Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic and feeding adjustments during pregnancy

Abstract

Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.

Key points

  • Pregnancy entails a profound remodelling of endocrine signals (ovarian and metabolic hormones) that drive a range of physiological adjustments to support the development of the embryo.

  • Pregnancy modifies the neurocircuitry of crucial brain regions implicated in homeostatic and hedonic feeding, including modifications in taste perception, appetite and motivation to overconsume reward-inducible highly palatable food (food cravings).

  • These neurological changes result in variations in maternal eating behaviours in both mice and humans.

  • Changes in feeding patterns, when uncontrolled and persistent, can cause pathological conditions such as maternal obesity and gestational diabetes mellitus that can cause deterioration in the health status of both gestational parent and infant.

  • The functional and molecular understanding of these gestational adjustments will be instrumental to design specific nutritional guidelines and target interventions to improve the health of gestational parents and infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main physiological and metabolic adjustments during gestation.
Fig. 2: Hormonal level fluctuations during pregnancy in rodents and humans and their action on neural networks regulating feeding.
Fig. 3: Mechanisms underlying gestational feeding readjustments.

References

  1. Grattan, D. R. & Ladyman, S. R. Neurophysiological and cognitive changes in pregnancy. Handb. Clin. Neurol. 171, 25–55 (2020).

    Article  PubMed  Google Scholar 

  2. Inzani, I. & Ozanne, S. E. Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc. Nutr. Soc. 81, 227–242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schoonejans, J. M. & Ozanne, S. E. Developmental programming by maternal obesity: lessons from animal models. Diabet. Med. 38, e14694 (2021).

    Article  PubMed  Google Scholar 

  4. Bodden, C., Hannan, A. J. & Reichelt, A. C. Of ‘junk food’ and ‘brain food’: how parental diet influences offspring neurobiology and behaviour. Trends Endocrinol. Metab. 32, 566–578 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Hasebe, K., Kendig, M. D. & Morris, M. J. Mechanisms underlying the cognitive and behavioural effects of maternal obesity. Nutrients 13, 240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haddad-Tóvolli, R. et al. Food craving-like episodes during pregnancy are mediated by accumbal dopaminergic circuits. Nat. Metab. 4, 424–434 (2022). This study underscores that rearrangements in mesolimbic dopaminergic connectivity underlie gestational food craving episodes in mice and that recurrent craving episodes confer offspring susceptibility to neuropsychiatric and metabolic disorders.

    Article  PubMed  Google Scholar 

  8. Hussain, A., Üçpunar, H. K., Zhang, M., Loschek, L. F. & Grunwald Kadow, I. C. Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 14, e1002455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choo, E. & Dando, R. The impact of pregnancy on taste function. Chem. Senses 42, 279–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Blau, L. E., Orloff, N. C., Flammer, A., Slatch, C. & Hormes, J. M. Food craving frequency mediates the relationship between emotional eating and excess weight gain in pregnancy. Eat. Behav. 31, 120–124 (2018). This cross-sectional study evaluates the association between the frequency of highly palatable food cravings during pregnancy and excess gestational weight gain in humans.

    Article  PubMed  Google Scholar 

  11. Hoekzema, E. et al. Pregnancy leads to long-lasting changes in human brain structure. Nat. Neurosci. 20, 287–296 (2017). This study reveals that pregnancy underlies architectural changes in the maternal brain that can last for up to 2 years after birth.

    Article  CAS  PubMed  Google Scholar 

  12. Hoekzema, E. et al. Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture. Nat. Commun. 13, 6931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Napso, T., Yong, H. E. J., Lopez-Tello, J. & Sferruzzi-Perri, A. N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front. Physiol. 9, 1091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Moya, J. et al. A review of physiological and behavioral changes during pregnancy and lactation: potential exposure factors and data gaps. J. Expo. Sci. Environ. Epidemiol. 24, 449–458 (2014).

    Article  PubMed  Google Scholar 

  15. Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61 (2023).

    Article  PubMed  Google Scholar 

  16. Baeyens, L., Hindi, S., Sorenson, R. L. & German, M. S. β-Cell adaptation in pregnancy. Diabetes Obes. Metab. 18, 63–70 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wild, R. & Feingold, K. R. in Endotext (eds Feingold, K. R. et al.) (MDText.com, 2023).

  18. Augustine, R. A., Ladyman, S. R. & Grattan, D. R. From feeding one to feeding many: hormone-induced changes in bodyweight homeostasis during pregnancy: pregnancy-induced leptin resistance. J. Physiol. 586, 387–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Clarke, G. S. et al. Maternal adaptations to food intake across pregnancy: central and peripheral mechanisms. Obesity 29, 1813–1824 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Schubring, C. et al. Longitudinal analysis of maternal serum leptin levels during pregnancy, at birth and up to six weeks after birth: relation to body mass index, skinfolds, sex steroids and umbilical cord blood leptin levels. Horm. Res. 50, 276–283 (1998).

    CAS  PubMed  Google Scholar 

  21. Rocha, M., Bing, C., Williams, G. & Puerta, M. Pregnancy-induced hyperphagia is associated with increased gene expression of hypothalamic agouti-related peptide in rats. Regul. Pept. 114, 159–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Trujillo, M. L., Spuch, C., Carro, E. & Señarís, R. Hyperphagia and central mechanisms for leptin resistance during pregnancy. Endocrinology 152, 1355–1365 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Douglas, A. J., Johnstone, L. E. & Leng, G. Neuroendocrine mechanisms of change in food intake during pregnancy: a potential role for brain oxytocin. Physiol. Behav. 91, 352–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Orloff, N. C. & Hormes, J. M. Pickles and ice cream! Food cravings in pregnancy: hypotheses, preliminary evidence, and directions for future research. Front. Psychol. 5, 1076 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Orloff, N. C. et al. Food cravings in pregnancy: preliminary evidence for a role in excess gestational weight gain. Appetite 105, 259–265 (2016).

    Article  PubMed  Google Scholar 

  26. Prevost, M. et al. Oxytocin in pregnancy and the postpartum: relations to labor and its management. Front. Public Health 27, 1 (2014).

    Google Scholar 

  27. Ladyman, S. R., Augustine, R. A. & Grattan, D. R. Hormone interactions regulating energy balance during pregnancy. J. Neuroendocrinol. 22, 805–817 (2010).

    CAS  PubMed  Google Scholar 

  28. Muter, J., Kong, C.-S. & Brosens, J. J. The role of decidual subpopulations in implantation, menstruation and miscarriage. Front. Reprod. Health 3, 804921 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gao, Q. et al. Anorectic estrogen mimics leptin’s effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat. Med. 13, 89–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, Y. et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 14, 453–465 (2011). This study demonstrates how oestrogens act on steroidogenic factor 1 (SF-1) and POMC hypothalamic neuronal populations through the oestrogen receptor to regulate energy homeostasis and reproduction in female mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stincic, T. L., Rønnekleiv, O. K. & Kelly, M. J. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm. Behav. 104, 146–155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olofsson, L. E., Pierce, A. A. & Xu, A. W. Functional requirement of AgRP and NPY neurons in ovarian cycle-dependent regulation of food intake. Proc. Natl Acad. Sci. USA 106, 15932–15937 (2009). This study indicates that hypothalamic AgRP and NPY neuronal function is necessary for the cyclic changes in feeding across the oestrous cycle and that these neurons are crucial for mediating oestrogen anorexigenic properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grueso, E., Rocha, M. & Puerta, M. Plasma and cerebrospinal fluid leptin levels are maintained despite enhanced food intake in progesterone-treated rats. Eur. J. Endocrinol. 144, 659–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Stelmańska, E. & Sucajtys-Szulc, E. Enhanced food intake by progesterone-treated female rats is related to changes in neuropeptide genes expression in hypothalamus. Endokrynol. Pol. 65, 46–56 (2014).

    Article  PubMed  Google Scholar 

  35. Hirschberg, A. L. Sex hormones, appetite and eating behaviour in women. Maturitas 71, 248–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Yoest, K. E., Quigley, J. A. & Becker, J. B. Rapid effects of ovarian hormones in dorsal striatum and nucleus accumbens. Horm. Behav. 104, 119–129 (2018). This review integrates the literature around the effects of oestradiol and progesterone on the reward system and proposes a hypothesis for adaptive purposes in which ovarian hormones modulate dopaminergic system-related behaviours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dreher, J.-C. et al. Menstrual cycle phase modulates reward-related neural function in women. Proc. Natl Acad. Sci. USA 104, 2465–2470 (2007). This study shows that gonadal steroid hormones modulate reward system functionality in women.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Östlund, H., Keller, E. & Hurd, Y. L. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. NY Acad. Sci. 1007, 54–63 (2003).

    Article  PubMed  Google Scholar 

  39. Hildebrandt, T., Alfano, L., Tricamo, M. & Pfaff, D. W. Conceptualizing the role of estrogens and serotonin in the development and maintenance of bulimia nervosa. Clin. Psychol. Rev. 30, 655–668 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma, R. et al. Ovarian hormones and reward processes in palatable food intake and binge eating. Physiology 35, 69–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Gustafson, P., Ladyman, S. R. & Brown, R. S. E. Suppression of leptin transport into the brain contributes to leptin resistance during pregnancy in the mouse. Endocrinology 160, 880–890 (2019). This study demonstrates that, in the rat, suppression of leptin transport into the brain without increased leptin clearance from the circulation contributes to the leptin insensitivity that ocurs during pregnancy.

    Article  CAS  PubMed  Google Scholar 

  42. Mistry, A. M. & Romsos, D. R. Intracerebroventricular leptin administration reduces food intake in pregnant and lactating mice. Exp. Biol. Med. 227, 616–619 (2002).

    Article  CAS  Google Scholar 

  43. Amico, J. A., Thomas, A., Crowley, R. S. & Burmeister, L. A. Concentrations of leptin in the serum of pregnant, lactating, and cycling rats and of leptin messenger ribonucleic acid in rat placental tissue. Life Sci. 63, 1387–1395 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Hardie, L., Trayhurn, P., Abramovich, D. & Fowler, P. Circulating leptin in women: a longitudinal study in the menstrual cycle and during pregnancy. Clin. Endocrinol. 47, 101–106 (1997).

    Article  CAS  Google Scholar 

  45. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Baver, S. B. et al. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 34, 5486–5496 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xu, J. et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556, 505–509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kühnen, P., Krude, H. & Biebermann, H. Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol. Med. 25, 136–148 (2019).

    Article  PubMed  Google Scholar 

  50. Chun, S. K. & Jo, Y.-H. Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J. Neurophysiol. 104, 2321–2328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5, 1066–1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Leinninger, G. M. et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab. 10, 89–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fulton, S. et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51, 811–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Krügel, U., Schraft, T., Kittner, H., Kiess, W. & Illes, P. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur. J. Pharmacol. 482, 185–187 (2003).

    Article  PubMed  Google Scholar 

  58. Henson, M. C. & Castracane, V. D. Leptin in pregnancy: an update. Biol. Reprod. 74, 218–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Masuzaki, H. et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med. 3, 1029–1033 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kawai, M. et al. The placenta is not the main source of leptin production in pregnant rat: gestational profile of leptin in plasma and adipose tissues. Biochem. Biophys. Res. Commun. 240, 798–802 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Gavrilova, O., Barr, V., Marcus-Samuels, B. & Reitman, M. Hyperleptinemia of pregnancy associated with the appearance of a circulating form of the leptin receptor. J. Biol. Chem. 272, 30546–30551 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Ladyman, S. R. & Grattan, D. R. Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy. Endocrinology 145, 3704–3711 (2004). This study shows that central leptin resistance during pregnancy is associated with decreased STAT3 phosphorylation in the rat ARH and VMH.

    Article  CAS  PubMed  Google Scholar 

  63. Khant Aung, Z., Grattan, D. R. & Ladyman, S. R. Pregnancy-induced adaptation of central sensitivity to leptin and insulin. Mol. Cell. Endocrinol. 516, 110933 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Ladyman, S. R. & Grattan, D. R. Suppression of leptin receptor messenger ribonucleic acid and leptin responsiveness in the ventromedial nucleus of the hypothalamus during pregnancy in the rat. Endocrinology 146, 3868–3874 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Ladyman, S. R. & Grattan, D. R. Central effects of leptin on glucose homeostasis are modified during pregnancy in the rat. J. Neuroendocrinol. 28, 10 (2016).

    Article  Google Scholar 

  66. Grattan, D. R., Ladyman, S. R. & Augustine, R. A. Hormonal induction of leptin resistance during pregnancy. Physiol. Behav. 91, 366–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Illsley, N. P. & Baumann, M. U. Human placental glucose transport in fetoplacental growth and metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165359 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Mitchell, C. S. & Begg, D. P. The regulation of food intake by insulin in the central nervous system. J. Neuroendocrinol. 33, e12952 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Mebel, D. M., Wong, J. C. Y., Dong, Y. J. & Borgland, S. L. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake: insulin attenuates somatodendritic dopamine. Eur. J. Neurosci. 36, 2336–2346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stouffer, M. A. et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat. Commun. 6, 8543 (2015). This study identifies a role for insulin in reward signalling and food choice through the modulation of cholinergic neuronal excitability by the activation of nicotinic acetylcholine receptors and consequential regulation of ventral striatal dopamine release.

    Article  CAS  PubMed  Google Scholar 

  71. Ladyman, S. R. & Brooks, V. L. Central actions of insulin during pregnancy and lactation. J. Neuroendocrinol. 33, e12946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, Z. et al. Resistance to the sympathoexcitatory effects of insulin and leptin in late pregnant rats. J. Physiol. 597, 4087–4100 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Ladyman, S. R. & Grattan, D. R. Region-specific suppression of hypothalamic responses to insulin to adapt to elevated maternal insulin secretion during pregnancy. Endocrinology 158, 4257–4269 (2017). This study shows that insensitivity to insulin develops during the second week of pregnancy in rats by decreased pAKT responsiveness in the ARH and VMH.

    Article  CAS  PubMed  Google Scholar 

  74. McIntyre, H. D. et al. Hormonal and metabolic factors associated with variations in insulin sensitivity in human pregnancy. Diabetes Care 33, 356–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Kirwan, J. P. et al. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 51, 2207–2213 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Catalano, P. M. et al. Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. Diabetologia 49, 1677–1685 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Russell, J. A., Leng, G. & Douglas, A. J. The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front. Neuroendocrinol. 24, 27–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Nishimori, K. et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl Acad. Sci. USA 93, 11699–11704 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carcea, I. et al. Oxytocin neurons enable social transmission of maternal behaviour. Nature 596, 553–557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Marlin, B. J., Mitre, M., D’amour, J. A., Chao, M. V. & Froemke, R. C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bealer, S. L., Armstrong, W. E. & Crowley, W. R. Oxytocin release in magnocellular nuclei: neurochemical mediators and functional significance during gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, 452–458 (2010).

    Article  Google Scholar 

  82. Srisawat, R. et al. Nitric oxide and the oxytocin system in pregnancy. J. Neurosci. 20, 6721–6727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koksma, J.-J., Fritschy, J.-M., Mack, V., Van Kesteren, R. E. & Brussaard, A. B. Differential GABAA receptor clustering determines GABA synapse plasticity in rat oxytocin neurons around parturition and the onset of lactation. Mol. Cell. Neurosci. 28, 128–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Brussaard, A. B., Wossink, J., Lodder, J. C. & Kits, K. S. Progesterone-metabolite prevents protein kinase C-dependent modulation of γ-aminobutyric acid type A receptors in oxytocin neurons. Proc. Natl Acad. Sci. USA 97, 3625–3630 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Phillipps, H. R., Yip, S. H. & Grattan, D. R. Patterns of prolactin secretion. Mol. Cell. Endocrinol. 502, 110679 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Smith, M. S., Freeman, M. E. & Neill, J. D. The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96, 219–226 (1975).

    Article  CAS  PubMed  Google Scholar 

  87. Grattan, D. R. et al. Prolactin receptors in the brain during pregnancy and lactation: implications for behavior. Horm. Behav. 40, 115–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Sauvé, D. & Woodside, B. The effect of central administration of prolactin on food intake in virgin female rats is dose-dependent, occurs in the absence of ovarian hormones and the latency to onset varies with feeding regimen. Brain Res. 729, 75–81 (1996).

    Article  PubMed  Google Scholar 

  89. Naef, L. & Woodside, B. Prolactin/leptin interactions in the control of food intake in rats. Endocrinology 148, 5977–5983 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Nagaishi, V. S. et al. Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience 259, 71–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Jais, A. & Brüning, J. C. Arcuate nucleus-dependent regulation of metabolism—pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

    Article  PubMed  Google Scholar 

  94. Sternson, S. M. & Eiselt, A.-K. Three pillars for the neural control of appetite. Annu. Rev. Physiol. 79, 401–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Alcantara, I. C., Tapia, A. P. M., Aponte, Y. & Krashes, M. J. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat. Metab. 4, 836–847 (2022).

    Article  PubMed  Google Scholar 

  96. Fulton, S. Appetite and reward. Front. Neuroendocrinol. 31, 85–103 (2010).

    Article  PubMed  Google Scholar 

  97. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Domingos, A. I. et al. Leptin regulates the reward value of nutrient. Nat. Neurosci. 14, 1562–1568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lockie, S. H. & Andrews, Z. B. The hormonal signature of energy deficit: increasing the value of food reward. Mol. Metab. 2, 329–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stuber, G. D. & Wise, R. A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19, 198–205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sheng, Z., Santiago, A. M., Thomas, M. P. & Routh, V. H. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol. Cell. Neurosci. 62, 30–41 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L. & Stuber, G. D. The Inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521 (2013). This study demonstrates that inhibitory inputs from the bed nucleus of the stria terminalis specifically innervate and suppress lateral hypothalamic glutamatergic neurons to promote feeding in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jennings, J. H. et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160, 516–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nieh, E. H. et al. Decoding neural circuits that control compulsive sucrose seeking. Cell 160, 528–541 (2015). This study reveals a neural circuit loop between the lateral hypothalamus and the VTA that selectively controls compulsive sugar consumption in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makarova, E. N., Kochubei, E. D. & Bazhan, N. M. Regulation of food consumption during pregnancy and lactation in mice. Neurosci. Behav. Physiol. 40, 263–267 (2010). This study shows that hyperphagia during pregnancy is correlated with sequential increase in NPY and AgRP expression in the mouse hypothalamus.

    Article  CAS  PubMed  Google Scholar 

  106. Yu, H. et al. Expression of a hypomorphic Pomc allele alters leptin dynamics during late pregnancy. J. Endocrinol. 245, 115–127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ladyman, S. R., Carter, K. M. & Grattan, D. R. Energy homeostasis and running wheel activity during pregnancy in the mouse. Physiol. Behav. 194, 83–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Li, H. et al. Pregnancy-related plasticity of gastric vagal afferent signals in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 320, 183–192 (2021).

    Article  Google Scholar 

  109. Most, J., Dervis, S., Haman, F., Adamo, K. B. & Redman, L. M. Energy intake requirements in pregnancy. Nutrients 11, 1812 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kominiarek, M. A. & Rajan, P. Nutrition recommendations in pregnancy and lactation. Med. Clin. North Am. 100, 1199–1215 (2016). This review highlights the main nutritional recommendations for a healthy pregnancy and lactation for women.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kebbe, M., Flanagan, E. W., Sparks, J. R. & Redman, L. M. Eating behaviors and dietary patterns of women during pregnancy: optimizing the universal ‘Teachable moment’. Nutrients 13, 3298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yarmolinsky, D. A., Zuker, C. S. & Ryba, N. J. P. Common sense about taste: from mammals to insects. Cell 139, 234–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hook, E. B. Dietary cravings and aversions during pregnancy. Am. J. Clin. Nutr. 31, 1355–1362 (1978).

    Article  CAS  PubMed  Google Scholar 

  114. Kuga, M., Ikeda, M., Suzuki, K. & Takeuchi, S. Changes in gustatory sense during pregnancy. Acta Otolaryngol. 122, 146–153 (2002). This study shows that more than 90% of women reported changes in taste across pregnancy and suggests a decrease in gustatory function underlying these variations.

    Article  Google Scholar 

  115. Duffy, V. B., Bartoshuk, L. M., Striegel-Moore, R. & Rodin, J. Taste changes across pregnancy. Ann. NY Acad. Sci. 855, 805–809 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Ochsenbein-Kolble, N., von Mering, R., Zimmermann, R. & Hummel, T. Changes in gustatory function during the course of pregnancy and postpartum. BJOG Int. J. Obstet. Gynaecol. 112, 1636–1640 (2005).

    Article  Google Scholar 

  117. Fasunla, A. J., Nwankwo, U., Onakoya, P. A., Oladokun, A. & Nwaorgu, O. G. Gustatory function of pregnant and nonpregnant women in a tertiary health institution. Ear Nose Throat J. 98, 143–148 (2019).

    Article  PubMed  Google Scholar 

  118. Bhatia, S. & Puri, R. Taste sensitivity in pregnancy. Indian J. Physiol. Pharmacol. 35, 121–124 (1991).

    CAS  PubMed  Google Scholar 

  119. Faas, M. M., Melgert, B. N. & de Vos, P. A brief review on how pregnancy and sex hormones interfere with taste and food intake. Chemosens. Percept. 3, 51–56 (2010).

    Article  PubMed  Google Scholar 

  120. Simerly, R. B., Swanson, L. W., Chang, C. & Muramatsu, M. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J. Comp. Neurol. 294, 76–95 (1990).

    Article  CAS  PubMed  Google Scholar 

  121. Sinclair, M. S. et al. Oxytocin signaling in mouse taste buds. PLoS ONE 5, e11980 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sinclair, M. S., Perea-Martinez, I., Abouyared, M., St. John, S. J. & Chaudhari, N. Oxytocin decreases sweet taste sensitivity in mice. Physiol. Behav. 141, 103–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Sclafani, A., Rinaman, L., Vollmer, R. R. & Amico, J. A. Oxytocin knockout mice demonstrate enhanced intake of sweet and nonsweet carbohydrate solutions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 1828–1833 (2007).

    Article  Google Scholar 

  124. Kawai, K., Sugimoto, K., Nakashima, K., Miura, H. & Ninomiya, Y. Leptin as a modulator of sweet taste sensitivities in mice. Proc. Natl Acad. Sci. USA 97, 11044–11049 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dando, R. Endogenous peripheral neuromodulators of the mammalian taste bud. J. Neurophysiol. 104, 1835–1837 (2010).

    Article  PubMed  Google Scholar 

  126. Choo, E. et al. Decrease in sweet taste response and T1R3 sweet taste receptor expression in pregnant mice highlights a potential mechanism for increased caloric consumption in pregnancy. Physiol. Behav. 228, 113191 (2021). This study describes a potential mechanism underlying changes in taste perception and increased preference for sweet compounds during pregnancy owing to the decrease in T1R3 sweet taste receptor expression in the tongue of pregnant mice.

    Article  CAS  PubMed  Google Scholar 

  127. Kaufman, A., Choo, E., Koh, A. & Dando, R. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal. PLoS Biol. 16, e2001959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ribeiro, C. & Dickson, B. J. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Carvalho, G. B., Kapahi, P., Anderson, D. J. & Benzer, S. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr. Biol. 16, 692–696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hussain, A. et al. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 14, e1002454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bayley, T. M., Dye, L., Jones, S., DeBono, M. & Hill, A. J. Food cravings and aversions during pregnancy: relationships with nausea and vomiting. Appetite 38, 45–51 (2002).

    Article  PubMed  Google Scholar 

  132. Hook, E. B. Influence of pregnancy on dietary selection. Int. J. Obes. 4, 338–340 (1980).

    CAS  PubMed  Google Scholar 

  133. Etscorn, F. & Stephens, R. Establishment of conditioned taste aversions with a 24-hour CS-US interval. Physiol. Psychol. 1, 251–253 (1973).

    Article  Google Scholar 

  134. Garcia, J., Ervin, F. R. & Koelling, R. A. Learning with prolonged delay of reinforcement. Psychon. Sci. 5, 121–122 (2013).

    Article  Google Scholar 

  135. Nordin, S., Broman, D. A., Olofsson, J. K. & Wulff, M. A longitudinal descriptive study of self-reported abnormal smell and taste perception in pregnant women. Chem. Senses 29, 391–402 (2004). This study shows that more than two-thirds of pregnant women reported changes in olfactory perception during the early stages of pregnancy.

    Article  PubMed  Google Scholar 

  136. Cameron, E. L. Measures of human olfactory perception during pregnancy. Chem. Senses 32, 775–782 (2007).

    Article  PubMed  Google Scholar 

  137. Cameron, E. L. Pregnancy and olfaction: a review. Front. Psychol. 5, 67 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kavanagh, D. J., Andrade, J. & May, J. Imaginary relish and exquisite torture: the elaborated intrusion theory of desire. Psychol. Rev. 112, 446–467 (2005).

    Article  PubMed  Google Scholar 

  139. May, J., Andrade, J., Kavanagh, D. J. & Hetherington, M. Elaborated intrusion theory: a cognitive-emotional theory of food craving. Curr. Obes. Rep. 1, 114–121 (2012).

    Article  Google Scholar 

  140. Rozin, P., Levine, E. & Stoess, C. Chocolate craving and liking. Appetite 17, 199–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Zellner, D. A., Garriga-Trillo, A., Centeno, S. & Wadsworth, E. Chocolate craving and the menstrual cycle. Appetite 42, 119–121 (2004).

    Article  PubMed  Google Scholar 

  142. Gendall, K. A., Joyce, P. R. & Sullivan, P. F. Impact of definition on prevalence of food cravings in a random sample of young women. Appetite 28, 63–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Hill, A. J., Cairnduff, V. & McCance, D. R. Nutritional and clinical associations of food cravings in pregnancy. J. Hum. Nutr. Diet. 29, 281–289 (2016). This prospective study assessing food cravings during pregnancy reported sweets and dairy products as the most frequently craved items.

    Article  CAS  PubMed  Google Scholar 

  144. Chao, A. M., Grilo, C. M. & Sinha, R. Food cravings, binge eating, and eating disorder psychopathology: exploring the moderating roles of gender and race. Eat. Behav. 21, 41–47 (2016).

    Article  PubMed  Google Scholar 

  145. Verzijl, C. L., Ahlich, E., Schlauch, R. C. & Rancourt, D. The role of craving in emotional and uncontrolled eating. Appetite 123, 146–151 (2018).

    Article  PubMed  Google Scholar 

  146. Hollitt, S., Kemps, E., Tiggemann, M., Smeets, E. & Mills, J. S. Components of attentional bias for food cues among restrained eaters. Appetite 54, 309–313 (2010).

    Article  PubMed  Google Scholar 

  147. Durkin, K., Rae, K. & Stritzke, W. G. K. The effect of images of thin and overweight body shapes on women’s ambivalence towards chocolate. Appetite 58, 222–226 (2012).

    Article  PubMed  Google Scholar 

  148. Teixeira, G. P. et al. The association between chronotype, food craving and weight gain in pregnant women. J. Hum. Nutr. Diet. 33, 342–350 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Hill, A. J. The psychology of food craving: symposium on ‘Molecular mechanisms and psychology of food intake’. Proc. Nutr. Soc. 66, 277–285 (2007).

    Article  PubMed  Google Scholar 

  150. Fikrie, A., Yalew, A., Anato, A. & Teklesilasie, W. Magnitude and effects of food cravings on nutritional status of pregnant women in Southern Ethiopia: a community-based cross sectional study. PLoS ONE 17, e0276079 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McKerracher, L., Collard, M. & Henrich, J. Food aversions and cravings during pregnancy on Yasawa Island, Fiji. Hum. Nat. 27, 296–315 (2016).

    Article  PubMed  Google Scholar 

  152. Pineros-Leano, M. et al. Context matters: a qualitative study about the perinatal experiences of Latina immigrant women. J. Immigr. Minor. Health 25, 8–15 (2023).

    Article  PubMed  Google Scholar 

  153. Volkow, N. D., Wise, R. A. & Baler, R. The dopamine motive system: implications for drug and food addiction. Nat. Rev. Neurosci. 18, 741–752 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Kopp-Hoolihan, L. E., van Loan, M. D., Wong, W. W. & King, J. C. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am. J. Clin. Nutr. 69, 697–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Musial, B. et al. A Western-style obesogenic diet alters maternal metabolic physiology with consequences for fetal nutrient acquisition in mice: obesogenic diet impairs gestational metabolic physiology. J. Physiol. 595, 4875–4892 (2017). This study provides evidence that high-fat high-sugar diet consumption during pregnancy in mice perturbs maternal insulin sensitivity and glucose production, as well as endocrine and metabolic functions, with direct consequences on offspring metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Torloni, M. R. et al. Maternal BMI and preterm birth: a systematic review of the literature with meta-analysis. J. Matern. Fetal Neonatal Med. 22, 957–970 (2009).

    Article  PubMed  Google Scholar 

  157. Creanga, A. A., Catalano, P. M. & Bateman, B. T. Obesity in pregnancy. N. Engl. J. Med. 387, 248–259 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Chu, S. Y. et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30, 2070–2076 (2007).

    Article  PubMed  Google Scholar 

  159. Catalano, P. M. et al. The hyperglycemia and adverse pregnancy outcome study. Diabetes Care 35, 780–786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Moholdt, T. & Hawley, J. A. Maternal lifestyle interventions: targeting preconception health. Trends Endocrinol. Metab. 31, 561–569 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Crowther, C. A. et al. Lower versus higher glycemic criteria for diagnosis of gestational diabetes. N. Engl. J. Med. 387, 587–598 (2022).

    Article  PubMed  Google Scholar 

  162. Stoeckel, L. E. et al. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41, 636–647 (2008).

    Article  PubMed  Google Scholar 

  163. Stice, E., Yokum, S., Bohon, C., Marti, N. & Smolen, A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50, 1618–1625 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Stice, E., Spoor, S., Bohon, C., Veldhuizen, M. G. & Small, D. M. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J. Abnorm. Psychol. 117, 924–935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ng, J., Stice, E., Yokum, S. & Bohon, C. An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing? Appetite 57, 65–72 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D. & Baler, R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr. Top. Behav. Neurosci. 11, 1–24 (2012).

    CAS  PubMed  Google Scholar 

  167. Schlundt, D. G., Virts, K. L., Sbrocco, T., Pope-Cordle, J. & Hill, J. O. A sequential behavioral analysis of craving sweets in obese women. Addict. Behav. 18, 67–80 (1993).

    Article  CAS  PubMed  Google Scholar 

  168. Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. & Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62, 1789–1801 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kirk, S. L. et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS ONE 4, e5870 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dudele, A. et al. Chronic maternal inflammation or high-fat-feeding programs offspring obesity in a sex-dependent manner. Int. J. Obes. 41, 1420–1426 (2017).

    Article  CAS  Google Scholar 

  171. Chen, H., Simar, D., Lambert, K., Mercier, J. & Morris, M. J. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149, 5348–5356 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Fusco, S. et al. Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms. Nat. Commun. 10, 4799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bilbo, S. D. & Tsang, V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. 24, 2104–2115 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Tozuka, Y. et al. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem. Int. 57, 235–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  175. Schroeder, M. et al. A methyl-balanced diet prevents CRF-induced prenatal stress-triggered predisposition to binge eating-like phenotype. Cell Metab. 25, 1269–1281.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Donato, J. Programming of metabolism by adipokines during development. Nat. Rev. Endocrinol. 19, 385–397 (2023).

    Article  PubMed  Google Scholar 

  177. Ancira‐Moreno, M. et al. Dietary patterns and diet quality during pregnancy and low birthweight: the PRINCESA cohort. Matern. Child. Nutr. 16, e12972 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rodríguez-Bernal, C. L. et al. Diet quality in early pregnancy and its effects on fetal growth outcomes: the Infancia y Medio Ambiente (Childhood and Environment) mother and child cohort study in Spain. Am. J. Clin. Nutr. 91, 1659–1666 (2010).

    Article  PubMed  Google Scholar 

  179. Gresham, E., Collins, C. E., Mishra, G. D., Byles, J. E. & Hure, A. J. Diet quality before or during pregnancy and the relationship with pregnancy and birth outcomes: the Australian longitudinal study on women’s health. Public Health Nutr. 19, 2975–2983 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Crovetto, F. et al. Effects of Mediterranean diet or mindfulness-based stress reduction on prevention of small-for-gestational age birth weights in newborns born to at-risk pregnant individuals: the IMPACT BCN randomized clinical trial. J. Am. Med. Assoc. 326, 2150–2160 (2021).

    Article  CAS  Google Scholar 

  181. Al Wattar, B. H. et al. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): a pragmatic multicentre randomised trial. PLoS Med. 16, e1002857 (2019).

    Article  Google Scholar 

  182. Assaf-Balut, C. et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): a randomized controlled trial: the St. Carlos GDM prevention study. PLoS ONE 12, e0185873 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Barker, D. J. & Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1, 1077–1081 (1986).

    Article  CAS  PubMed  Google Scholar 

  184. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Kaati, G., Bygren, L. & Edvinsson, S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur. J. Hum. Genet. 10, 682–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Roseboom, T. J., Painter, R. C., van Abeelen, A. F. M., Veenendaal, M. V. E. & de Rooij, S. R. Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70, 141–145 (2011).

    Article  PubMed  Google Scholar 

  187. Anand, B. K., Dua, S. & Shoenberg, K. Hypothalamic control of food intake in cats and monkeys. J. Physiol. 127, 143–152 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gold, R. M., Quackenbush, P. M. & Kapatos, G. Obesity following combination of rostrolateral to VMH cut and contralateral mammillary area lesion. J. Comp. Physiol. Psychol. 79, 210–218 (1972).

    Article  CAS  PubMed  Google Scholar 

  189. Holzwarth-Mcbride, M. A., Hurst, E. M. & Knigge, K. M. Monosodium glutamate induced lesions of the arcuate nucleus. I. Endocrine deficiency and ultrastructure of the median eminence. Anat. Rec. 186, 185–196 (1976).

    Article  CAS  PubMed  Google Scholar 

  190. Holzwarth-Mcbride, M. A., Sladek Jr, J. R. & Knigge, K. M. Monosodium glutamate induced lesions of the arcuate nucleus. II. Fluorescence histochemistry of catecholamines. Anat. Rec. 186, 197–205 (1976).

    Article  CAS  PubMed  Google Scholar 

  191. Teitelbaum, P. & Epstein, A. N. The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol. Rev. 69, 74–90 (1962).

    Article  CAS  PubMed  Google Scholar 

  192. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  193. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Betley, J. N., Cao, Z. F. H., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9, 40 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Cheng, W. et al. Hindbrain circuits in the control of eating behaviour and energy balance. Nat. Metab. 4, 826–835 (2022).

    Article  PubMed  Google Scholar 

  202. Zheng, H. & Berthoud, H.-R. Eating for pleasure or calories. Curr. Opin. Pharmacol. 7, 607–612 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Ferrario, C. R. et al. Homeostasis meets motivation in the battle to control food intake. J. Neurosci. 36, 11469–11481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Salamone, J. D., Correa, M., Mingote, S. & Weber, S. M. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther. 305, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  205. Wise, R. A. Role of brain dopamine in food reward and reinforcement. Phil. Trans. R. Soc. B 361, 1149–1158 (2006).

    Article  CAS  Google Scholar 

  206. Fields, H. L., Hjelmstad, G. O., Margolis, E. B. & Nicola, S. M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Palmiter, R. D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 30, 375–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Solinas, M. & Goldberg, S. R. Motivational effects of cannabinoids and opioids on food reinforcement depend on simultaneous activation of cannabinoid and opioid systems. Neuropsychopharmacology 30, 2035–2045 (2005).

    Article  CAS  PubMed  Google Scholar 

  209. Johnson, P. M. & Kenny, P. J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 13, 635–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Mazzone, C. M. et al. High-fat food biases hypothalamic and mesolimbic expression of consummatory drives. Nat. Neurosci. 23, 1253–1266 (2020). This study reveals that highly palatable food consumption devalues the rewarding properties of chow diet, thus increasing the preference for palatable foods in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Berridge, K. C. & Kringelbach, M. L. Pleasure systems in the brain. Neuron 86, 646–664 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Berridge, K. C., Ho, C.-Y., Richard, J. M. & DiFeliceantonio, A. G. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ramírez (Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)) for conceptual discussions. R.H.-T. and M.C. acknowledge support from the CERCA Programme/Generalitat de Catalunya (to M.C.); Marie Skłodowska-Curie Action fellowship (H2020-MSCA-IF) NEUROPREG (grant agreement no. 891247; to R.H.-T.). This work was carried out in part at the Esther Koplowitz Centre.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, substantial discussion of content and writing the article. Both authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Roberta Haddad-Tóvolli or Marc Claret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Margaret Morris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad-Tóvolli, R., Claret, M. Metabolic and feeding adjustments during pregnancy. Nat Rev Endocrinol 19, 564–580 (2023). https://doi.org/10.1038/s41574-023-00871-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00871-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing