Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obesity-induced and weight-loss-induced physiological factors affecting weight regain

Subjects

Abstract

Weight regain after successful weight loss resulting from lifestyle interventions is a major challenge in the management of overweight and obesity. Knowledge of the causal mechanisms for weight regain can help researchers and clinicians to find effective strategies to tackle weight regain and reduce obesity-associated metabolic and cardiovascular complications. This Review summarizes the current understanding of a number of potential physiological mechanisms underlying weight regain after weight loss, including: the role of adipose tissue immune cells; hormonal and neuronal factors affecting hunger, satiety and reward; resting energy expenditure and adaptive thermogenesis; and lipid metabolism (lipolysis and lipid oxidation). We describe and discuss obesity-associated changes in these mechanisms, their persistence during weight loss and weight regain and their association with weight regain. Interventions to prevent or limit weight regain based on these factors, such as diet, exercise, pharmacotherapy and biomedical strategies, and current knowledge on the effectiveness of these interventions are also reviewed.

Key points

  • Weight regain after diet-induced weight loss is a common phenomenon and probably involves physiological mechanisms.

  • Studies in the past decade suggest the existence of an obesity memory with respect to adipose tissue inflammatory cell populations and metabolic changes, which might have a role in weight regain.

  • The role of persistent changes in appetite-related factors in weight regain and the interaction of these factors with the brain needs further study.

  • Strategies to reduce weight regain after weigh loss (diet composition, exercise, pharmacotherapy and other biomedical applications) should be considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential mechanism for the influence of macrophages on obesity development and on weight regain after weight loss.
Fig. 2: The physiology of weight regain.

Similar content being viewed by others

References

  1. van Baak, M. A. & Mariman, E. C. M. Mechanisms of weight regain after weight loss – the role of adipose tissue. Nat. Rev. Endocrinol. 15, 274–287 (2019).

    Article  PubMed  Google Scholar 

  2. Berthoud, H. R., Seeley, R. J. & Roberts, S. B. Physiology of energy intake in the weight-reduced state. Obesity 29, S25–S30 (2021).

    Article  PubMed  Google Scholar 

  3. Hill, D. A. et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc. Natl Acad. Sci. USA 115, E5096–E5105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeyda, M. et al. Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int. J. Obes. 31, 1420–1428 (2007).

    Article  CAS  Google Scholar 

  9. Caslin, H. L., Bhanot, M., Bolus, W. R. & Hasty, A. H. Adipose tissue macrophages: unique polarization and bioenergetics in obesity. Immunol. Rev. 295, 101–113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clement, K. et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 18, 1657–1669 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Capel, F. et al. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58, 1558–1567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vink, R. G. et al. Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans. Int. J. Obes. 41, 309–316 (2017).

    Article  CAS  Google Scholar 

  14. Caslin, H. L., Cottam, M. A., Pinon, J. M., Boney, L. Y. & Hasty, A. H. Weight cycling induces innate immune memory in adipose tissue macrophages. Front. Immunol. 13, 984859 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Schmitz, J. et al. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss. Mol. Metab. 5, 328–339 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Chavakis, T., Alexaki, V. I. & Ferrante, A. W. Jr. Macrophage function in adipose tissue homeostasis and metabolic inflammation. Nat. Immunol. 24, 757–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao, Y. et al. TIDB: a comprehensive database of trained immunity. Database 2021, baab041 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yi, J. S., Cox, M. A. & Zajac, A. J. T-cell exhaustion: characteristics, causes and conversion. Immunology 129, 474–481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Porsche, C. E., Delproposto, J. B., Geletka, L., O’Rourke, R. & Lumeng, C. N. Obesity results in adipose tissue T cell exhaustion. JCI Insight 6, e139793 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Varghese, M. et al. Sex differences in inflammatory responses to adipose tissue lipolysis in diet-induced obesity. Endocrinology 160, 293–312 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Zou, J. et al. CD4+ T cells memorize obesity and promote weight regain. Cell Mol. Immunol. 15, 630–639 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Vink, R. G., Roumans, N. J., Arkenbosch, L. A., Mariman, E. C. & van Baak, M. A. The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity 24, 321–327 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Roumans, N. J., Vink, R. G., Fazelzadeh, P., van Baak, M. A. & Mariman, E. C. A role for leukocyte integrins and extracellular matrix remodeling of adipose tissue in the risk of weight regain after weight loss. Am. J. Clin. Nutr. 105, 1054–1062 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Mariman, E. C. & Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol. Life Sci. 67, 1277–1292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lackey, D. E. et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 306, E233–E246 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Ambeba, E. J. et al. Longitudinal effects of weight loss and regain on cytokine concentration of obese adults. Metabolism 62, 1218–1222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sougiannis, A. T. et al. Impact of weight loss and partial weight regain on immune cell and inflammatory markers in adipose tissue in male mice. J. Appl. Physiol. 129, 909–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qiao, Q. et al. Plasma levels of triglycerides and IL-6 are associated with weight regain and fat mass expansion. J. Clin. Endocrinol. Metab. 107, 1920–1929 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yadati, T., Houben, T., Bitorina, A. & Shiri-Sverdlov, R. The ins and outs of cathepsins: physiological function and role in disease management. Cells 9, 1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smyth, P., Sasiwachirangkul, J., Williams, R. & Scott, C. J. Cathepsin S (CTSS) activity in health and disease – a treasure trove of untapped clinical potential. Mol. Asp. Med. 88, 101106 (2022).

    Article  CAS  Google Scholar 

  33. Marques, A. R. A. et al. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 16, 811–825 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Bogardus, C. et al. Familial dependence of the resting metabolic rate. N. Engl. J. Med. 315, 96–100 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Rimbach, R. et al. Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition. Nat. Commun. 13, 99 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogels, N., Diepvens, K. & Westerterp-Plantenga, M. S. Predictors of long-term weight maintenance. Obes. Res. 13, 2162–2168 (2005).

    Article  PubMed  Google Scholar 

  38. Muller, M. J. & Bosy-Westphal, A. Adaptive thermogenesis with weight loss in humans. Obesity 21, 218–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Martins, C., Roekenes, J., Salamati, S., Gower, B. A. & Hunter, G. R. Metabolic adaptation is an illusion, only present when participants are in negative energy balance. Am. J. Clin. Nutr. 112, 1212–1218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Westerterp, K. R. Adaptive thermogenesis during energy deficits: a different explanation. Eur. J. Clin. Nutr. 76, 1351–1352 (2022).

    Article  PubMed  Google Scholar 

  41. Muller, M. J., Heymsfield, S. B. & Bosy-Westphal, A. Are metabolic adaptations to weight changes an artefact. Am. J. Clin. Nutr. 114, 1386–1395 (2021).

    Article  PubMed  Google Scholar 

  42. Galgani, J. E. & Santos, J. L. Insights about weight loss-induced metabolic adaptation. Obesity 24, 277–278 (2016).

    Article  PubMed  Google Scholar 

  43. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Rosenbaum, M. & Leibel, R. L. Models of energy homeostasis in response to maintenance of reduced body weight. Obesity 24, 1620–1629 (2016).

    Article  PubMed  Google Scholar 

  45. Coutinho, S. R. et al. The impact of rate of weight loss on body composition and compensatory mechanisms during weight reduction: a randomized control trial. Clin. Nutr. 37, 1154–1162 (2018).

    Article  PubMed  Google Scholar 

  46. Most, J. & Redman, L. M. Impact of calorie restriction on energy metabolism in humans. Exp. Gerontol. 133, 110875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reinhardt, M. et al. A human thrifty phenotype associated with less weight loss during caloric restriction. Diabetes 64, 2859–2867 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whytock, K. L. et al. Metabolic adaptation characterizes short-term resistance to weight loss induced by a low-calorie diet in overweight/obese individuals. Am. J. Clin. Nutr. 114, 267–280 (2021).

    Article  PubMed  Google Scholar 

  49. Martins, C., Gower, B. A., Hill, J. O. & Hunter, G. R. Metabolic adaptation is not a major barrier to weight-loss maintenance. Am. J. Clin. Nutr. 112, 558–565 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martins, C., Roekenes, J., Gower, B. A. & Hunter, G. R. Metabolic adaptation is associated with less weight and fat mass loss in response to low-energy diets. Nutr. Metab. 18, 60 (2021).

    Article  CAS  Google Scholar 

  51. Ravussin, E. & Redman, L. M. Metabolic adaptation: is it really an illusion? Am. J. Clin. Nutr. 112, 1653–1654 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Westerterp, K. R. Absence of evidence is no evidence for absence of the phenomenon. Am. J. Clin. Nutr. 112, 501–502 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martins, C., Roekenes, J., Salamati, S., Gower, B. A. & Hunter, G. R. Reply to E Ravussin and L Redman. Am. J. Clin. Nutr. 112, 1655–1656 (2020).

    Article  PubMed  Google Scholar 

  54. Rosenbaum, M., Hirsch, J., Gallagher, D. A. & Leibel, R. L. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am. J. Clin. Nutr. 88, 906–912 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Camps, S. G., Verhoef, S. P. & Westerterp, K. R. Weight loss, weight maintenance, and adaptive thermogenesis. Am. J. Clin. Nutr. 97, 990–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Fothergill, E. et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 24, 1612–1619 (2016).

    Article  PubMed  Google Scholar 

  57. Marlatt, K. L., Redman, L. M., Burton, J. H., Martin, C. K. & Ravussin, E. Persistence of weight loss and acquired behaviors 2 y after stopping a 2-y calorie restriction intervention. Am. J. Clin. Nutr. 105, 928–935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weyer, C. et al. Energy metabolism after 2 y of energy restriction: the Biosphere 2 experiment. Am. J. Clin. Nutr. 72, 946–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Weinsier, R. L. et al. Do adaptive changes in metabolic rate favor weight regain in weight-reduced individuals? An examination of the set-point theory. Am. J. Clin. Nutr. 72, 1088–1094 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Nymo, S. et al. Physiological predictors of weight regain at 1-year follow-up in weight-reduced adults with obesity. Obesity 27, 925–931 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Thom, G. et al. The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: a mixed-methods study. Eur. J. Clin. Nutr. 74, 622–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Abbott, W. G. et al. Short-term energy balance: relationship with protein, carbohydrate, and fat balances. Am. J. Physiol. 255, E332–E337 (1988).

    CAS  PubMed  Google Scholar 

  63. Flatt, J. P. Issues and misconceptions about obesity. Obesity 19, 676–686 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Schrauwen, P., Lichtenbelt, W. D., Saris, W. H. & Westerterp, K. R. Fat balance in obese subjects: role of glycogen stores. Am. J. Physiol. 274, E1027–E1033 (1998).

    CAS  PubMed  Google Scholar 

  65. Zurlo, F. et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am. J. Physiol. 259, E650–E657 (1990).

    CAS  PubMed  Google Scholar 

  66. Martins, C., Gower, B. A. & Hunter, G. R. Baseline metabolic variables do not predict weight regain in premenopausal women. Obesity 28, 902–906 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Nicklas, B. J., Rogus, E. M. & Goldberg, A. P. Exercise blunts declines in lipolysis and fat oxidation after dietary-induced weight loss in obese older women. Am. J. Physiol. 273, E149–E155 (1997).

    CAS  PubMed  Google Scholar 

  68. van Aggel-Leijssen, D. P., Saris, W. H., Hul, G. B. & van Baak, M. A. Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. Am. J. Clin. Nutr. 73, 523–531 (2001).

    Article  PubMed  Google Scholar 

  69. Larson, D. E., Ferraro, R. T., Robertson, D. S. & Ravussin, E. Energy metabolism in weight-stable postobese individuals. Am. J. Clin. Nutr. 62, 735–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Jackman, M. R. et al. Weight regain after sustained weight reduction is accompanied by suppressed oxidation of dietary fat and adipocyte hyperplasia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1117–R1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Mai, K. et al. An integrated understanding of the molecular mechanisms of how adipose tissue metabolism affects long-term body weight maintenance. Diabetes 68, 57–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Schiffelers, S. L., Saris, W. H. & van Baak, M. A. The effect of an increased free fatty acid concentration on thermogenesis and substrate oxidation in obese and lean men. Int. J. Obes. Relat. Metab. Disord. 25, 33–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Wolfe, R. R. et al. Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects. Am. J. Physiol. 252, E189–E196 (1987).

    CAS  PubMed  Google Scholar 

  74. Bougneres, P. et al. In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J. Clin. Invest. 99, 2568–2573 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Langin, D. et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 54, 3190–3197 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Schiffelers, S. L., Akkermans, J. A., Saris, W. H. & Blaak, E. E. Lipolytic and nutritive blood flow response to beta-adrenoceptor stimulation in situ in subcutaneous abdominal adipose tissue in obese men. Int. J. Obes. Relat. Metab. Disord. 27, 227–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Borsheim, E., Lonnroth, P., Knardahl, S. & Jansson, P. A. No difference in the lipolytic response to β-adrenoceptor stimulation in situ but a delayed increase in adipose tissue blood flow in moderately obese compared with lean men in the postexercise period. Metabolism 49, 579–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Jocken, J. W. et al. Adipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J. Clin. Endocrinol. Metab. 92, 2292–2299 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Jocken, J. W. et al. Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation. Int. J. Obes. 31, 813–819 (2007).

    Article  CAS  Google Scholar 

  80. Large, V. et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J. Clin. Invest. 100, 3005–3013 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blaak, E. E., Schiffelers, S. L., Saris, W. H., Mensink, M. & Kooi, M. E. Impaired beta-adrenergically mediated lipolysis in skeletal muscle of obese subjects. Diabetologia 47, 1462–1468 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Bezaire, V., Mairal, A., Anesia, R., Lefort, C. & Langin, D. Chronic TNFα and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett. 583, 3045–3049 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Koppo, K. et al. Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue during long-term diet-induced weight loss in obese women. Am. J. Physiol. Endocrinol. Metab. 302, E226–E232 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Kasher-Meron, M., Youn, D. Y., Zong, H. & Pessin, J. E. Lipolysis defect in white adipose tissue and rapid weight regain. Am. J. Physiol. Endocrinol. Metab. 317, E185–E193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhoef, S. P., Camps, S. G., Bouwman, F. G., Mariman, E. C. & Westerterp, K. R. Physiological response of adipocytes to weight loss and maintenance. PLoS ONE 8, e58011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vink, R. G., Roumans, N. J., Mariman, E. C. & van Baak, M. A. Dietary weight loss-induced changes in RBP4, FFA, and ACE predict weight regain in people with overweight and obesity. Physiol. Rep. 5, e13450 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Maclean, P. S., Bergouignan, A., Cornier, M. A. & Jackman, M. R. Biology’s response to dieting: the impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R581–R600 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gibbons, C., Hopkins, M., Beaulieu, K., Oustric, P. & Blundell, J. E. Issues in measuring and interpreting human appetite (satiety/satiation) and its contribution to obesity. Curr. Obes. Rep. 8, 77–87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bessesen, D. H., Bull, S. & Cornier, M. A. Trafficking of dietary fat and resistance to obesity. Physiol. Behav. 94, 681–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    Article  PubMed  Google Scholar 

  91. Aukan, M. I., Coutinho, S., Pedersen, S. A., Simpson, M. R. & Martins, C. Differences in gastrointestinal hormones and appetite ratings between individuals with and without obesity – a systematic review and meta-analysis. Obes. Rev. 2, e13531 (2022).

    Google Scholar 

  92. Cui, H., Lopez, M. & Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 13, 338–351 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hintze, L. J., Mahmoodianfard, S., Auguste, C. B. & Doucet, E. Weight loss and appetite control in women. Curr. Obes. Rep. 6, 334–351 (2017).

    Article  PubMed  Google Scholar 

  94. Zhao, X. et al. The role of gut hormones in diet-induced weight change: a systematic review. Horm. Metab. Res. 49, 816–825 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Koliaki, C., Liatis, S., Dalamaga, M. & Kokkinos, A. The implication of gut hormones in the regulation of energy homeostasis and their role in the pathophysiology of obesity. Curr. Obes. Rep. 9, 255–271 (2020).

    Article  PubMed  Google Scholar 

  96. Wadden, T. A. et al. Short- and long-term changes in serum leptin dieting obese women: effects of caloric restriction and weight loss. J. Clin. Endocrinol. Metab. 83, 214–218 (1998).

    CAS  PubMed  Google Scholar 

  97. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Strohacker, K., McCaffery, J. M., MacLean, P. S. & Wing, R. R. Adaptations of leptin, ghrelin or insulin during weight loss as predictors of weight regain: a review of current literature. Int. J. Obes. 38, 388–396 (2014).

    Article  CAS  Google Scholar 

  99. Thom, G. et al. Weight loss-induced increase in fasting ghrelin concentration is a predictor of weight regain: evidence from the diabetes remission clinical trial (DiRECT). Diabetes Obes. Metab. 23, 711–719 (2021).

    Article  CAS  Google Scholar 

  100. Buso, M. E. C. et al. Can a higher protein/low glycemic index vs. a conventional diet attenuate changes in appetite and gut hormones following weight loss? a 3-year PREVIEW sub-study. Front. Nutr. 8, 640538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rejeski, J. J., Fanning, J., Nicklas, B. J. & Rejeski, W. J. Six-month changes in ghrelin and glucagon-like peptide-1 with weight loss are unrelated to long-term weight regain in obese older adults. Int. J. Obes. 45, 888–894 (2021).

    Article  CAS  Google Scholar 

  102. Simon, J. J. et al. Neural food reward processing in successful and unsuccessful weight maintenance. Obesity 26, 895–902 (2018).

    Article  PubMed  Google Scholar 

  103. van Baak, M. A. Dietary carbohydrates and weight loss maintenance. Curr. Opin. Clin. Nutr. Metab. Care 24, 354–358 (2021).

    Article  PubMed  Google Scholar 

  104. van Baak, M. A. & Mariman, E. C. M. Dietary strategies for weight loss maintenance. Nutrients 11, 1916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ramos-Lopez, O., Martinez-Urbistondo, D., Vargas-Nunez, J. A. & Martinez, J. A. The role of nutrition on meta-inflammation: insights and potential targets in communicable and chronic disease management. Curr. Obes. Rep. 11, 305–335 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Naatanen, M. et al. Post-weight loss changes in fasting appetite- and energy balance-related hormone concentrations and the effect of the macronutrient content of a weight maintenance diet: a randomised controlled trial. Eur. J. Nutr. 60, 2603–2616 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Muhammad, H. F. L. et al. Dietary intake after weight loss and the risk of weight regain: macronutrient composition and inflammatory properties of the diet. Nutrients 9, 1205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Foright, R. M. et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol. Behav. 188, 86–93 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gonzalo-Encabo, P., Maldonado, G., Valades, D., Ferragut, C. & Perez-Lopez, A. The role of exercise training on low-grade systemic inflammation in adults with overweight and obesity: a systematic review. Int. J. Env. Res. Public. Health 18, 13258 (2021).

    Article  CAS  Google Scholar 

  110. Patterson, C. M., Bouret, S. G., Dunn-Meynell, A. A. & Levin, B. E. Three weeks of postweaning exercise in DIO rats produces prolonged increases in central leptin sensitivity and signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R537–R548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martelli, D. & Brooks, V. L. Leptin increases: physiological roles in the control of sympathetic nerve activity, energy balance, and the hypothalamic-pituitary-thyroid axis. Int. J. Mol. Sci. 24, 2684 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Della Guardia, L. & Codella, R. Exercise restores hypothalamic health in obesity by reshaping the inflammatory network. Antioxidants 12, 297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fanning, J. et al. Intervening on exercise and daylong movement for weight loss maintenance in older adults: a randomized, clinical trial. Obesity 30, 85–95 (2022).

    Article  PubMed  Google Scholar 

  114. Kaikkonen, K. M., Korpelainen, R., Vanhala, M. L., Keinanen-Kiukaanniemi, S. M. & Korpelainen, J. T. Long-term effects on weight loss and maintenance by intensive start with diet and exercise. Scand. J. Med. Sci. Sports 33, 246–256 (2022).

    Article  PubMed  Google Scholar 

  115. Pavlou, K. N., Krey, S. & Steffee, W. P. Exercise as an adjunct to weight loss and maintenance in moderately obese subjects. Am. J. Clin. Nutr. 49, 1115–1123 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Jeffery, R. W., Wing, R. R., Sherwood, N. E. & Tate, D. F. Physical activity and weight loss: does prescribing higher physical activity goals improve outcome. Am. J. Clin. Nutr. 78, 684–689 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Fogelholm, M., Kukkonen-Harjula, K., Nenonen, A. & Pasanen, M. Effects of walking training on weight maintenance after a very-low-energy diet in premenopausal obese women: a randomized controlled trial. Arch. Intern. Med. 160, 2177–2184 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Borg, P., Kukkonen-Harjula, K., Fogelholm, M. & Pasanen, M. Effects of walking or resistance training on weight loss maintenance in obese, middle-aged men: a randomized trial. Int. J. Obes. Relat. Metab. Disord. 26, 676–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Hintze, L. J. et al. A one-year resistance training program following weight loss has no significant impact on body composition and energy expenditure in postmenopausal women living with overweight and obesity. Physiol. Behav. 189, 99–106 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Lundgren, J. R. et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384, 1719–1730 (2021).

    Article  PubMed  Google Scholar 

  121. Washburn, R. A. et al. A randomized trial evaluating exercise for the prevention of weight regain. Obesity 29, 62–70 (2021).

    Article  PubMed  Google Scholar 

  122. Jakicic, J. M., Winters, C., Lang, W. & Wing, R. R. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. JAMA 282, 1554–1560 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Jakicic, J. M., Marcus, B. H., Lang, W. & Janney, C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch. Intern. Med. 168, 1550–1559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jakicic, J. M. et al. Objective physical activity and weight loss in adults: the step-up randomized clinical trial. Obesity 22, 2284–2292 (2014).

    Article  PubMed  Google Scholar 

  125. Tate, D. F., Jeffery, R. W., Sherwood, N. E. & Wing, R. R. Long-term weight losses associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? Am. J. Clin. Nutr. 85, 954–959 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Swift, D. L. et al. The effects of exercise and physical activity on weight loss and maintenance. Prog. Cardiovasc. Dis. 61, 206–213 (2018).

    Article  PubMed  Google Scholar 

  127. Schoeller, D. A., Shay, K. & Kushner, R. F. How much physical activity is needed to minimize weight gain in previously obese women? Am. J. Clin. Nutr. 66, 551–556 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. van Baak, M. A. et al. Leisure-time activity is an important determinant of long-term weight maintenance after weight loss in the Sibutramine Trial on Obesity Reduction and Maintenance (STORM trial). Am. J. Clin. Nutr. 78, 209–214 (2003).

    Article  PubMed  Google Scholar 

  129. van Baak, M. A., Hul, G., Astrup, A. & Saris, W. H. Physical activity, weight loss, and weight maintenance in the diogenes multicenter trial. Front. Nutr. 8, 683369 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Catenacci, V. A. et al. Physical activity patterns in the National Weight Control Registry. Obesity 16, 153–161 (2008).

    Article  PubMed  Google Scholar 

  131. Ostendorf, D. M. et al. Physical activity energy expenditure and total daily energy expenditure in successful weight loss maintainers. Obesity 27, 496–504 (2019).

    Article  PubMed  Google Scholar 

  132. Thomas, J. G., Bond, D. S., Phelan, S., Hill, J. O. & Wing, R. R. Weight-loss maintenance for 10 years in the National Weight Control Registry. Am. J. Prev. Med. 46, 17–23 (2014).

    Article  PubMed  Google Scholar 

  133. Finer, N. Future directions in obesity pharmacotherapy. Eur. J. Intern. Med. 93, 13–20 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Muller, T. D., Bluher, M., Tschop, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug. Discov. 21, 201–223 (2022).

    Article  PubMed  Google Scholar 

  136. Wadden, T. A. et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int. J. Obes. 37, 1443–1451 (2013).

    Article  CAS  Google Scholar 

  137. Iepsen, E. W. et al. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int. J. Obes. 39, 834–841 (2015).

    Article  CAS  Google Scholar 

  138. Rubino, D. et al. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 325, 1414–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Baldwin, K. M. et al. Effects of weight loss and leptin on skeletal muscle in human subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1259–R1266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Conroy, R. et al. Leptin administration does not prevent the bone mineral metabolism changes induced by weight loss. Metabolism 60, 1222–1226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kissileff, H. R. et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 95, 309–317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reidelberger, R. et al. Effects of leptin replacement alone and with exendin-4 on food intake and weight regain in weight-reduced diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 302, E1576–E1585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Christoffersen, B. O. et al. Beyond appetite regulation: targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity 30, 841–857 (2022).

    Article  PubMed  Google Scholar 

  145. Hostrup, M. & Onslev, J. The beta2-adrenergic receptor – a re-emerging target to combat obesity and induce leanness? J. Physiol. 600, 1209–1227 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Zapata, R. C. et al. Adipocytes control food intake and weight regain via vacuolar-type H+ ATPase. Nat. Commun. 13, 5092 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gounarides, J. S. et al. Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. Endocrinology 149, 758–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Kuo, T., Harris, C. A. & Wang, J. C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol. Cell Endocrinol. 380, 79–88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Prabhu, S. et al. Nanocarriers targeting adipose macrophages increase glucocorticoid anti-inflammatory potency to ameliorate metabolic dysfunction. Biomater. Sci. 9, 506–518 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Xu, C. et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol. Endocrinol. 23, 1161–1170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Joffin, N. et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat. Metab. 4, 1474–1494 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Pirzgalska, R. M. et al. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–632 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Yan, J. et al. Gold nanobipyramid-mediated apoptotic camouflage of adipocytes for obesity immunotherapy. Adv. Mater. 35, e2207686 (2022).

    Article  PubMed  Google Scholar 

  156. Garcia, J. M. et al. Rise of plasma ghrelin with weight loss is not sustained during weight maintenance. Obesity 14, 1716–1723 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Adam, T. C., Lejeune, M. P. & Westerterp-Plantenga, M. S. Nutrient-stimulated glucagon-like peptide 1 release after body-weight loss and weight maintenance in human subjects. Br. J. Nutr. 95, 160–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Iepsen, E. W., Lundgren, J., Holst, J. J., Madsbad, S. & Torekov, S. S. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36. Eur. J. Endocrinol. 174, 775–784 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. DeBenedictis, J. N. et al. Changes in the homeostatic appetite system after weight loss reflect a normalization toward a lower body weight. J. Clin. Endocrinol. Metab. 105, e2538–e2546 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Anderson, J. W., Konz, E. C., Frederich, R. C. & Wood, C. L. Long-term weight-loss maintenance: a meta-analysis of US studies. Am. J. Clin. Nutr. 74, 579–584 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Hartmann-Boyce, J. et al. Weight regain after behavioural weight management programmes and its impact on quality of life and cost effectiveness: evidence synthesis and health economic analyses. Diabetes Obes. Metab. 25, 526–535 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cambi, M. P. C. et al. Multidisciplinary approach for weight regain – how to manage this challenging condition: an expert review. Obes. Surg. 31, 1290–1303 (2021).

    Article  PubMed  Google Scholar 

  163. Wilding, J. P. H. et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes. Metab. 24, 1553–1564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marleen A. van Baak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Jose Galgani; Amanda Sainsbury; Alyssa Hasty, who co-reviewed with Jamie Garcia; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Human Protein Atlas summary of cathepsin S expression: https://www.proteinatlas.org/ENSG00000163131-CTSS

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Baak, M.A., Mariman, E.C.M. Obesity-induced and weight-loss-induced physiological factors affecting weight regain. Nat Rev Endocrinol 19, 655–670 (2023). https://doi.org/10.1038/s41574-023-00887-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00887-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing