  CAS  PubMed  Google Scholar 

  90. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Nowak, C. et al. Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes 65, 276–284 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, G. et al. Plasma levels of fatty acid-binding protein 4, retinol-binding protein 4, high-molecular-weight adiponectin, and cardiovascular mortality among men with type 2 diabetes: a 22-year prospective study. Arterioscler. Thromb. Vasc. Biol. 36, 2259–2267 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brown, K. A. & Scherer, P. E. Update on adipose tissue and cancer. Endocr Rev. https://doi.org/10.1210/endrev/bnad015 (2023).

    Article  PubMed  Google Scholar 

  94. Schiborn, C. et al. Retinol and retinol binding protein 4 levels and cardiometabolic disease risk. Circ. Res. 131, 637–649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).

    Article  PubMed  Google Scholar 

  96. Karsdal, M. A. et al. Serum endotrophin identifies optimal responders to PPARγ agonists in type 2 diabetes. Diabetologia 60, 50–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Naiemian, S. et al. Serum concentration of asprosin in new-onset type 2 diabetes. Diabetol. Metab. Syndr. 12, 65 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shabir, K. et al. Asprosin, a novel pleiotropic adipokine implicated in fasting and obesity-related cardio-metabolic disease: comprehensive review of preclinical and clinical evidence. Cytokine Growth Factor. Rev. 60, 120–132 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Romere, C. et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell 165, 566–579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lo, J. C. et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell 158, 41–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Milek, M. et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. Int. J. Mol. Sci. 23, 2222 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garcia-Martin, R. et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446–451 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Bae, Y. U. et al. Bariatric surgery alters microRNA content of circulating exosomes in patients with obesity. Obesity 27, 264–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Abozaid, Y. J. et al. Plasma circulating microRNAs associated with obesity, body fat distribution, and fat mass: the Rotterdam study. Int. J. Obes. 46, 2137–2144 (2022).

    Article  CAS  Google Scholar 

  105. Heianza, Y. et al. Changes in circulating microRNAs-99/100 and reductions of visceral and ectopic fat depots in response to lifestyle interventions: the CENTRAL trial. Am. J. Clin. Nutr. 116, 165–172 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen, Y. et al. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. J. Transl. Med. 20, 483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513.e8 (2022). This preclinical study suggests a novel mechanism by which mitochondrial transfer might mediate metabolic adaptation to a dietary stimulus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brestoff, J. R. et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab. 33, 270–282.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Crewe, C. et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 33, 1853–1868.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hartwig, S. et al. Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim. Biophys. Acta Proteins Proteom. 1867, 140172 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Kahn, D. E. & Bergman, B. C. Keeping it local in metabolic disease: adipose tissue paracrine signaling and insulin resistance. Diabetes 71, 599–609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kahn, D. et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: implications for metabolic disease. Endocrinology 163, bqac140 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pafili, K. et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J. Hepatol. 77, 1504–1514 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Lu, S., Wang, Y. & Liu, J. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies. J. Genet. Genomics 49, 269–278 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    Article  PubMed  Google Scholar 

  117. Meex, R. C. R., Blaak, E. E. & van Loon, L. J. C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes. Rev. 20, 1205–1217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vasan, S. K. et al. The proposed systemic thermogenic metabolites succinate and 12,13-diHOME are inversely associated with adiposity and related metabolic traits: evidence from a large human cross-sectional study. Diabetologia 62, 2079–2087 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pinckard, K. M. et al. A novel endocrine role for the BAT-released lipokine 12,13-diHOME to mediate cardiac function. Circulation 143, 145–159 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Eckel, J. Myokines in metabolic homeostasis and diabetes. Diabetologia 62, 1523–1528 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Pedersen, B. K. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur. J. Clin. Invest. 47, 600–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Ellingsgaard, H. et al. GLP-1 secretion is regulated by IL-6 signalling: a randomised, placebo-controlled study. Diabetologia 63, 362–373 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Lang Lehrskov, L. et al. Interleukin-6 delays gastric emptying in humans with direct effects on glycemic. Control. Cell Metab. 27, 1201–1211.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Duan, Y. et al. Interleukin-15 in obesity and metabolic dysfunction: current understanding and future perspectives. Obes. Rev. 18, 1147–1158 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Sabaratnam, R. et al. Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiol. Rep. 6, e13723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Balakrishnan, R. & Thurmond, D. C. Mechanisms by which skeletal muscle myokines ameliorate insulin resistance. Int. J. Mol. Sci. 23, 4636 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barlow, J. P. & Solomon, T. P. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am. J. Physiol. Endocrinol. Metab. 314, E297–E307 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Bouzakri, K. et al. Bimodal effect on pancreatic β-cells of secretory products from normal or insulin-resistant human skeletal muscle. Diabetes 60, 1111–1121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boström, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Roberts, L. D. et al. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19, 96–108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Barlow, J. P. et al. Beta-aminoisobutyric acid is released by contracting human skeletal muscle and lowers insulin release from INS-1 832/3 cells by mediating mitochondrial energy metabolism. Metab. Open. 7, 100053 (2020).

    Article  Google Scholar 

  133. Ramanjaneya, M. et al. Mitochondrial-derived peptides are down regulated in diabetes subjects. Front. Endocrinol. 10, 331 (2019).

    Article  Google Scholar 

  134. Miller, B., Kim, S. J., Kumagai, H., Yen, K. & Cohen, P. Mitochondria-derived peptides in aging and healthspan. J. Clin. Invest. 132, e158449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. D’Souza, R. F. et al. Circulatory exosomal miRNA following intense exercise is unrelated to muscle and plasma miRNA abundances. Am. J. Physiol. Endocrinol. Metab. 315, E723–e733 (2018).

    Article  PubMed  Google Scholar 

  136. Apostolopoulou, M. et al. Metabolic responsiveness to training depends on insulin sensitivity and protein content of exosomes in insulin-resistant males. Sci. Adv. 7, eabi9551 (2021). This clinical–experimental study shows that physical exercise can affect exosome content and composition, which relates to exercise responsiveness depending on the degree of glucose tolerance in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fromenty, B. & Roden, M. Mitochondrial alterations in fatty liver diseases. J. Hepatol. 78, 415–429 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Koliaki, C. & Roden, M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu. Rev. Nutr. 36, 337–367 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Beaulant, A. et al. Endoplasmic reticulum-mitochondria miscommunication is an early and causal trigger of hepatic insulin resistance and steatosis. J. Hepatol. 77, 710–722 (2022). This study introduces the ER–mitochondria interaction as a novel mechanism contributing to the pathogenesis of T2DM.

    Article  CAS  PubMed  Google Scholar 

  140. Gancheva, S. et al. Impaired hepatic mitochondrial capacity in nonalcoholic steatohepatitis associated with type 2 diabetes. Diabetes Care 45, 928–937 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Kakazu, E., Mauer, A. S., Yin, M. & Malhi, H. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner. J. Lipid Res. 57, 233–245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Park, S. E., Park, C. Y. & Sweeney, G. Biomarkers of insulin sensitivity and insulin resistance: past, present and future. Crit. Rev. Clin. Lab. Sci. 52, 180–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Hansen, J. S. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol. Metab. 4, 551–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lewis, J. E., Ebling, F. J. P., Samms, R. J. & Tsintzas, K. Going back to the biology of FGF21: new insights. Trends Endocrinol. Metab. 30, 491–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Gong, Q. et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology 64, 425–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Struik, D., Dommerholt, M. B. & Jonker, J. W. Fibroblast growth factors in control of lipid metabolism: from biological function to clinical application. Curr. Opin. Lipidol. 30, 235–243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Larsson, S. C. et al. Circulating lipoprotein(a) levels and health outcomes: phenome-wide Mendelian randomization and disease-trajectory analyses. Metabolism 137, 155347 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Samms, R. J. et al. FGF21 contributes to metabolic improvements elicited by combination therapy with exenatide and pioglitazone in patients with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 323, E123–e132 (2022). This study highlights the stimulating effect of certain glucose-lowering treatments on FGF21 in humans with T2DM.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tilg, H., Adolph, T. E. & Trauner, M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 34, 1700–1718 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Stefan, N., Schick, F., Birkenfeld, A. L., Häring, H. U. & White, M. F. The role of hepatokines in NAFLD. Cell Metab. 35, 236–252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Watt, M. J., Miotto, P. M., De Nardo, W. & Montgomery, M. K. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr. Rev. 40, 1367–1393 (2019).

    Article  PubMed  Google Scholar 

  153. Gerst, F. et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60, 2240–2251 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Kröger, J. et al. Circulating fetuin-A and risk of type 2 diabetes: a Mendelian randomization analysis. Diabetes 67, 1200–1205 (2018).

    Article  PubMed  Google Scholar 

  156. Meex, R. C. et al. Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metab. 22, 1078–1089 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Peter, A. et al. The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differently impact on glucose homeostasis in humans. Am. J. Physiol. Endocrinol. Metab. 314, E266–e273 (2018).

    Article  PubMed  Google Scholar 

  158. Li, Z. et al. Fetuin-B links nonalcoholic fatty liver disease to type 2 diabetes via inducing insulin resistance: association and path analyses. Cytokine 108, 145–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Wang, D. et al. Hepatokine fetuin B expression is regulated by leptin-STAT3 signalling and associated with leptin in obesity. Sci. Rep. 12, 12869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Takamura, T. Hepatokine selenoprotein P-mediated reductive stress causes resistance to intracellular signal transduction. Antioxid. Redox Signal. 33, 517–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yu, R. et al. Associations between circulating SELENOP level and disorders of glucose and lipid metabolism: a meta-analysis. Antioxidants 11, 1263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Misu, H. et al. Deficiency of the hepatokine selenoprotein P increases responsiveness to exercise in mice through upregulation of reactive oxygen species and AMP-activated protein kinase in muscle. Nat. Med. 23, 508–516 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Roden, M. et al. Metabolic effect of sodium selenite: insulin-like inhibition of glucagon-stimulated glycogenolysis in the isolated perfused rat liver. Hepatology 22, 169–174 (1995).

    CAS  PubMed  Google Scholar 

  164. Simons, P. et al. Serum sex hormone-binding globulin is a mediator of the association between intrahepatic lipid content and type 2 diabetes: the Maastricht study. Diabetologia 66, 213–222 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Simons, P., Valkenburg, O., Stehouwer, C. D. A. & Brouwers, M. Sex hormone-binding globulin: biomarker and hepatokine? Trends Endocrinol. Metab. 32, 544–553 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, D. et al. GDF15 promotes weight loss by enhancing energy expenditure in muscle. Nature 619, 143–150 (2023). This study proposes a brain–adipose-tissue–skeletal muscle crosstalk mediated by GDF15 as a possible new therapeutic opportunity for maintaining body weight loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kahn, S. E. et al. The β cell in diabetes: integrating biomarkers with functional measures. Endocr. Rev. 42, 528–583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Weir, G. C. Glucolipotoxicity, β-cells, and diabetes: the emperor has no clothes. Diabetes 69, 273–278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lytrivi, M., Castell, A. L., Poitout, V. & Cnop, M. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 432, 1514–1534 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Langlois, A., Dumond, A., Vion, J., Pinget, M. & Bouzakri, K. Crosstalk communications between islets cells and insulin target tissue: the hidden face of iceberg. Front. Endocrinol. 13, 836344 (2022).

    Article  Google Scholar 

  172. Gao, D. et al. The roles of cell-cell and organ-organ crosstalk in the type 2 diabetes mellitus associated inflammatory microenvironment. Cytokine Growth Factor. Rev. 66, 15–25 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. MarElia, C. B., Kuehl, M. N., Shemwell, T. A., Alman, A. C. & Burkhardt, B. R. Circulating PANDER concentration is associated with increased HbA1c and fasting blood glucose in type 2 diabetic subjects. J. Clin. Transl. Endocrinol. 11, 26–30 (2018).

    PubMed  PubMed Central  Google Scholar 

  174. Taylor, H. J. et al. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc. Natl Acad. Sci. USA 120, e2206797120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhu, H. & Leung, S. W. MicroRNA biomarkers of type 2 diabetes: evidence synthesis from meta-analyses and pathway modelling. Diabetologia 66, 288–299 (2023). This meta-analysis confirmed the association of 16 pancreatic islet miRNAs with T2DM.

    Article  CAS  PubMed  Google Scholar 

  176. Xu, H. et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 18, e3000603 (2020). This study indicates that miRNA26a mediates a complex crosstalk between the endocrine pancreas and the liver and adipose tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Nawrot, M., Peschard, S., Lestavel, S. & Staels, B. Intestine-liver crosstalk in type 2 diabetes and non-alcoholic fatty liver disease. Metabolism 123, 154844 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Holst, J. J., Gasbjerg, L. S. & Rosenkilde, M. M. The role of incretins on insulin function and glucose homeostasis. Endocrinology 162, bqab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2022).

    Article  PubMed  Google Scholar 

  180. Coskun, T. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. 18, 3–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nauck, M. A., Quast, D. R., Wefers, J. & Pfeiffer, A. F. H. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes. Metab. 23, 5–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Rosendo-Silva, D. & Matafome, P. Gut-adipose tissue crosstalk: a bridge to novel therapeutic targets in metabolic syndrome? Obes. Rev. 22, e13130 (2021).

    Article  PubMed  Google Scholar 

  183. Maagensen, H., Helsted, M. M., Gasbjerg, L. S., Vilsbøll, T. & Knop, F. K. The gut–bone axis in diabetes. Curr. Osteoporos. Rep. 21, 21–31 (2023).

    Article  PubMed  Google Scholar 

  184. Musso, G., Paschetta, E., Gambino, R., Cassader, M. & Molinaro, F. Interactions among bone, liver, and adipose tissue predisposing to diabesity and fatty liver. Trends Mol. Med. 19, 522–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Lee, Y. S., Riopel, M., Cabrales, P. & Bandyopadhyay, G. K. Hepatocyte-specific HIF-1α ablation improves obesity-induced glucose intolerance by reducing first-pass GLP-1 degradation. Sci. Adv. 5, eaaw4176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ghorpade, D. S. et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 555, 673–677 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sandoval, D. A. & Patti, M. E. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat. Rev. Endocrinol. 19, 164–176 (2023).

    Article  PubMed  Google Scholar 

  188. Ye, J. et al. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: advanced research-based review. Front. Microbiol. 13, 1029890 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhou, W. et al. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 569, 663–671 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Simon, M. C. et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 38, 1827–1834 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Kanazawa, A. et al. Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: a randomized controlled study. Nutrients 13, 558 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Penney, N. C. et al. Multi-omic phenotyping reveals host–microbe responses to bariatric surgery, glycaemic control and obesity. Commun. Med. 2, 127 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Ng, S. C. et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut 71, 716–723 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Ziegler, D. et al. Differential patterns and determinants of cardiac autonomic nerve dysfunction during endotoxemia and oral fat load in humans. PLoS ONE 10, e0124242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gomes, J. M. G., Costa, J. A. & Alfenas, R. C. G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 68, 133–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  199. May, K. S. & den Hartigh, L. J. Gut microbial-derived short chain fatty acids: impact on adipose tissue physiology. Nutrients 15, 272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Stirban, A., Gawlowski, T. & Roden, M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol. Metab. 3, 94–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Tuleta, I. & Frangogiannis, N. G. Diabetic fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166044 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Einarson, T. R., Acs, A., Ludwig, C. & Panton, U. H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc. Diabetol. 17, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Eckel, R. H., Bornfeldt, K. E. & Goldberg, I. J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 33, 1519–1545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Eichelmann, F. et al. Deep lipidomics in human plasma: cardiometabolic disease risk and effect of dietary fat modulation. Circulation 146, 21–35 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Karagiannidis, E. et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease. Cardiovasc. Diabetol. 21, 70 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Field, B. C., Gordillo, R. & Scherer, P. E. The role of ceramides in diabetes and cardiovascular disease regulation of ceramides by adipokines. Front. Endocrinol. 11, 569250 (2020).

    Article  Google Scholar 

  209. Lakhani, I. et al. Fibroblast growth factor 21 in cardio-metabolic disorders: a systematic review and meta-analysis. Metabolism 83, 11–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Chung, H. S. & Choi, K. M. Adipokines and myokines: a pivotal role in metabolic and cardiovascular disorders. Curr. Med. Chem. 25, 2401–2415 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Lin, X. et al. Roles of bone-derived hormones in type 2 diabetes and cardiovascular pathophysiology. Mol. Metab. 40, 101040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maddaloni, E. et al. Association of osteocalcin, osteoprotegerin, and osteopontin with cardiovascular disease and retinopathy in type 2 diabetes. Diabetes Metab. Res. Rev. 39, e3632 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Palomer, X., Pizarro-Delgado, J. & Vázquez-Carrera, M. Emerging actors in diabetic cardiomyopathy: heartbreaker biomarkers or therapeutic targets? Trends Pharmacol. Sci. 39, 452–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Niersmann, C. et al. Higher circulating omentin is associated with increased risk of primary cardiovascular events in individuals with diabetes. Diabetologia 63, 410–418 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Zhong, X., Li, X., Liu, F., Tan, H. & Shang, D. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem. Biophys. Res. Commun. 425, 401–406 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Hatziagelaki, E. et al. Serum chemerin concentrations associate with beta-cell function, but not with insulin resistance in individuals with non-alcoholic fatty liver disease (NAFLD). PLoS ONE 10, e0124935 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Chen, D. et al. Causal associations between circulating adipokines and cardiovascular disease: a Mendelian randomization study. J. Clin. Endocrinol. Metab. 107, e2572–e2580 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Sabbatinelli, J. et al. Prognostic value of soluble ST2, high-sensitivity cardiac troponin, and NT-proBNP in type 2 diabetes: a 15-year retrospective study. Cardiovasc. Diabetol. 21, 180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhao, X. Y. et al. The obesity-induced adipokine sST2 exacerbates adipose Treg and ILC2 depletion and promotes insulin resistance. Sci. Adv. 6, eaay6191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Jakubik, D. et al. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc. Diabetol. 20, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Thomas, M. C. et al. Diabetic kidney disease. Nat. Rev. Dis. Prim. 1, 15018 (2015).

    Article  PubMed  Google Scholar 

  222. Barrios, C. et al. Circulating metabolic biomarkers of renal function in diabetic and non-diabetic populations. Sci. Rep. 8, 15249 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Kammer, M. et al. Integrative analysis of prognostic biomarkers derived from multiomics panels helps discrimination of chronic kidney disease trajectories in people with type 2 diabetes. Kidney Int. 96, 1381–1388 (2019).

    Article  CAS  PubMed  Google Scholar 

  224. Zhu, Q. & Scherer, P. E. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat. Rev. Nephrol. 14, 105–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Targher, G. & Byrne, C. D. Non-alcoholic fatty liver disease: an emerging driving force in chronic kidney disease. Nat. Rev. Nephrol. 13, 297–310 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Zitouni, K. et al. Derepression of glomerular filtration, renal blood flow and antioxidant defence in patients with type 2 diabetes at high-risk of cardiorenal disease. Free. Radic. Biol. Med. 161, 283–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  227. Deng, J., Liu, Y., Liu, Y., Li, W. & Nie, X. The multiple roles of fibroblast growth factor in diabetic nephropathy. J. Inflamm. Res. 14, 5273–5290 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Singh, S. et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 90, 985–996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wu, R. et al. Identifying myoglobin as a mediator of diabetic kidney disease: a machine learning-based cross-sectional study. Sci. Rep. 12, 21411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Mahtal, N., Lenoir, O., Tinel, C., Anglicheau, D. & Tharaux, P.-L. MicroRNAs in kidney injury and disease. Nat. Rev. Nephrol. 18, 643–662 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Blond, E. et al. EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease in severely obese people: do they lead to over-referral? Diabetologia 60, 1218–1222 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    Article  PubMed  Google Scholar 

  233. Byrne, C. D. & Targher, G. What’s new in NAFLD pathogenesis, biomarkers and treatment? Nat. Rev. Gastroenterol. Hepatol. 17, 70–71 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. Dewidar, B., Kahl, S., Pafili, K. & Roden, M. Metabolic liver disease in diabetes – from mechanisms to clinical trials. Metabolism 111S, 154299 (2020).

    Article  PubMed  Google Scholar 

  235. Guerra, S., Mocciaro, G. & Gastaldelli, A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur. J. Clin. Invest. 52, e13695 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Targher, G., Corey, K. E., Byrne, C. D. & Roden, M. The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 18, 599–612 (2021).

    Article  PubMed  Google Scholar 

  237. Atabaki-Pasdar, N. et al. Predicting and elucidating the etiology of fatty liver disease: a machine learning modeling and validation study in the IMI DIRECT cohorts. PLoS Med. 17, e1003149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. McGlinchey, A. J. et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 4, 100477 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Apostolopoulou, M. et al. Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans. BMJ Open. Diabetes Res. Care 8, e001860 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Velenosi, T. J. et al. Postprandial plasma lipidomics reveal specific alteration of hepatic-derived diacylglycerols in nonalcoholic fatty liver disease. Gastroenterology 162, 1990–2003 (2022).

    Article  CAS  PubMed  Google Scholar 

  241. Gorden, D. L. et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS ONE 6, e22775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  Google Scholar 

  243. Cernea, S., Roiban, A. L., Both, E. & Hutanu, A. Serum leptin and leptin resistance correlations with NAFLD in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 34, e3050 (2018).

    Article  PubMed  Google Scholar 

  244. Stanley, T. L. et al. Relationship of IGF-1 and IGF-binding proteins to disease severity and glycemia in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 106, e520–e533 (2021).

    Article  PubMed  Google Scholar 

  245. Abdelmalek, M. F. et al. The FALCON program: two phase 2b randomized, double-blind, placebo-controlled studies to assess the efficacy and safety of pegbelfermin in the treatment of patients with nonalcoholic steatohepatitis and bridging fibrosis or compensated cirrhosis. Contemp. Clin. Trials 104, 106335 (2021).

    Article  PubMed  Google Scholar 

  246. Chen, X. et al. Lower adropin expression is associated with oxidative stress and severity of nonalcoholic fatty liver disease. Free. Radic. Biol. Med. 160, 191–198 (2020).

    Article  CAS  PubMed  Google Scholar 

  247. Wu, C. et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat. Commun. 12, 6486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Meex, R. C. R. & Watt, M. J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 13, 509–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).

    Article  CAS  PubMed  Google Scholar 

  250. Knebel, B. et al. Specific metabolic profiles and their relationship to insulin resistance in recent-onset type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 101, 2130–2140 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Jaruvongvanich, V., Sanguankeo, A., Riangwiwat, T. & Upala, S. Testosterone, sex hormone-binding globulin and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Ann. Hepatol. 16, 382–394 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Baumeier, C. et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol. Metab. 6, 1254–1263 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Heo, Y. J. et al. Visfatin induces inflammation and insulin resistance via the NF-κB and STAT3 signaling pathways in hepatocytes. J. Diabetes Res. 2019, 4021623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Sagara, M. et al. Serum levels of soluble dipeptidyl peptidase-4 in type 2 diabetes are associated with severity of liver fibrosis evaluated by transient elastography (FibroScan) and the FAST (FibroScan-AST) score, a novel index of non-alcoholic steatohepatitis with significant fibrosis. J. Diabetes Complications 35, 107885 (2021).

    Article  CAS  PubMed  Google Scholar 

  255. Ji, C. & Guo, X. The clinical potential of circulating microRNAs in obesity. Nat. Rev. Endocrinol. 15, 731–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Bönhof, G. J. et al. Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr. Rev. 40, 153–192 (2019).

    Article  PubMed  Google Scholar 

  257. Guo, K. et al. Plasma metabolomics and lipidomics differentiate obese individuals by peripheral neuropathy status. J. Clin. Endocrinol. Metab. 107, 1091–1109 (2022).

    Article  PubMed  Google Scholar 

  258. Afshinnia, F. et al. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann. Clin. Transl. Neurol. 9, 1392–1404 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ziegler, D. et al. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia 64, 458–468 (2021).

    Article  CAS  PubMed  Google Scholar 

  260. Herder, C., Roden, M. & Ziegler, D. Novel insights into sensorimotor and cardiovascular autonomic neuropathy from recent-onset diabetes and population-based cohorts. Trends Endocrinol. Metab. 30, 286–298 (2019).

    Article  CAS  PubMed  Google Scholar 

  261. Kocak, M. Z. et al. Is neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur. J. Clin. Invest. 50, e13206 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Chen, Z. Z. & Gerszten, R. E. Metabolomics and proteomics in type 2 diabetes. Circ. Res. 126, 1613–1627 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Buergel, T. et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 28, 2309–2320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Carrasco-Zanini, J. et al. Proteomic signatures for identification of impaired glucose tolerance. Nat. Med. 28, 2293–2300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. DeBerardinis, R. J. & Keshari, K. R. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 185, 2678–2689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Wigger, L. et al. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat. Metab. 3, 1017–1031 (2021).

    Article  CAS  PubMed  Google Scholar 

  267. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  268. Zaharia, O. P. et al. Diabetes clusters and risk of diabetes-associated diseases – authors’ reply. Lancet Diabetes Endocrinol. 7, 828–829 (2019).

    Article  PubMed  Google Scholar 

  269. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15, e1002654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Wagner, R. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 27, 49–57 (2021). This analysis describes novel subtypes of prediabetes which are characterized by, among other variables, different degrees of insulinaemia and lipidaemia.

    Article  CAS  PubMed  Google Scholar 

  271. Slieker, R. C. et al. Distinct molecular signatures of clinical clusters in people with type 2 diabetes: an IMI-RHAPSODY study. Diabetes 70, 2683–2693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Ratter-Rieck, J. M. et al. Leukocyte counts and T-cell frequencies differ between novel subgroups of diabetes and are associated with metabolic parameters and biomarkers of inflammation. Diabetes 70, 2652–2662 (2021).

    Article  CAS  PubMed  Google Scholar 

  273. Herder, C. et al. Differences in biomarkers of inflammation between novel subgroups of recent-onset diabetes. Diabetes 70, 1198–1208 (2021). This study provides evidence for specific differences in circulating proinflammatory biomarkers between the novel diabetes mellitus subtypes in a European population.

    Article  CAS  PubMed  Google Scholar 

  274. Zaghlool, S. B. et al. Metabolic and proteomic signatures of type 2 diabetes subtypes in an Arab population. Nat. Commun. 13, 7121 (2022). This high-throughput proteomics and metabolomics study supports the concept of differences in multiomics signatures between novel diabetes mellitus subtypes in a non-European population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zheng, R. et al. Data-driven subgroups of prediabetes and the associations with outcomes in Chinese adults. Cell Rep. Med. 4, 100958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Yuan, S. & Larsson, S. C. Association of genetic variants related to plasma fatty acids with type 2 diabetes mellitus and glycaemic traits: a Mendelian randomisation study. Diabetologia 63, 116–123 (2020).

    Article  CAS  PubMed  Google Scholar 

  277. Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13, e1002179 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Porcu, E. et al. Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes. Sci. Rep. 11, 6197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Jäger, S. et al. Mendelian randomization study on amino acid metabolism suggests tyrosine as causal trait for type 2 diabetes. Nutrients 12, 3890 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Gudmundsdottir, V. et al. Circulating protein signatures and causal candidates for type 2 diabetes. Diabetes 69, 1843–1853 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Yuan, S. et al. Genetically predicted sex hormone levels and health outcomes: phenome-wide Mendelian randomization investigation. Int. J. Epidemiol. 51, 1931–1942 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  282. Zhang, M. et al. Causal associations of circulating adiponectin with cardiometabolic diseases and osteoporotic fracture. Sci. Rep. 12, 6689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Yuan, S. & Larsson, S. C. An atlas on risk factors for type 2 diabetes: a wide-angled Mendelian randomisation study. Diabetologia 63, 2359–2371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Cupido, A. J. et al. Dissecting the IL-6 pathway in cardiometabolic disease: a Mendelian randomization study on both IL6 and IL6R. Br. J. Clin. Pharmacol. 88, 2875–2884 (2022).

    Article  CAS  PubMed  Google Scholar 

  285. Zhuang, H., Han, J., Cheng, L. & Liu, S.-L. A positive causal influence of IL-18 levels on the risk of T2DM: a Mendelian randomization study. Front. Genet. 10, 295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Yun, H. et al. Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: a population-based cohort study in China. PLoS Med. 17, e1003451 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Sun, Y., Lu, Y. K., Gao, H. Y. & Yan, Y. X. Effect of metabolite levels on type 2 diabetes mellitus and glycemic traits: a Mendelian randomization study. J. Clin. Endocrinol. Metab. 106, 3439–3447 (2021).

    PubMed  Google Scholar 

  288. Ghanbari, F., Yazdanpanah, N., Yazdanpanah, M., Richards, J. B. & Manousaki, D. Connecting genomics and proteomics to identify protein biomarkers for adult and youth-onset type 2 diabetes: a two-sample Mendelian randomization study. Diabetes 71, 1324–1337 (2022).

    Article  CAS  PubMed  Google Scholar 

  289. Pigeyre, M. et al. Identification of novel causal blood biomarkers linking metabolically favorable adiposity with type 2 diabetes risk. Diabetes Care 42, 1800–1808 (2019).

    Article  CAS  PubMed  Google Scholar 

  290. Drake, I. et al. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia 65, 128–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  291. Zheng, D. et al. Glucagon-like peptide-1 receptor agonists and diabetic retinopathy: nationwide cohort and Mendelian randomization studies. BMC Med. 21, 40 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Nikpay, M. et al. Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of several miRNAs in the regulation of cardiometabolic phenotypes. Cardiovasc. Res. 115, 1629–1645 (2019).

    Article  CAS  PubMed  Google Scholar 

  293. Liang, Y., Luo, S., Schooling, C. M. & Au Yeung, S. L. Genetically predicted fibroblast growth factor 23 and major cardiovascular diseases, their risk factors, kidney function, and longevity: a two-sample Mendelian randomization study. Front. Genet. 12, 699455 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Wittenbecher, C. et al. Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology. Nat. Commun. 13, 936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Mora-Ortiz, M. et al. Metabolomics analysis of type 2 diabetes remission identifies 12 metabolites with predictive capacity: a CORDIOPREV clinical trial study. BMC Med. 20, 373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. MacCannell, A. D. & Roberts, L. D. Metabokines in the regulation of systemic energy metabolism. Curr. Opin. Pharmacol. 67, 102286 (2022).

    Article  CAS  PubMed  Google Scholar 

  297. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Gerst, F. et al. What role do fat cells play in pancreatic tissue? Mol. Metab. 25, 1–10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Liu, C. et al. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86, 100–109 (2016).

    Article  CAS  PubMed  Google Scholar 

  300. Steffen, B. T. et al. Proteomic analysis of diabetes genetic risk scores identifies complement C2 and neuropilin-2 as predictors of type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Diabetologia 66, 105–115 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of M.R. is supported in part by grants from the German Federal Ministry of Health (BMG), the Ministry of Culture and Science of the State Northrhine Westphalia (MKW NRW) to the German Diabetes Center (DDZ) and the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.) as well as by grants from the European Community (HORIZON-HLTH-2022-STAYHLTH-02-01: panel A) to the INTERCEPT-T2D consortium, EUREKA Eurostars-2 (E! 113230 DIA-PEP), German Science Foundation (DFG; CRC/SFB 1116/2 B12; RTG/GRK 2576 vivid, project 3), Schmutzler Stiftung and the programme ‘Profilbildung 2020’, an initiative of the Ministry of Culture and Science of the State of Northrhine Westphalia. The sole responsibility for the content of this publication lies with the authors.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for article and wrote the article. M.R. and G.X. contributed substantially to the discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Michael Roden.

Ethics declarations

Competing interests

M.R. has received personal fees for consulting from Eli Lilly, Novo Nordisk, Boehringer Ingelheim and Sanofi US, and has been supported for investigator-initiated trials by Boehringer Ingelheim, Novartis Pharma and Nutricia/Danone. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Yun Sok Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xourafa, G., Korbmacher, M. & Roden, M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 20, 27–49 (2024). https://doi.org/10.1038/s41574-023-00898-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00898-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research