Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Long-term and sequential treatment for osteoporosis

Abstract

Osteoporosis is a skeletal disorder that causes impairment of bone structure and strength, leading to a progressively increased risk of fragility fractures. The global prevalence of osteoporosis is increasing in the ageing population. Owing to the chronic character of osteoporosis, years or even decades of preventive measures or therapy are required. The long-term use of bone-specific pharmacological treatment options, including antiresorptive and/or osteoanabolic approaches, has raised concerns around adverse effects or potential rebound phenomena after treatment discontinuation. Imaging options, risk scores and the assessment of bone turnover during initiation and monitoring of such therapies could help to inform individualized treatment strategies. Combination therapies are currently used less often than ‘sequential’ treatments. However, all patients with osteoporosis, including those with secondary and rare causes of osteoporosis, as well as specific patient populations (for example, young adults, men and pregnant women) require new approaches for long-term therapy and disease monitoring. New pathophysiological aspects of bone metabolism might therefore help to inform and revolutionize the diagnosis and treatment of osteoporosis.

Key points

  • Osteoporosis and related fragility fractures are becoming increasingly common among women and men, with fewer clinical treatment studies available that include men.

  • The burden of fragility fractures is characterized not only by individual harm but also by high costs for health-care systems worldwide.

  • Osteoporosis requires long-term prevention or therapy based on specific bone medication and/or general measures; specific therapy principles encompass antiresorptive or osteoanabolic approaches or a dual approach.

  • Risks and benefits of antiresorptive and osteoanabolic therapies have been investigated and include rare but sometimes disabling adverse effects such as atypical femoral fractures and medication-related osteonecrosis of the jaw.

  • Sequential therapy options are increasingly being addressed in clinical trials more often than combination therapies, with the first results showing benefits for the maintenance of stable BMD increases and fracture risk reduction.

  • Future therapy directions include the application of an ‘osteoanabolics first’ approach and dosage variation in antiresorptive agents, as well as new therapy options including follicle-stimulating hormone, mesenchymal stem cells and extracellular vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of osteoporosis therapy transition in postmenopausal women in various fracture risk categories.
Fig. 2: BTMs during physiological equilibrium of bone metabolism, antiresorptive therapy and osteoanabolic therapy.

Similar content being viewed by others

References

  1. Zengin, A., Prentice, A. & Ward, K. A. Ethnic differences in bone health. Front. Endocrinol. 6, 24 (2015).

    Google Scholar 

  2. Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and Mendelian randomisation study. Br. Med. J. 362, k3225 (2018).

    Google Scholar 

  3. Schweighofer, N. et al. DXA-derived indices in the characterisation of sarcopenia. Nutrients 14, 186 (2022).

    Google Scholar 

  4. Herath, M., Cohen, A., Ebeling, P. R. & Milat, F. Dilemmas in the management of osteoporosis in younger adults. JBMR Plus 6, e10594 (2022).

    PubMed  PubMed Central  Google Scholar 

  5. Collins, M. T. et al. Skeletal and extraskeletal disorders of biomineralization. Nat. Rev. Endocrinol. 18, 473–489 (2022).

    PubMed  Google Scholar 

  6. Kanis, J. A. et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 23, 2239–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pepe, J. et al. Osteoporosis in premenopausal women: a clinical narrative review by the ECTS and the IOF. J. Clin. Endocrinol. Metab. 105, 2487–2506 (2020).

    Google Scholar 

  8. Vilaca, T., Eastell, R. & Schini, M. Osteoporosis in men. Lancet Diabetes Endocrinol. 10, 273–283 (2022).

    PubMed  Google Scholar 

  9. Kahwati, L. C. et al. Vitamin D, calcium, OR combined supplementation for the primary prevention of fractures in community-dwelling adults: evidence report and systematic review for the US Preventive Services Task Force. JAMA 319, 1600–1612 (2018).

    PubMed  Google Scholar 

  10. Weaver, C. M. et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos. Int. 27, 367–376 (2016).

    CAS  PubMed  Google Scholar 

  11. Chevalley, T. et al. Role of vitamin D supplementation in the management of musculoskeletal diseases: update from an European Society of Clinical and Economical Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) working group. Aging Clin. Exp. Res. 34, 2603–2623 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Reid, I. R. & Bolland, M. J. Calcium and/or vitamin D supplementation for the prevention of fragility fractures: who needs it? Nutrients 12, 1011 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ensrud, K. E. & Crandall, C. J. Osteoporosis. Ann. Intern. Med. 167, ITC17–ITC31 (2017).

    PubMed  Google Scholar 

  14. Cornelissen, D. et al. Improvement of osteoporosis Care Organized by Nurses: ICON study - protocol of a quasi-experimental study to assess the (cost)-effectiveness of combining a decision aid with motivational interviewing for improving medication persistence in patients with a recent fracture being treated at the fracture liaison service. BMC Musculoskelet. Disord. 22, 913 (2021).

    PubMed  PubMed Central  Google Scholar 

  15. Bouxsein, M. L. et al. Change in bone density and reduction in fracture risk: a meta-regression of published trials. J. Bone Miner. Res. 34, 632–642 (2019).

    PubMed  Google Scholar 

  16. Russell, R. G. G. Bisphosphonates: the first 40 years. Bone 49, 2–19 (2011).

    CAS  PubMed  Google Scholar 

  17. Grey, A. et al. Low-dose fluoride in postmenopausal women: a randomized controlled trial. J. Clin. Endocrinol. Metab. 98, 2301–2307 (2013).

    CAS  PubMed  Google Scholar 

  18. Statham, L. A. & Aspray, T. J. Odanacatib: the best osteoporosis treatment we never had? Lancet Diabetes Endocrinol. 7, 888–889 (2019).

    PubMed  Google Scholar 

  19. Bolland, M. J. & Grey, A. Ten years too long: strontium ranelate, cardiac events, and the European Medicines Agency. Br. Med. J. 354, i5109 (2016).

    Google Scholar 

  20. Downs, R. W. Jr. et al. Comparison of alendronate and intranasal calcitonin for treatment of osteoporosis in postmenopausal women. J. Clin. Endocrinol. Metab. 85, 1783–1788 (2000).

    CAS  PubMed  Google Scholar 

  21. Sun, L. M., Lin, M. C., Muo, C. H., Liang, J. A. & Kao, C. H. Calcitonin nasal spray and increased cancer risk: a population-based nested case-control study. J. Clin. Endocrinol. Metab. 99, 4259–4264 (2014).

    CAS  PubMed  Google Scholar 

  22. Overman, R. A., Borse, M. & Gourlay, M. L. Salmon calcitonin use and associated cancer risk. Ann. Pharmacother. 47, 1675–1684 (2013).

    CAS  PubMed  Google Scholar 

  23. Ebetino, F. H. et al. Bisphosphonates: the role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 156, 116289 (2022).

    CAS  PubMed  Google Scholar 

  24. Moen, M. D. & Keam, S. J. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging 28, 63–82 (2011).

    CAS  PubMed  Google Scholar 

  25. Hanley, D. A., Adachi, J. D., Bell, A. & Brown, V. Denosumab: mechanism of action and clinical outcomes. Int. J. Clin. Pract. 66, 1139–1146 (2012).

    CAS  PubMed  Google Scholar 

  26. Weitzmann, M. N. & Pacifici, R. Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest. 116, 1186–1194 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stepan, J. J., Alenfeld, F., Boivin, G., Feyen, J. H. M. & Lakatos, P. Mechanisms of action of antiresorptive therapies of postmenopausal osteoporosis. Endocr. Regul. 37, 225–238 (2003).

    CAS  PubMed  Google Scholar 

  28. Gartlehner, G. et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women. JAMA 328, 1747–1767 (2018).

    Google Scholar 

  29. Nethander, M. et al. Evidence of a causal effect of estradiol on fracture risk in men. J. Clin. Endocrinol. Metab. 104, 433–442 (2018).

    Google Scholar 

  30. Yan, M. Z. et al. Raloxifene inhibits bone loss and improves bone strength through an Opg-independent mechanism. Endocrine 37, 55–61 (2010).

    PubMed  Google Scholar 

  31. Riggs, B. L. & Hartmann, L. C. Selective estrogen-receptor modulators — mechanisms of action and application to clinical practice. N. Engl. J. Med. 348, 618–629 (2003).

    CAS  PubMed  Google Scholar 

  32. Peng, L., Luo, Q. & Lu, H. Efficacy and safety of bazedoxifene in postmenopausal women with osteoporosis: a systematic review and meta-analysis. Medicine 96, e8659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rendina-Ruedy, E. & Rosen, C. J. Parathyroid hormone (PTH) regulation of metabolic homeostasis: an old dog teaches us new tricks. Mol. Metab. 60, 101480 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin, T. J., Sims, N. A. & Seeman, E. Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R. Endocr. Rev. 42, 383–406 (2021).

    PubMed  Google Scholar 

  35. Wittelsberger, A. et al. The mid-region of parathyroid hormone (1–34) serves as a functional docking domain in receptor activation. Biochemistry 45, 2027–2034 (2006).

    CAS  PubMed  Google Scholar 

  36. Dobnig, H. & Turner, R. T. The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138, 4607–4612 (1997).

    CAS  PubMed  Google Scholar 

  37. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    CAS  PubMed  Google Scholar 

  38. Rauner, M., Taipaleenmäki, H., Tsourdi, E. & Winter, E. M. Osteoporosis treatment with anti-sclerostin antibodies—mechanisms of action and clinical application. J. Clin. Med. 10, 787 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hadji, P. et al. Osteoporotic fractures and subsequent fractures: imminent fracture risk from an analysis of German real-world claims data. Arch. Gynecol. Obstet. 304, 703–712 (2021).

    PubMed  PubMed Central  Google Scholar 

  40. Ayub, N. et al. The treatment gap in osteoporosis. J. Clin. Med. 10, 3002 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang, L. L., Eastell, R. & Miller, P. D. Continuation of bisphosphonate therapy for osteoporosis beyond 5 years. N. Engl. J. Med. 386, 1467–1469 (2022).

    PubMed  Google Scholar 

  42. Tsourdi, E. et al. Discontinuation of denosumab therapy for osteoporosis: a systematic review and position statement by ECTS. Bone 105, 11–17 (2017).

    PubMed  Google Scholar 

  43. Farlay, D. et al. Bone mineral and organic properties in postmenopausal women treated with denosumab for up to 10 years. J. Bone Miner. Res. 37, 856–864 (2022).

    CAS  PubMed  Google Scholar 

  44. Reid, I. R. Osteoporosis treatment: focus on safety. Eur. J. Intern. Med. 24, 691–697 (2013).

    PubMed  Google Scholar 

  45. Khan, A. A. et al. Case-based review of osteonecrosis of the jaw (ONJ) and application of the International Recommendations for Management from the International Task Force on ONJ. J. Clin. Densitom. 20, 8–24 (2017).

    PubMed  Google Scholar 

  46. Diez-Perez, A. et al. International osteoporosis foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos. Int. 28, 767–774 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bareli, N. et al. Bisphosphonate treatment and the risk of atypical femoral fracture among patients participating in a Fracture Liaison Service of a tertiary medical center. Arch. Osteoporos. 16, 86 (2021).

    PubMed  Google Scholar 

  48. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, R. et al. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med. 24, 823–833 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cackowski, F. C. et al. Osteoclasts are important for bone angiogenesis. Blood 115, 140–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, X. et al. Osteoclasts protect bone blood vessels against senescence through the angiogenin/plexin-B2 axis. Nat. Commun. 12, 1832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Santini, D. et al. Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin. Cancer Res. 9, 2893–2897 (2003).

    CAS  PubMed  Google Scholar 

  53. Saul, D. & Khosla, S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocr. Rev. 43, 984–1002 (2022).

    PubMed  PubMed Central  Google Scholar 

  54. Black, D. M. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356, 1809–1822 (2007).

    CAS  PubMed  Google Scholar 

  55. Fazmin, I. T., Huang, C. L. H. & Jeevaratnam, K. Bisphosphonates and atrial fibrillation: revisiting the controversy. Ann. NY Acad. Sci. 1474, 15–26 (2020).

    CAS  PubMed  Google Scholar 

  56. Rodríguez, A. J. & Abrahamsen, B. Cardiovascular safety of antifracture medications in patients with osteoporosis: a narrative review of evidence from randomized studies. JBMR Plus 5, e10628 (2021).

    Google Scholar 

  57. Poggi, C. D., Fusaro, M., Mereu, M. C., Brandi, M. L. & Cianferotti, L. Cardiovascular safety and effectiveness of bisphosphonates: from intervention trials to real-life data. Nutrients 14, 2369 (2022).

    Google Scholar 

  58. Goh, S. K. et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J. Bone Jt Surg. Ser. B 89, 349–353 (2007).

    Google Scholar 

  59. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    CAS  PubMed  Google Scholar 

  60. Austin, D. C., Torchia, M. T., Klare, C. M. & Cantu, R. V. Atypical femoral fractures mimicking metastatic lesions in 2 patients taking denosumab. Acta Orthop. 88, 351–353 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Black, D. M., Condra, K., Adams, A. L. & Eastell, R. Bisphosphonates and the risk of atypical femur fractures. Bone 156, 116297 (2022).

    CAS  PubMed  Google Scholar 

  62. Zhou, W., van Rooij, J. G. J., Ebeling, P. R., Verkerk, A. J. M. H. & Zillikens, M. C. The genetics of atypical femur fractures—a systematic review. Curr. Osteoporos. Rep. 19, 123–130 (2021).

    PubMed  PubMed Central  Google Scholar 

  63. Shane, E. et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J. Bone Miner. Res. 29, 1–23 (2014).

    PubMed  Google Scholar 

  64. Shane, E. et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the american society for bone and mineral research. J. Bone Miner. Res. 25, 2267–2294 (2010).

    PubMed  Google Scholar 

  65. Rizzoli, R. et al. Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos. Int. 22, 373 (2011).

    CAS  PubMed  Google Scholar 

  66. Clynes, M. A. et al. The epidemiology of osteoporosis. Br. Med. Bull. 133, 105–117 (2020).

    PubMed  Google Scholar 

  67. Black, D. M. et al. Atypical femur fracture risk versus fragility fracture prevention with bisphosphonates. N. Engl. J. Med. 383, 743–753 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schilcher, J., Koeppen, V., Aspenberg, P. & Michaëlsson, K. Risk of atypical femoral fracture during and after bisphosphonate use: full report of a nationwide study. Acta Orthop. 86, 100–107 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Wang, M., Wu, Y. F. & Girgis, C. M. Bisphosphonate drug holidays: evidence from clinical trials and real-world studies. JBMR Plus 6, e10629 (2022).

    PubMed  PubMed Central  Google Scholar 

  70. Bone, H. G. et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 5, 513–523 (2017).

    CAS  PubMed  Google Scholar 

  71. Saag, K. G. et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N. Engl. J. Med. 377, 1417–1427 (2017).

    CAS  PubMed  Google Scholar 

  72. Black, D. M. et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 296, 2927–2938 (2006).

    CAS  PubMed  Google Scholar 

  73. Diab, D. L. & Watts, N. B. Bisphosphonate drug holiday: who, when and how long. Ther. Adv. Musculoskelet. Dis. 5, 107–111 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Marx, R. E., Sawatari, Y., Fortin, M. & Broumand, V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J. Oral. Maxillofac. Surg. 63, 1567–1575 (2005).

    PubMed  Google Scholar 

  75. Taylor, K. H., Middlefell, L. S. & Mizen, K. D. Osteonecrosis of the jaws induced by anti-RANK ligand therapy. Br. J. Oral. Maxillofac. Surg. 48, 221–223 (2010).

    CAS  PubMed  Google Scholar 

  76. Sacco, R., Woolley, J., Patel, G., Calasans-Maia, M. D. & Yates, J. Systematic review of medication related osteonecrosis of the jaw (MRONJ) in patients undergoing only antiangiogenic drug therapy: surgery or conservative therapy? Br. J. Oral. Maxillofac. Surg. 60, e216–e230 (2022).

    CAS  PubMed  Google Scholar 

  77. Khosla, S. et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 22, 1479–1491 (2007).

    PubMed  Google Scholar 

  78. Fung, P. P. L. et al. Time to onset of bisphosphonate-related osteonecrosis of the jaws: a multicentre retrospective cohort study. Oral. Dis. 23, 477–483 (2017).

    PubMed  Google Scholar 

  79. Khan, A. A. et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J. Bone Miner. Res. 30, 3–23 (2015).

    PubMed  Google Scholar 

  80. Gkouveris, I. et al. Inhibition of HMGB1/RAGE signaling reduces the incidence of medication-related osteonecrosis of the jaw (MRONJ) in mice. J. Bone Miner. Res. 37, 1775–1786 (2022).

    CAS  PubMed  Google Scholar 

  81. Aguirre, J. I., Castillo, E. J. & Kimmel, D. B. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 153, 116168 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cheng, Y. C. et al. Antiresorptive therapy and dental implant survival: an up to 20-year retrospective cohort study in women. Clin. Oral. Investig. 26, 6569–6582 (2022).

    PubMed  Google Scholar 

  83. Govaerts, D. et al. Adjuvant therapies for MRONJ: a systematic review. Bone 141, 115676 (2020).

    CAS  PubMed  Google Scholar 

  84. Anastasilakis, A. D. et al. Osteonecrosis of the jaw and antiresorptive agents in benign and malignant diseases: a critical review organized by the ECTS. J. Clin. Endocrinol. Metab. 107, 1441–1460 (2022).

    PubMed  Google Scholar 

  85. Krege, J. H., Gilsenan, A. W., Komacko, J. L. & Kellier-Steele, N. Teriparatide and osteosarcoma risk: history, science, elimination of boxed warning, and other label updates. JBMR Plus 6, e10665 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bernstein, Z. S., Kim, E. B. & Raje, N. Bone disease in multiple myeloma: biologic and clinical implications. Cells 11, 2308 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schwartz, E., Reichert, Z. & Van Poznak, C. Pharmacologic management of metastatic bone disease. Bone 158, 115735 (2022).

    CAS  PubMed  Google Scholar 

  88. Lee, M. & Partridge, N. C. Parathyroid hormone signaling in bone and kidney. Curr. Opin. Nephrol. Hypertens. 18, 298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

    CAS  PubMed  Google Scholar 

  90. Swami, S. et al. Prevention of breast cancer skeletal metastases with parathyroid hormone. JCI Insight 2, e90874 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Koski, A. M., Sikiö, A. & Forslund, T. Teriparatide treatment complicated by malignant myeloma. BMJ Case Rep. 2010, bcr0120102681 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Gilsenan, A. et al. The Forteo Patient Registry linkage to multiple state cancer registries: study design and results from the first 8 years. Osteoporos. Int. 29, 2335–2343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Aubry-Rozier, B., Gonzalez-Rodriguez, E., Stoll, D. & Lamy, O. Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporos. Int. 27, 1923–1925 (2016).

    CAS  PubMed  Google Scholar 

  94. Tsourdi, E. et al. Fracture risk and management of discontinuation of denosumab therapy: a systematic review and position statement by ECTS. J. Clin. Endocrinol. Metab. 106, 264–281 (2021).

    Google Scholar 

  95. Kong, S. H. et al. Effect of denosumab on the change of osteoclast precursors compared to zoledronate treatment in postmenopausal women with osteoporosis. J. Bone Metab. 29, 93–101 (2022).

    PubMed  PubMed Central  Google Scholar 

  96. McDonald, M. M., Kim, A. S., Mulholland, B. S. & Rauner, M. New insights into osteoclast biology. JBMR Plus 5, e10539 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Saag, K. G. et al. The effect of discontinuing denosumab in patients with rheumatoid arthritis treated with glucocorticoids. Arthritis Rheumatol. 74, 604–611 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sosa Henríquez, M., Gómez de Tejada Romero, M. J., Escudero-Socorro, M. & Torregrosa Suau, O. Hip fractures following denosumab discontinuation: three clinical cases reports. J. R. Soc. Med. 112, 472–475 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Anagnostis, P. et al. Spontaneous vertebral fractures in males with osteoporosis after denosumab discontinuation: a report of two cases. J. Clin. Rheumatol. 27, S581–S584 (2021).

    PubMed  Google Scholar 

  100. Sølling, A. S., Tsourdi, E., Harsløf, T. & Langdahl, B. L. Denosumab discontinuation. Curr. Osteoporos. Rep. 21, 95–103 (2023).

    PubMed  Google Scholar 

  101. Ha, J. et al. Effect of follow-up raloxifene therapy after denosumab discontinuation in postmenopausal women. Osteoporos. Int. 33, 1591–1599 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kothawala, P., Badamgarav, E., Ryu, S., Miller, R. M. & Halbert, R. J. Systematic review and meta-analysis of real-world adherence to drug therapy for osteoporosis. Mayo Clin. Proc. 82, 1493–1501 (2007).

    PubMed  Google Scholar 

  103. Hiligsmann, M. et al. Cost-effectiveness of osteoporosis screening followed by treatment: the impact of medication adherence. Value Health 13, 394–401 (2010).

    PubMed  Google Scholar 

  104. Ross, S. et al. A meta-analysis of osteoporotic fracture risk with medication nonadherence. Value Health 14, 571–581 (2011).

    PubMed  Google Scholar 

  105. Foessl, I. et al. Bone phenotyping approaches in human, mice and zebrafish – expert overview of the EU Cost Action GEMSTONE (“GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork”). Front. Endocrinol. 12, 720728 (2021).

    Google Scholar 

  106. Dimai, H. P. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone 104, 39–43 (2017).

    PubMed  Google Scholar 

  107. Shuhart, C. R. et al. Executive summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J. Clin. Densitom. 22, 453–471 (2019).

    PubMed  Google Scholar 

  108. Shevroja, E., Cafarelli, F. P., Guglielmi, G. & Hans, D. DXA parameters, trabecular bone score (TBS) and bone mineral density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 74, 20–28 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shevroja, E. et al. Bone texture assessment on lateral VFAs using the texture research investigational platform (TRIP) and its fracture discrimination ability. J. Clin. Densitom. 25, 599–605 (2022).

    PubMed  Google Scholar 

  110. Haeri, N. S., Perera, S., Ferreiro, I., Hans, D. & Greenspan, S. L. Trabecular bone score in the hip: a new method to examine hip bone microarchitecture-a feasibility study. Arch. Osteoporos. 17, 126–126 (2022).

    PubMed  Google Scholar 

  111. Hans, D. et al. Updated trabecular bone score accounting for the soft tissue thickness (TBSTT) demonstrated significantly improved bone microstructure with denosumab in the FREEDOM TBS post hoc analysis. Osteoporos. Int. 33, 2517–2525 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonnick, S. L. Dual-energy X-ray absorptiometry: interpreting reports and serial measurements. Clin. Obstet. Gynecol. 56, 677–685 (2013).

    PubMed  Google Scholar 

  113. Carey, J. J., Chih-Hsing, W. P. & Bergin, D. Risk assessment tools for osteoporosis and fractures in 2022. Best Pract. Res. Clin. Rheumatol. 36, 101775 (2022).

    PubMed  Google Scholar 

  114. Vandenput, L. et al. Update of the fracture risk prediction tool FRAX: a systematic review of potential cohorts and analysis plan. Osteoporos. Int. 33, 2103–2136 (2022).

    CAS  PubMed  Google Scholar 

  115. Vlot, M. C. et al. Clinical utility of bone markers in various diseases. Bone 114, 215–225 (2018).

    CAS  PubMed  Google Scholar 

  116. Eastell, R. et al. Bone turnover markers: are they clinically useful? Eur. J. Endocrinol. 178, R19–R31 (2018).

    CAS  PubMed  Google Scholar 

  117. Boonen, S. et al. Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk-A perspective. J. Bone Miner. Res. 27, 963–974 (2012).

    CAS  PubMed  Google Scholar 

  118. Drake, M. T., Clarke, B. L. & Khosla, S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 83, 1032–1045 (2008).

    CAS  PubMed  Google Scholar 

  119. Odvina, C. V. et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J. Clin. Endocrinol. Metab. 90, 1294–1301 (2005).

    CAS  PubMed  Google Scholar 

  120. Dimai, H. P. & Fahrleitner-Pammer, A. Osteoporosis and fragility fractures: currently available pharmacological options and future directions. Best Pract. Res. Clin. Rheumatol. 36, 101780 (2022).

    PubMed  Google Scholar 

  121. Adams, A. L. et al. Bisphosphonate drug holiday and fracture risk: a population-based cohort study. J. Bone Miner. Res. 33, 1252–1259 (2018).

    CAS  PubMed  Google Scholar 

  122. Curtis, J. R. et al. Duration of bisphosphonate drug holidays and associated fracture risk. Med. Care 58, 419–426 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Malluche, H. H. et al. Bone quality and fractures in women with osteoporosis treated with bisphosphonates for 1 to 14 years. JBMR 5, e10549 (2021).

    CAS  Google Scholar 

  124. Diez-Perez, A. et al. Treatment failure in osteoporosis. Osteoporos. Int. 23, 2769–2774 (2012).

    CAS  PubMed  Google Scholar 

  125. Miller, P. D. et al. Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J. Clin. Endocrinol. Metab. 101, 3163–3170 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kanis, J. A. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 30, 3 (2019).

    CAS  PubMed  Google Scholar 

  127. Cipriani, C. & Bilezikian, J. P. Osteoanabolics versus antiresorptives: which first? J. Clin. Endocrinol. Metab. 105, 964–965 (2020).

    Google Scholar 

  128. Samadfam, R., Xia, Q. & Goltzman, D. Pretreatment with anticatabolic agents blunts but does not eliminate the skeletal anabolic response to parathyroid hormone in oophorectomized mice. Endocrinology 148, 2778–2787 (2007).

    CAS  PubMed  Google Scholar 

  129. Ettinger, B., San Martin, J., Crans, G. & Pavo, I. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J. Bone Miner. Res. 19, 745–751 (2004).

    CAS  PubMed  Google Scholar 

  130. Boonen, S. et al. Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 93, 852–860 (2008).

    CAS  PubMed  Google Scholar 

  131. Miller, P. D. et al. Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J. Clin. Endocrinol. Metab. 93, 3785–3793 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Geusens, P. et al. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J. Bone Miner. Res. 33, 783–794 (2018).

    CAS  PubMed  Google Scholar 

  133. Leder, B. Z. et al. Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study): extension of a randomised controlled trial. Lancet 386, 1147–1155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cosman, F. et al. Romosozumab and antiresorptive treatment: the importance of treatment sequence. Osteoporos. Int. 33, 1243–1256 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kendler, D. L. et al. Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos. Int. 30, 2437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Langdahl, B. L. et al. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390, 1585–1594 (2017).

    CAS  PubMed  Google Scholar 

  137. Li, N. et al. An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 39, 181–209 (2021).

    PubMed  Google Scholar 

  138. Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

    CAS  PubMed  Google Scholar 

  139. Walker, M. D. et al. Combination therapy with risedronate and teriparatide in male osteoporosis. Endocrine 44, 237–246 (2013).

    CAS  PubMed  Google Scholar 

  140. Cosman, F. et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 503–511 (2011).

    CAS  PubMed  Google Scholar 

  141. Leder, B. Z. et al. Two years of denosumab and teriparatide administration in postmenopausal women with osteoporosis (the DATA Extension Study): a randomized controlled trial. J. Clin. Endocrinol. Metab. 99, 1694–1700 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Mäkitie, O. & Zillikens, M. C. Early-onset osteoporosis. Calcif. Tissue Int. 110, 546–561 (2022).

    PubMed  Google Scholar 

  143. Ferrari, S. et al. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos. Int. 23, 2735–2748 (2012).

    CAS  PubMed  Google Scholar 

  144. Kim, S. J., Baker, B. S., Sharma-Ghimire, P., Bemben, D. A. & Bemben, M. G. Association between bone-specific physical activity scores and pQCT-derived measures of bone strength and geometry in healthy young and middle-aged premenopausal women. Arch. Osteoporos. 13, 83 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Hammoud, E. et al. Influence of sarcopenia on bone health parameters in a group of eumenorrheic obese premenopausal women. J. Bone Miner. Metab. 38, 385–391 (2020).

    PubMed  Google Scholar 

  146. Goshtasebi, A. et al. Adolescent use of combined hormonal contraception and peak bone mineral density accrual: a meta-analysis of international prospective controlled studies. Clin. Endocrinol. 90, 517–524 (2019).

    CAS  Google Scholar 

  147. Hardcastle, S. A. “Pregnancy and lactation associated osteoporosis”. Calcif. Tissue Int. 110, 531–545 (2022).

    CAS  PubMed  Google Scholar 

  148. Cohen, A. et al. Women with pregnancy and lactation-associated osteoporosis (PLO) have low bone remodeling rates at the tissue level. J. Bone Miner. Res. 34, 1552–1561 (2019).

    CAS  PubMed  Google Scholar 

  149. Butscheidt, S. et al. Relevant genetic variants are common in women with pregnancy and lactation-associated osteoporosis (PLO) and predispose to more severe clinical manifestations. Bone 147, 115911 (2021).

    CAS  PubMed  Google Scholar 

  150. Kovacs, C. S. Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol. Rev. 96, 449–547 (2016).

    CAS  PubMed  Google Scholar 

  151. Cooke-Hubley, S. et al. Parity and lactation are not associated with incident fragility fractures or radiographic vertebral fractures over 16 years of follow-up: Canadian Multicentre Osteoporosis Study (CaMos). Arch. Osteoporos. 14, 49 (2019).

    PubMed  Google Scholar 

  152. MacHairiotis, N., Ntali, G., Kouroutou, P. & Michala, L. Clinical evidence of the effect of bisphosphonates on pregnancy and the infant. Horm. Mol. Biol. Clin. Investig. 40, 20190021 (2019).

    CAS  Google Scholar 

  153. Sokal, A. et al. Pregnancy and newborn outcomes after exposure to bisphosphonates: a case-control study. Osteoporos. Int. 30, 221–229 (2019).

    CAS  PubMed  Google Scholar 

  154. Wang, X. F., Duan, Y., Beck, T. J. & Seeman, E. Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36, 978–986 (2005).

    PubMed  Google Scholar 

  155. Orwoll, E. S. & Klein, R. F. Osteoporosis in men. Endocr. Rev. 16, 87–116 (1995).

    CAS  PubMed  Google Scholar 

  156. Boonen, S. et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N. Engl. J. Med. 367, 1714–1723 (2012).

    CAS  PubMed  Google Scholar 

  157. Orwoll, E. et al. Alendronate for the treatment of osteoporosis in men. N. Engl. J. Med. 343, 604–610 (2000).

    CAS  PubMed  Google Scholar 

  158. Boonen, S. et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J. Bone Miner. Res. 24, 719–725 (2009).

    CAS  PubMed  Google Scholar 

  159. Orwoll, E. et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J. Clin. Endocrinol. Metab. 97, 3161–3169 (2012).

    CAS  PubMed  Google Scholar 

  160. Langdahl, B. L. et al. A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J. Clin. Endocrinol. Metab. 100, 1335–1342 (2015).

    CAS  PubMed  Google Scholar 

  161. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Orwoll, E. S. et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J. Bone Miner. Res. 18, 9–17 (2003).

    CAS  PubMed  Google Scholar 

  163. Michael Lewiecki, E. et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of Romosozumab in men with osteoporosis. J. Clin. Endocrinol. Metab. 103, 3183–3193 (2018).

    PubMed  Google Scholar 

  164. Duarte, M. P. et al. Prevalence of low bone mineral density (T-score ≤ −2.5) in the whole spectrum of chronic kidney disease: a systematic review and meta-analysis. Osteoporos. Int. 34, 467–477 (2023).

    PubMed  Google Scholar 

  165. Khosla, S., Samakkarnthai, P., Monroe, D. G. & Farr, J. N. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 17, 685–697 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ferrari, S. L. et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos. Int. 29, 2585–2596 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Laurent, M. R. et al. Prevention and treatment of glucocorticoid-induced osteoporosis in adults: consensus recommendations from the Belgian Bone Club. Front. Endocrinol. 13, 908727 (2022).

    Google Scholar 

  168. Costantini, A. et al. Early-onset osteoporosis: rare monogenic forms elucidate the complexity of disease pathogenesis beyond type I collagen. J. Bone Miner. Res. 37, 1623–1641 (2022).

    CAS  PubMed  Google Scholar 

  169. Chu, H. et al. Comparative effectiveness of bisphosphonate treatments for the prevention of re-fracture in glucocorticoid-induced osteoporosis: protocol for a systematic review and meta-analysis. BMJ Open 12, e062537 (2022).

    PubMed  PubMed Central  Google Scholar 

  170. Langdahl, B. L., Uitterlinden, A. G. & Ralston, S. H. Where is bone science taking us? Best Pract. Res. Clin. Rheumatol. 36, 101791 (2022).

    Google Scholar 

  171. Fuggle, N. et al. Novel formulations of oral bisphosphonates in the treatment of osteoporosis. Aging Clin. Exp. Res. 34, 2625–2634 (2022).

    PubMed  PubMed Central  Google Scholar 

  172. Jiang, Y., Zhang, P., Zhang, X., Lv, L. & Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif. 54, e12956 (2021).

    PubMed  Google Scholar 

  173. Lu, L. et al. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res. Ther. 10, 143 (2019).

    PubMed  PubMed Central  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov https://classic.clinicaltrials.gov/ct2/show/NCT05152381 (2022).

  175. Colombo, M., Raposo, G. & Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  PubMed  Google Scholar 

  176. Qin, Y., Wang, L., Gao, Z., Chen, G. & Zhang, C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 6, 21961 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Shen, M. et al. Injection of synthetic mesenchymal stem cell mitigates osteoporosis in rats after ovariectomy. J. Cell. Mol. Med. 22, 3751–3757 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    CAS  PubMed  Google Scholar 

  179. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    CAS  PubMed  Google Scholar 

  180. Østergren, P. B. et al. Metabolic consequences of gonadotropin-releasing hormone agonists vs orchiectomy: a randomized clinical study. BJU Int. 123, 602–611 (2019).

    PubMed  Google Scholar 

  181. Guo, Y. et al. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 29, 151–166 (2019).

    CAS  PubMed  Google Scholar 

  182. Xiong, J. et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 603, 470–476 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Gera, S. et al. FSH-blocking therapeutic for osteoporosis. eLife 11, e78022 (2022).

    PubMed  PubMed Central  Google Scholar 

  184. Dincel, A. S. & Jørgensen, N. R. New emerging biomarkers for bone disease: sclerostin and Dickkopf-1 (DKK1). Calcif. Tissue Int. 112, 243–257 (2023).

    CAS  PubMed  Google Scholar 

  185. Madel, M. B. et al. Immune function and diversity of osteoclasts in normal and pathological conditions. Front. Immunol. 10, 1408 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Forgetta, V. et al. Development of a polygenic risk score to improve screening for fracture risk: a genetic risk prediction study. PLoS Med. 17, e1003152 (2020).

    PubMed  PubMed Central  Google Scholar 

  187. Grillari, J. et al. Circulating miRNAs in bone health and disease. Bone 145, 115787 (2021).

    CAS  PubMed  Google Scholar 

  188. Messner, Z. et al. Circulating miRNAs respond to denosumab treatment after 2 years in postmenopausal women with osteoporosis—the MiDeTe study. J. Clin. Endocrinol. Metab. 108, 1154–1165 (2022).

    PubMed Central  Google Scholar 

  189. Heilmeier, U. et al. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 158, 116308 (2022).

    CAS  PubMed  Google Scholar 

  190. Nevola, K. T. et al. miRNA mechanisms underlying the association of beta blocker use and bone mineral density. J. Bone Miner. Res. 36, 110–122 (2021).

    CAS  PubMed  Google Scholar 

  191. Chen, S., Liu, D., Zhou, Z. & Qin, S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol. Med. 27, 122 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Alfonzo, M. C., Al Saedi, A., Fulzele, S. & Hamrick, M. W. Extracellular vesicles as communicators of senescence in musculoskeletal aging. JBMR Plus 6, e10686 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Liberman, U. A. et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N. Engl. J. Med. 333, 1437–1444 (1995).

    CAS  PubMed  Google Scholar 

  194. Schnitzer, T. et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Aging Clin. Exp. Res. 12, 1–12 (2000).

    CAS  Google Scholar 

  195. Black, D. M. et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348, 1535–1541 (1996).

    CAS  PubMed  Google Scholar 

  196. Axelsson, K. F., Wallander, M., Johansson, H., Lundh, D. & Lorentzon, M. Hip fracture risk and safety with alendronate treatment in the oldest-old. J. Intern. Med. 282, 546–559 (2017).

    CAS  PubMed  Google Scholar 

  197. McClung, M. R., Balske, A., Burgio, D. E., Wenderoth, D. & Recker, R. R. Treatment of postmenopausal osteoporosis with delayed-release risedronate 35 mg weekly for 2 years. Osteoporos. Int. 24, 301–310 (2013).

    CAS  PubMed  Google Scholar 

  198. McClung, M. R. et al. Effect of risedronate on the risk of hip fracture in elderly women. N. Engl. J. Med. 344, 333–340 (2001).

    CAS  PubMed  Google Scholar 

  199. Reginster, J. Y. et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) study group. Osteoporos. Int. 11, 83–91 (2000).

    CAS  PubMed  Google Scholar 

  200. Harris, S. T. et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) study group. JAMA 282, 1344–1352 (1999).

    CAS  PubMed  Google Scholar 

  201. Miller, P. D. et al. Long-term fracture rates seen with continued ibandronate treatment: pooled analysis of DIVA and MOBILE long-term extension studies. Osteoporos. Int. 25, 349–357 (2014).

    CAS  PubMed  Google Scholar 

  202. Harris, S. T., Blumentals, W. A. & Miller, P. D. Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. Curr. Med. Res. Opin. 24, 237–245 (2008).

    CAS  PubMed  Google Scholar 

  203. Delmas, P. D. et al. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos. Int. 15, 792–798 (2004).

    CAS  PubMed  Google Scholar 

  204. Chesnut, C. H. et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res. 19, 1241–1249 (2004).

    CAS  PubMed  Google Scholar 

  205. Lyles, K. W. et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 357, 1799–1809 (2007).

    CAS  PubMed  Google Scholar 

  206. Recker, R. R. et al. Comparative effects of raloxifene and alendronate on fracture outcomes in postmenopausal women with low bone mass. Bone 40, 843–851 (2007).

    CAS  PubMed  Google Scholar 

  207. Delmas, P. D. et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33, 522–532 (2003).

    CAS  PubMed  Google Scholar 

  208. Ettinger, B. et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) investigators. JAMA 282, 637–645 (1999).

    CAS  PubMed  Google Scholar 

  209. Ellis, A. G. et al. Indirect comparison of bazedoxifene vs oral bisphosphonates for the prevention of vertebral fractures in postmenopausal osteoporotic women. Curr. Med. Res. Opin. 30, 1617–1626 (2014).

    CAS  PubMed  Google Scholar 

  210. Ellis, A. G. et al. Bazedoxifene versus oral bisphosphonates for the prevention of nonvertebral fractures in postmenopausal women with osteoporosis at higher risk of fracture: a network meta-analysis. Value Health 17, 424–432 (2014).

    PubMed  PubMed Central  Google Scholar 

  211. De Villiers, T. J. et al. Safety and tolerability of bazedoxifene in postmenopausal women with osteoporosis: results of a 5-year, randomized, placebo-controlled phase 3 trial. Osteoporos. Int. 22, 567–576 (2011).

    CAS  PubMed  Google Scholar 

  212. Kanis, J. A., Johansson, H., Oden, A. & McCloskey, E. V. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone 44, 1049–1054 (2009).

    CAS  PubMed  Google Scholar 

  213. Kendler, D. L. et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391, 230–240 (2018).

    CAS  PubMed  Google Scholar 

  214. McCloskey, E. V., Fitzpatrick, L. A., Hu, M. Y., Williams, G. & Kanis, J. A. Effect of abaloparatide on vertebral, nonvertebral, major osteoporotic, and clinical fractures in a subset of postmenopausal women at increased risk of fracture by FRAX probability. Arch. Osteoporos. 14, 15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Miller, P. D. et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316, 722–733 (2016).

    CAS  PubMed  Google Scholar 

  216. Reginster, J. Y. et al. Abaloparatide for risk reduction of nonvertebral and vertebral fractures in postmenopausal women with osteoporosis: a network meta-analysis. Osteoporos. Int. 30, 1465–1473 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    CAS  PubMed  Google Scholar 

  218. Broadwell, A. et al. Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J. Clin. Endocrinol. Metab. 106, 397–409 (2021).

    PubMed  Google Scholar 

  219. Geusens, P. et al. The effect of 1 year of romosozumab on the incidence of clinical vertebral fractures in postmenopausal women with osteoporosis: results from the FRAME study. JBMR Plus 3, e10211 (2019).

    PubMed  PubMed Central  Google Scholar 

  220. Zhu, L., Jiang, X., Sun, Y. & Shu, W. Effect of hormone therapy on the risk of bone fractures: a systematic review and meta-analysis of randomized controlled trials. Menopause 23, 461–470 (2016).

    PubMed  Google Scholar 

  221. Bagger, Y. Z. et al. Two to three years of hormone replacement treatment in healthy women have long-term preventive effects on bone mass and osteoporotic fractures: the PERF study. Bone 34, 728–735 (2004).

    CAS  PubMed  Google Scholar 

  222. Banks, E., Beral, V., Reeves, G., Balkwill, A. & Barnes, I. Fracture incidence in relation to the pattern of use of hormone therapy in postmenopausal women. JAMA 291, 2212–2220 (2004).

    CAS  PubMed  Google Scholar 

  223. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    CAS  PubMed  Google Scholar 

  224. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    CAS  PubMed  Google Scholar 

  225. Hadji, P., Ryan, K. A., Yu, C. R., Mirkin, S. & Komm, B. S. CE/BZA effects on bone and quality of life in European postmenopausal women: a pooled analysis. Climacteric 19, 482–487 (2016).

    CAS  PubMed  Google Scholar 

  226. Cauley, J. A. et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA 290, 1729–1738 (2003).

    CAS  PubMed  Google Scholar 

  227. Torgerson, D. J. & Bell-Syer, S. E. M. Hormone replacement therapy and prevention of nonvertebral fractures: a meta-analysis of randomized trials. JAMA 285, 2891–2897 (2001).

    CAS  PubMed  Google Scholar 

  228. Kanis, J. A. et al. An assessment of intervention thresholds for very high fracture risk applied to the NOGG guidelines: a report for the National Osteoporosis Guideline Group (NOGG). Osteoporos. Int. 32, 1951–1960 (2021).

    CAS  PubMed  Google Scholar 

  229. Eastell, R. et al. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 104, 1595–1622 (2019).

    PubMed  Google Scholar 

  230. Shoback, D. et al. Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society guideline update. J. Clin. Endocrinol. Metab. 105, dgaa048 (2020).

    PubMed  Google Scholar 

  231. Camacho, P. M. et al. American Association of Clinical Endocrinologists/American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis — 2020 update. Endocr. Pract. 26 (Suppl. 1), 1–46 (2020).

    PubMed  Google Scholar 

  232. Kanis, J. A. et al. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos. Int. 31, 1–12 (2020).

    CAS  PubMed  Google Scholar 

  233. Naylor, K. E. et al. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos. Int. 27, 21–31 (2016).

    CAS  PubMed  Google Scholar 

  234. Eastell, R. & Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 5, 908–923 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Barbara Obermayer-Pietsch.

Ethics declarations

Competing interests

B.O.-P. declares lecture fees from Immundiagnostic Systems, Eli Lilly, Gedeon Richter, Institut Allergosan, anwerina, Merck Sharp & Dome, Roche, UCB and unrestricted research grants from CBmed, Immundiagnostic Systems, Infineon, Institut Allergosan, Kinderwunschinstitut, SelenoMed, ViennaLab and Winclove. H.P.D. declares lecture and consultancy fees from Amgen, Braincon, Daiichi-Sankyo, Eli Lilly, Gedeon Richter, Genericon, Medtronic, Merck Sharp & Dohme, Novartis, Nycomed, Sanabo, Servier, Sinapharm, Stada and UCB. I.F. was a part-time employee (Medical Oncology, Amgen Austria) during the writing of the first draft, but not thereafter, all outside of the present work.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Elena Tsourdi and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FRAX: https://frax.shef.ac.uk

Garvan: https://www.garvan.org.au/promotions/bone-fracture-risk/calculator/

QFracture: https://qfracture.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foessl, I., Dimai, H.P. & Obermayer-Pietsch, B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol 19, 520–533 (2023). https://doi.org/10.1038/s41574-023-00866-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00866-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing