Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the central melanocortin system for the treatment of metabolic disorders

Abstract

A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.

Key points

  • Several monogenic and polygenic obesity syndromes involve defective leptin–melanocortin signalling.

  • The non-specific melanocortin peptide agonist setmelanotide, which acts via the MC4R to inhibit food intake and produce weight loss, has been approved by the FDA for the treatment of proopiomelanocortin deficiency, leptin receptor deficiency and Bardet–Biedl syndrome.

  • Two non-specific melanocortin agonist peptides, bremelanotide and afamelanotide, have been approved for the treatment of hypoactive sexual desire disorder and erythropoietic protoporphyria-associated phototoxicity, respectively, demonstrating the safety of this new drug class.

  • Melanocortin therapeutics might also have applications in eating disorders, such as cachexia and anorexia nervosa, and disorders of neuroendocrine function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microcircuitry of the central melanocortin system.
Fig. 2: Macro-circuitry of the central melanocortin system in mice.
Fig. 3: MC3R controls energy rheostasis.
Fig. 4: MC4R signalling pathways.
Fig. 5: Monogenic obesity syndromes involving the melanocortin system.

Similar content being viewed by others

References

  1. Gantz, I. et al. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250 (1993).

    CAS  PubMed  Google Scholar 

  2. Gantz, I. et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179 (1993).

    CAS  PubMed  Google Scholar 

  3. Roselli-Rehfuss, L. et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl Acad. Sci. USA 90, 8856–8860 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mountjoy, K. G., Robbins, L. S., Mortrud, M. T. & Cone, R. D. The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251 (1992).

    CAS  PubMed  Google Scholar 

  5. Mountjoy, K. G. Distribution and function of melanocortin receptors within the brain. Adv. Exp. Med. Biol. 681, 29–48 (2010).

    CAS  PubMed  Google Scholar 

  6. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    CAS  PubMed  Google Scholar 

  7. Shadiack, A. M., Sharma, S. D., Earle, D. C., Spana, C. & Hallam, T. J. Melanocortins in the treatment of male and female sexual dysfunction. Curr. Top. Med. Chem. 7, 1137–1144 (2007).

    CAS  PubMed  Google Scholar 

  8. Butler, A. A. & Cone, R. D. The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 (2002).

    CAS  PubMed  Google Scholar 

  9. Cone, R. D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).

    CAS  PubMed  Google Scholar 

  10. Chen, W. et al. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798 (1997).

    CAS  PubMed  Google Scholar 

  11. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by Agouti-related protein. Science 278, 135–138 (1997).

    CAS  PubMed  Google Scholar 

  12. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J. & Cone, R. D. Role of melanocortinergic neurons in feeding and the Agouti obesity syndrome. Nature 385, 165–168 (1997).

    CAS  PubMed  Google Scholar 

  13. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    CAS  PubMed  Google Scholar 

  14. Mountjoy, K. G. Pro-opiomelanocortin (POMC) neurones, POMC-derived peptides, melanocortin receptors and obesity: how understanding of this system has changed over the last decade. J. Neuroendocrinol. 27, 406–418 (2015).

    CAS  PubMed  Google Scholar 

  15. Friedman, J. 20 years of leptin: leptin at 20: an overview. J. Endocrinol. 223, T1–T8 (2014).

    CAS  PubMed  Google Scholar 

  16. Mercer, A. J., Hentges, S. T., Meshul, C. K. & Low, M. J. Unraveling the central proopiomelanocortin neural circuits. Front. Neurosci. 7, 19 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baver, S. B. et al. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 34, 5486–5496 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Xu, J. et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556, 505–509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheung, C. C., Clifton, D. K. & Steiner, R. A. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 138, 4489–4492 (1997).

    CAS  PubMed  Google Scholar 

  21. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  PubMed  Google Scholar 

  22. Krashes, M. J., Lowell, B. B. & Garfield, A. S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206–219 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  PubMed  Google Scholar 

  24. Yeo, G. S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  PubMed  Google Scholar 

  25. Farooqi, I. S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    CAS  PubMed  Google Scholar 

  27. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).

    CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  29. Loos, R. J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Adan, R. A. & van Dijk, G. Melanocortin receptors as drug targets for disorders of energy balance. CNS Neurol. Disord. Drug Targets 5, 251–261 (2006).

    CAS  PubMed  Google Scholar 

  31. Adan, R. A. & Gispen, W. H. Melanocortins and the brain: from effects via receptors to drug targets. Eur. J. Pharmacol. 405, 13–24 (2000).

    CAS  PubMed  Google Scholar 

  32. Ericson, M. D. et al. Bench-top to clinical therapies: a review of melanocortin ligands from 1954 to 2016. Biochim. Biophys. Acta 1863, 2414–2435 (2017).

    CAS  PubMed Central  Google Scholar 

  33. Yang, L. K. & Tao, Y. X. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim. Biophys. Acta 1863, 2486–2495 (2017).

    CAS  PubMed Central  Google Scholar 

  34. Kirwan, P. et al. Quantitative mass spectrometry for human melanocortin peptides in vitro and in vivo suggests prominent roles for β-MSH and desacetyl α-MSH in energy homeostasis. Mol. Metab. 17, 82–97 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mountjoy, K. G. et al. Desacetyl-α-melanocyte stimulating hormone and α-melanocyte stimulating hormone are required to regulate energy balance. Mol. Metab. 9, 207–216 (2018).

    CAS  PubMed  Google Scholar 

  36. Lee, Y. S. et al. A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab. 3, 135–140 (2006).

    PubMed  Google Scholar 

  37. Bumaschny, V. F. et al. Obesity-programmed mice are rescued by early genetic intervention. J. Clin. Invest. 122, 4203–4212 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. D’Agostino, G. et al. Nucleus of the solitary tract serotonin 5-HT2C receptors modulate food intake. Cell Metab. 28, 619–630 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9, 40 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B. & Cone, R. D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).

    CAS  PubMed  Google Scholar 

  42. Low, M. J., Simerly, R. B. & Cone, R. D. Receptors for the melanocortin peptides in the central nervous system. Curr. Opin. Endocrinol. Diabetes Obes. 1, 79–88 (1994).

    Google Scholar 

  43. Bagnol, D. et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci. 19, RC26 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cowley, M. A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    CAS  PubMed  Google Scholar 

  45. Ghamari-Langroudi, M. et al. G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520, 94–98 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fenselau, H. et al. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20, 42–51 (2017).

    CAS  PubMed  Google Scholar 

  47. Skibicka, K. P. & Grill, H. J. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 150, 5351–5361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, G. et al. Melanocortin activation of nucleus of the solitary tract avoids anorectic tachyphylaxis and induces prolonged weight loss. Am. J. Physiol. Endocrinol. Metab. 293, E252–E258 (2007).

    CAS  PubMed  Google Scholar 

  49. Williams, D. L. Brainstem Melanocortin Receptor Contributions to Energy Balance. Dissertation, Univ. Pennsylvania https://repository.upenn.edu/dissertations/AAI3087483/ (2003).

  50. Skibicka, K. P. & Grill, H. J. Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology 149, 3605–3616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    CAS  PubMed  Google Scholar 

  52. Nigro, S. C., Luon, D. & Baker, W. L. Lorcaserin: a novel serotonin 2C agonist for the treatment of obesity. Curr. Med. Res. Opin. 29, 839–848 (2013).

    PubMed  Google Scholar 

  53. Heisler, L. K. et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51, 239–249 (2006).

    CAS  PubMed  Google Scholar 

  54. Xu, Y. et al. A serotonin and melanocortin circuit mediates d-fenfluramine anorexia. J. Neurosci. 30, 14630–14634 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heisler, L. K. et al. Activation of central melanocortin pathways by fenfluramine. Science 297, 609–611 (2002).

    CAS  PubMed  Google Scholar 

  56. Martin, C. K. et al. Lorcaserin, a 5-HT2C receptor agonist, reduces body weight by decreasing energy intake without influencing energy expenditure. J. Clin. Endocrinol. Metab. 96, 837–845 (2011).

    CAS  PubMed  Google Scholar 

  57. US Food and Drug Administration. FDA requests the withdrawal of the weight-loss drug Belviq, Belviq XR (lorcaserin) from the market. FDA https://www.fda.gov/drugs/drug-safety-and-availability/fda-requests-withdrawal-weight-loss-drug-belviq-belviq-xr-lorcaserin-market (2020).

  58. Davies, M. J. et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 314, 687–699 (2015).

    CAS  PubMed  Google Scholar 

  59. Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    PubMed  Google Scholar 

  60. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    CAS  PubMed  Google Scholar 

  61. He, Z. et al. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons - implications for energy balance and glucose control. Mol. Metab. 28, 120–134 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mehta, A., Marso, S. P. & Neeland, I. J. Liraglutide for weight management: a critical review of the evidence. Obes. Sci. Pract. 3, 3–14 (2017).

    CAS  PubMed  Google Scholar 

  64. Christou, G. A., Katsiki, N., Blundell, J., Fruhbeck, G. & Kiortsis, D. N. Semaglutide as a promising antiobesity drug. Obes. Rev. 20, 805–815 (2019).

    CAS  PubMed  Google Scholar 

  65. Blundell, J. et al. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 19, 1242–1251 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gabery, S. et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5, e133429 (2020).

    PubMed  PubMed Central  Google Scholar 

  67. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    CAS  PubMed  Google Scholar 

  68. Kanoski, S. E., Hayes, M. R. & Skibicka, K. P. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R885–R895 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Fortin, S. M., Chen, J. & Hayes, M. R. Hindbrain melanocortin 3/4 receptors modulate the food intake and body weight suppressive effects of the GLP-1 receptor agonist, liraglutide. Physiol. Behav. 220, 112870 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Clemmensen, C. et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol. Med. 7, 288–298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sweeney, P. et al. The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia. Sci. Transl. Med. 13, eabd6434 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Naltrexone/bupropion. Drugs R D 10, 25–32 (2010).

  73. Hausenloy, D. Contrave™: novel treatment for obesity. Clin. Lipidol. 4, 279–285 (2017).

    Google Scholar 

  74. Naltrexone/bupropion for obesity. Drug. Ther. Bull. 55, 126–129 (2017).

  75. Luquet, S., Perez, F. A., Hnasko, T. S. & Palmiter, R. D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  PubMed  Google Scholar 

  76. Wu, Q., Boyle, M. P. & Palmiter, R. D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS  PubMed  Google Scholar 

  79. Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Burnett, C. J. et al. Need-based prioritization of behavior. eLife 8, e44527 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, Q., Clark, M. S. & Palmiter, R. D. Deciphering a neuronal circuit that mediates appetite. Nature 483, 594–597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Padilla, S. L. et al. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc. Natl Acad. Sci. USA 114, 2413–2418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dietrich, M. O., Zimmer, M. R., Bober, J. & Horvath, T. L. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell 160, 1222–1232 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garfield, A. S. et al. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Campos, C. A., Bowen, A. J., Schwartz, M. W. & Palmiter, R. D. Parabrachial CGRP neurons control meal termination. Cell Metab. 23, 811–820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Q., Howell, M. P., Cowley, M. A. & Palmiter, R. D. Starvation after AgRP neuron ablation is independent of melanocortin signaling. Proc. Natl Acad. Sci. USA 105, 2687–2692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013).

    CAS  PubMed  Google Scholar 

  93. Engstrom Ruud, L., Pereira, M. M. A., de Solis, A. J., Fenselau, H. & Bruning, J. C. NPY mediates the rapid feeding and glucose metabolism regulatory functions of AgRP neurons. Nat. Commun. 11, 442 (2020).

    PubMed  PubMed Central  Google Scholar 

  94. Chen, Y. et al. Sustained NPY signaling enables AgRP neurons to drive feeding. eLife 8, e46348 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Hagan, M. M. et al. Long-term orexigenic effects of AgRP-(83–132) involve mechanisms other than melanocortin receptor blockade. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R47–R52 (2000).

    CAS  PubMed  Google Scholar 

  96. Pritchard, L. E. & White, A. Agouti-related protein: more than a melanocortin-4 receptor antagonist? Peptides 26, 1759–1770 (2005).

    CAS  PubMed  Google Scholar 

  97. Cheng, M. et al. Computational analyses of obesity associated loci generated by genome-wide association studies. PLoS One 13, e0199987 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Riveros-McKay, F. et al. Genetic architecture of human thinness compared to severe obesity. PLoS Genet. 15, e1007603 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Alkemade, A. et al. AgRP and NPY expression in the human hypothalamic infundibular nucleus correlate with body mass index, whereas changes in alphaMSH are related to type 2 diabetes. J. Clin. Endocrinol. Metab. 97, E925–E933 (2012).

    CAS  PubMed  Google Scholar 

  100. Ilnytska, O. & Argyropoulos, G. The role of the Agouti-related protein in energy balance regulation. Cell Mol. Life Sci. 65, 2721–2731 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Song, Y. & Cone, R. D. Creation of a genetic model of obesity in a teleost. FASEB J. 21, 2042–2049 (2007).

    CAS  PubMed  Google Scholar 

  102. Mequinion, M., Foldi, C. J. & Andrews, Z. B. The ghrelin-AgRP neuron nexus in anorexia nervosa: implications for metabolic and behavioral adaptations. Front. Nutr. 6, 190 (2019).

    PubMed  Google Scholar 

  103. Muller, T. D. et al. Ghrelin. Mol. Metab. 4, 437–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Muller, T. D., Perez-Tilve, D., Tong, J., Pfluger, P. T. & Tschop, M. H. Ghrelin and its potential in the treatment of eating/wasting disorders and cachexia. J. Cachexia Sarcopenia Muscle 1, 159–167 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    CAS  PubMed  Google Scholar 

  106. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    CAS  PubMed  Google Scholar 

  107. Romero, A. et al. GOAT: the master switch for the ghrelin system? Eur. J. Endocrinol. 163, 1–8 (2010).

    CAS  PubMed  Google Scholar 

  108. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    CAS  PubMed  Google Scholar 

  109. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    CAS  PubMed  Google Scholar 

  110. Fazeli, P. K. et al. Treatment with a ghrelin agonist in outpatient women with anorexia nervosa: a randomized clinical trial. J. Clin. Psychiatry 79, 17m11585 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Fani, L., Bak, S., Delhanty, P., van Rossum, E. F. & van den Akker, E. L. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int. J. Obes. 38, 163–169 (2014).

    CAS  Google Scholar 

  112. Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Nuffer, W. A. & Trujillo, J. M. Liraglutide: a new option for the treatment of obesity. Pharmacotherapy 35, 926–934 (2015).

    CAS  PubMed  Google Scholar 

  114. Garner, A. L. & Janda, K. D. A small molecule antagonist of ghrelin O-acyltransferase (GOAT). Chem. Commun. 47, 7512–7514 (2011).

    CAS  Google Scholar 

  115. Bedenbaugh, M. N. et al. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: evidence for sexual dimorphism. J. Comp. Neurol. 530, 2835–2851 (2022).

    CAS  PubMed  Google Scholar 

  116. Lippert, R. N., Ellacott, K. L. & Cone, R. D. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology 155, 1718–1727 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. West, K. S., Lu, C., Olson, D. P. & Roseberry, A. G. Alpha-melanocyte stimulating hormone increases the activity of melanocortin-3 receptor-expressing neurons in the ventral tegmental area. J. Physiol. 597, 3217–3232 (2019).

    CAS  PubMed  Google Scholar 

  118. Pandit, R. et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology 41, 2241–2251 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Butler, A. A. et al. A life without hunger: the ups (and downs) to modulating melanocortin-3 receptor signaling. Front. Neurosci. 11, 128 (2017).

    PubMed  PubMed Central  Google Scholar 

  120. Ghamari-Langroudi, M. et al. Regulation of energy rheostasis by the melanocortin-3 receptor. Sci. Adv. 4, eaat0866 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. You, P. et al. Effects of melanocortin 3 and 4 receptor deficiency on energy homeostasis in rats. Sci. Rep. 6, 34938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Butler, A. A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).

    CAS  PubMed  Google Scholar 

  123. Chen, A. S. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 (2000).

    CAS  PubMed  Google Scholar 

  124. Renquist, B. J. et al. Melanocortin-3 receptor regulates the normal fasting response. Proc. Natl Acad. Sci. USA 109, E1489–E1498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sutton, G. M. et al. The melanocortin-3 receptor is required for entrainment to meal intake. J. Neurosci. 28, 12946–12955 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Begriche, K. et al. Melanocortin-3 receptors are involved in adaptation to restricted feeding. Genes Brain Behav. 11, 291–302 (2012).

    CAS  PubMed  Google Scholar 

  127. Lam, B. Y. H. et al. MC3R links nutritional state to childhood growth and the timing of puberty. Nature 599, 436–441 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sohn, J. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Marks, D. L., Butler, A. A., Turner, R., Brookhart, G. & Cone, R. D. Differential role of melanocortin receptor subtypes in cachexia. Endocrinology 144, 1513–1523 (2003).

    CAS  PubMed  Google Scholar 

  130. Marks, D. L. in Energy Metabolism and Obesity: Research and Clinical Applications (ed P. A. Donohoue) 59–68 (Humana, 2008).

  131. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    CAS  PubMed  Google Scholar 

  132. Shah, B. P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl Acad. Sci. USA 111, 13193–13198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, Y. Q. et al. G(q/11)α and G(s)α mediate distinct physiological responses to central melanocortins. J. Clin. Invest. 126, 40–49 (2016).

    PubMed  Google Scholar 

  134. Giraudo, S. Q., Billington, C. J. & Levine, A. S. Feeding effects of hypothalamic injection of melanocortin 4 receptor ligands. Brain Res. 809, 302–306 (1998).

    CAS  PubMed  Google Scholar 

  135. Li, C. et al. Defined paraventricular hypothalamic populations exhibit differential responses to food contingent on caloric state. Cell Metab. 29, 681–694 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Sohn, J. W. et al. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152, 612–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Berglund, E. D. et al. Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Grill, H. J., Ginsberg, A. B., Seeley, R. J. & Kaplan, J. M. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J. Neurosci. 18, 10128–10135 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu, J. et al. Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding. Science 368, 428–433 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Anderson, E. J. P. et al. Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortin-4 receptor. J. Neuroendocrinol. 31, e12670 (2019).

    PubMed  PubMed Central  Google Scholar 

  142. Srisai, D. et al. MRAP2 regulates ghrelin receptor signaling and hunger sensing. Nat. Commun. 8, 713 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Rouault, A. A. J., Lee, A. A. & Sebag, J. A. Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling. Biochim. Biophys. Acta 1864, 2322–2329 (2017).

    CAS  Google Scholar 

  144. Sebag, J. A., Zhang, C., Hinkle, P. M., Bradshaw, A. M. & Cone, R. D. Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 341, 278–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Asai, M. et al. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 341, 275–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lotta, L. A. et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177, 597–607 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brouwers, B. et al. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep. 34, 108862 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Gillyard, T., Fowler, K., Williams, S. Y. & Cone, R. D. Obesity-associated mutant melanocortin-4 receptors with normal Gαs coupling frequently exhibit other discoverable pharmacological and biochemical defects. J. Neuroendocrinol. 31, e12795 (2019).

    CAS  PubMed  Google Scholar 

  149. He, S. & Tao, Y. X. Defect in MAPK signaling as a cause for monogenic obesity caused by inactivating mutations in the melanocortin-4 receptor gene. Int. J. Biol. Sci. 10, 1128–1137 (2014).

    PubMed  PubMed Central  Google Scholar 

  150. Van der Ploeg, L. H. et al. A role for the melanocortin 4 receptor in sexual function. Proc. Natl Acad. Sci. USA 99, 11381–11386 (2002).

    PubMed  PubMed Central  Google Scholar 

  151. King, S. H. et al. Melanocortin receptors, melanotropic peptides and penile erection. Curr. Top. Med. Chem. 7, 1098–1106 (2007).

    PubMed  PubMed Central  Google Scholar 

  152. Hadley, M. E. Discovery that a melanocortin regulates sexual functions in male and female humans. Peptides 26, 1687–1689 (2005).

    CAS  PubMed  Google Scholar 

  153. Hadley, M. E. & Dorr, R. T. Melanocortin peptide therapeutics: historical milestones, clinical studies and commercialization. Peptides 27, 921–930 (2006).

    CAS  PubMed  Google Scholar 

  154. Dhillon, S. & Keam, S. J. Bremelanotide: first approval. Drugs 79, 1599–1606 (2019).

    PubMed  Google Scholar 

  155. Bremelanotide (Vyleesi) for hypoactive sexual desire disorder. Med. Lett. Drugs Ther. 61, 114–116 (2019).

  156. Huang, S. A. & Lie, J. D. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. P T 38, 407–419 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. Pfaus, J., Giuliano, F. & Gelez, H. Bremelanotide: an overview of preclinical CNS effects on female sexual function. J. Sex. Med. 4, 269–279 (2007).

    CAS  PubMed  Google Scholar 

  158. Kingsberg, S. A. et al. Bremelanotide for the treatment of hypoactive sexual desire disorder: two randomized phase 3 trials. Obstet. Gynecol. 134, 899–908 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Mayer, D. & Lynch, S. E. Bremelanotide: new drug approved for treating hypoactive sexual desire disorder. Ann. Pharmacother. 54, 684–690 (2020).

    CAS  PubMed  Google Scholar 

  160. Tao, Y. X. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev. 31, 506–543 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Clement, K. et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 24, 551–555 (2018).

    CAS  PubMed  Google Scholar 

  162. Kuhnen, P. et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375, 240–246 (2016).

    PubMed  Google Scholar 

  163. Haqq, A. M. et al. Efficacy and safety of setmelanotide, a melanocortin-4 receptor agonist, in patients with Bardet-Biedl syndrome and Alstrom syndrome: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial with an open-label period. Lancet Diabetes Endocrinol. 10, 859–868 (2022).

    CAS  PubMed  Google Scholar 

  164. Haws, R. M. et al. The efficacy and safety of setmelanotide in individuals with Bardet-Biedl syndrome or Alström syndrome: phase 3 trial design. Contemp. Clin. Trials Commun. 22, 100780 (2021).

    PubMed  PubMed Central  Google Scholar 

  165. Lubrano-Berthelier, C. et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum. Mol. Genet. 12, 145–153 (2003).

    CAS  PubMed  Google Scholar 

  166. Pierroz, D. D. et al. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes 51, 1337–1345 (2002).

    CAS  PubMed  Google Scholar 

  167. Bischof, J. M., Van Der Ploeg, L. H., Colmers, W. F. & Wevrick, R. Magel2-null mice are hyper-responsive to setmelanotide, a melanocortin 4 receptor agonist. Br. J. Pharmacol. 173, 2614–2621 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stephenson, E., Stayton, A. & Han, J. Setmelanotide (RM-493) reduces food intake and rapidly induces weight loss in a mouse model of Alström syndrome [abstract]. J. Endocr. Soc. 3(Suppl. 1), MON-LB019 (2019).

    PubMed Central  Google Scholar 

  169. Center for Drug Evaluation & Research. FDA approves treatment for weight management in patients with Bardet-Biedl syndrome aged 6 or older. FDA https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-weight-management-patients-bardet-biedl-syndrome-aged-6-or-older (2022).

  170. Collet, T. H. et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol. Metab. 6, 1321–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sharma, S. et al. Current mechanistic and pharmacodynamic understanding of melanocortin-4 receptor activation. Molecules 24, 1892 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kanti, V. et al. A Melanocortin-4 receptor agonist induces skin and hair pigmentation in patients with monogenic mutations in the leptin-melanocortin pathway. Skin. Pharmacol. Physiol. 34, 307–316 (2021).

    CAS  PubMed  Google Scholar 

  173. Sutton, A. K. & Krashes, M. J. Integrating hunger with rival motivations. Trends Endocrinol. Metab. 31, 495–507 (2020).

    CAS  PubMed  Google Scholar 

  174. Marks, D. L., Hruby, V., Brookhart, G. & Cone, R. D. The regulation of food intake by selective stimulation of the type 3 melanocortin receptor (MC3R). Peptides 27, 259–264 (2006).

    CAS  PubMed  Google Scholar 

  175. Lee, M. et al. Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides 29, 440–447 (2008).

    CAS  PubMed  Google Scholar 

  176. Herpertz-Dahlmann, B., Holtkamp, K. & Konrad, K. Eating disorders: anorexia and bulimia nervosa. Handb. Clin. Neurol. 106, 447–462 (2012).

    CAS  PubMed  Google Scholar 

  177. Klawonn, A. M. et al. Motivational valence is determined by striatal melanocortin 4 receptors. J. Clin. Invest. 128, 3160–3170 (2018).

    PubMed  PubMed Central  Google Scholar 

  178. Lim, B. K., Huang, K. W., Grueter, B. A., Rothwell, P. E. & Malenka, R. C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chaki, S. & Okuyama, S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides 26, 1952–1964 (2005).

    CAS  PubMed  Google Scholar 

  180. Garnsey, M. R. et al. Discovery of the potent and selective MC4R antagonist PF-07258669 for the potential treatment of appetite loss. J. Med. Chem. 66, 3195–3211 (2023).

    CAS  PubMed  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05113940 (2022).

  182. Gruber, K. A. et al. Development of a therapeutic peptide for cachexia suggests a platform approach for drug-like peptides. ACS Pharmacol. Transl. Sci. 5, 344–361 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Israeli, H. et al. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 372, 808–814 (2021).

    CAS  PubMed  Google Scholar 

  184. Heyder, N. A. et al. Structures of active melanocortin-4 receptor-Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Res. 31, 1176–1189 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Langendonk, J. G. et al. Afamelanotide for erythropoietic protoporphyria. N. Engl. J. Med. 373, 48–59 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of NIH grants DK126715 (R.D.C.), F32HD095620 (P.S.), K99DK127065 (P.S.), R00 DK127065 (P.S.), Brain and Behaviour Research Foundation Young Investigator Award (P.S.), Foundation for Prader Willi Research (P.S.), Courage Therapeutics (R.D.C.) and The Klarman Family Foundation (R.D.C.). The authors thank R. Arora (Life Sciences Institute, University of Michigan) for assistance in preparing the first drafts of the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this manuscript.

Corresponding author

Correspondence to Roger D. Cone.

Ethics declarations

Competing interests

P.S., L.E.G., R.D.C. and the University of Michigan hold equity in Courage Therapeutics Inc. and are inventors of intellectual property optioned to Courage Therapeutics Inc.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Roger Adan, Ya-Xiong Tao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweeney, P., Gimenez, L.E., Hernandez, C.C. et al. Targeting the central melanocortin system for the treatment of metabolic disorders. Nat Rev Endocrinol 19, 507–519 (2023). https://doi.org/10.1038/s41574-023-00855-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00855-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing