Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes?

Abstract

A perplexing feature of type 1 diabetes (T1D) is that the immune system destroys pancreatic β-cells but not neighbouring α-cells, even though both β-cells and α-cells are dysfunctional. Dysfunction, however, progresses to death only for β-cells. Recent findings indicate important differences between these two cell types. First, expression of BCL2L1, a key antiapoptotic gene, is higher in α-cells than in β-cells. Second, endoplasmic reticulum (ER) stress-related genes are differentially expressed, with higher expression levels of pro-apoptotic CHOP in β-cells than in α-cells and higher expression levels of HSPA5 (which encodes the protective chaperone BiP) in α-cells than in β-cells. Third, expression of viral recognition and innate immune response genes is higher in α-cells than in β-cells, contributing to the enhanced resistance of α-cells to coxsackievirus infection. Fourth, expression of the immune-inhibitory HLA-E molecule is higher in α-cells than in β-cells. Of note, α-cells are less immunogenic than β-cells, and the CD8+ T cells invading the islets in T1D are reactive to pre-proinsulin but not to glucagon. We suggest that this finding is a result of the enhanced capacity of the α-cell to endure viral infections and ER stress, which enables them to better survive early stressors that can cause cell death and consequently amplify antigen presentation to the immune system. Moreover, the processing of the pre-proglucagon precursor in enteroendocrine cells might favour immune tolerance towards this potential self-antigen compared to pre-proinsulin.

Key points

  • Pancreatic β-cells and α-cells are both dysfunctional in type 1 diabetes (T1D) but, while β-cells are killed, α-cells survive.

  • Exposure of islet cells to interferon-α (IFNα), a cytokine that is induced early in T1D pathogenesis, induces expression of both similar genes (such as HLA-related genes) and different genes (such as BCL2L1, endoplasmic reticulum (ER) stress-related genes, innate immune response genes and antiviral response genes) in β-cells and α-cells.

  • Expression of candidate genes for T1D shows major differences between β-cells and α-cells.

  • The antigen presentation capacity seems similar in β-cells and α-cells, but either α-cells are less antigenic than β-cells (perhaps owing to higher HLA-E expression) or their capacity to better endure viral infections and ER stress increases their survival when facing diabetogenic stressors and thus decreases antigen presentation.

  • Pre-proglucagon processing in enteroendocrine cells might favour immune tolerance towards glucagon and further limit α-cell immunogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunofluorescence imaging of islets in individuals with T1D and with normoglycaemia.
Fig. 2: Different basal and IFNα-induced gene expression in α-like and β-like cells.
Fig. 3: Points of increased resistance of α-cells to different stressors and to autoimmunity as compared to β-cells.

Similar content being viewed by others

Data availability

The data used to create Fig. 2 are available in ref. 33.

References

  1. Carre, A. & Mallone, R. Making insulin and staying out of autoimmune trouble: the beta-cell conundrum. Front. Immunol. 12, 639682 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, A. M. et al. Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proc. Natl Acad. Sci. USA 118, e2107208118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonzalez-Duque, S. et al. Conventional and neo-antigenic peptides presented by β cells are targeted by circulating naive CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab. 28, 946–960.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Azoury, M. E. et al. Peptides derived from insulin granule proteins are targeted by CD8+ T cells across MHC class I restrictions in humans and NOD mice. Diabetes 69, 2678–2690 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Damond, N. et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 29, 755–768.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Campbell-Thompson, M. L. et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56, 2541–2543 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Carre, A., Richardson, S. J., Larger, E. & Mallone, R. Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset? Diabetologia 64, 15–25 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Brissova, M. et al. α Cell function and gene expression are compromised in type 1 diabetes. Cell Rep. 22, 2667–2676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martinez, M. S. et al. The role of the α cell in the pathogenesis of diabetes: a world beyond the mirror. Int. J. Mol. Sci. 22, 9504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Unger, R. H. & Orci, L. The role of glucagon in the endogenous hyperglycemia of diabetes mellitus. Annu. Rev. Med. 28, 119–130 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. Raskin, P. & Unger, R. H. Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N. Engl. J. Med. 299, 433–436 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Müller, W. A., Faloona, G. R., Aguilar-Parada, E. & Unger, R. H. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N. Engl. J. Med. 283, 109–115 (1970).

    Article  PubMed  Google Scholar 

  14. Doliba, N. M. et al. α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody-positive individuals. J. Clin. Invest. 132, e156243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gromada, J., Chabosseau, P. & Rutter, G. A. The α-cell in diabetes mellitus. Nat. Rev. Endocrinol. 14, 694–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Camunas-Soler, J. et al. Patch-Seq links single-cell transcriptomes to human islet dysfunction in diabetes. Cell Metab. 31, 1017–1031.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bosco, D. et al. Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes 59, 1202–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campbell, J. E. & Newgard, C. B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 22, 142–158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bosi, E., Marchetti, P., Rutter, G. A. & Eizirik, D. L. Human alpha cell transcriptomic signatures of types 1 and 2 diabetes highlight disease-specific dysfunction pathways. iScience 25, 105056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eizirik, D. L., Pasquali, L. & Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol. 16, 349–362 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Doyle, A. C. in The Complete Sherlock Holmes (Hamlyn, 1984).

  22. Tesi, M. et al. Pro-inflammatory cytokines induce insulin and glucagon double positive human islet cells that are resistant to apoptosis. Biomolecules 11, 320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lahnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benninger, R. K., Head, W. S., Zhang, M., Satin, L. S. & Piston, D. W. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J. Physiol. 589, 5453–5466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moede, T., Leibiger, I. B. & Berggren, P. O. Alpha cell regulation of beta cell function. Diabetologia 63, 2064–2075 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Kaestner, K. H., Powers, A. C., Naji, A., Consortium, H. & Atkinson, M. A. NIH initiative to improve understanding of the pancreas, islet, and autoimmunity in type 1 diabetes: the Human Pancreas Analysis Program (HPAP). Diabetes 68, 1394–1402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fasolino, M. et al. Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nat. Metab. 4, 284–299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Colli, M. L. et al. An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nat. Commun. 11, 2584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramos-Rodriguez, M. et al. The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nat. Genet. 51, 1588–1595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szymczak, F. et al. Transcription and splicing regulation by NLRC5 shape the interferon response in human pancreatic β cells. Sci. Adv. 8, eabn5732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandra, V. et al. The type 1 diabetes gene TYK2 regulates β-cell development and its responses to interferon-α. Nat. Commun. 13, 6363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Leite, N. C., Pelayo, G. C. & Melton, D. A. Genetic manipulation of stress pathways can protect stem-cell-derived islets from apoptosis in vitro. Stem Cell Rep. 17, 766–774 (2022).

    Article  CAS  Google Scholar 

  37. Sintov, E. et al. Whole-genome CRISPR screening identifies genetic manipulations to reduce immune rejection of stem cell-derived islets. Stem Cell Rep. 17, 1976–1990 (2022).

    Article  CAS  Google Scholar 

  38. Demine, S. et al. Pro-inflammatory cytokines induce cell death, inflammatory responses, and endoplasmic reticulum stress in human iPSC-derived beta cells. Stem Cell Res. Ther. 11, 7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kallionpaa, H. et al. Standard of hygiene and immune adaptation in newborn infants. Clin. Immunol. 155, 136–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Oresic, M. et al. Cord serum lipidome in prediction of islet autoimmunity and type 1 diabetes. Diabetes 62, 3268–3274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heninger, A. K. et al. Activation of islet autoreactive naive T cells in infants is influenced by homeostatic mechanisms and antigen-presenting capacity. Diabetes 62, 2059–2066 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tretina, K., Park, E. S., Maminska, A. & MacMicking, J. D. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J. Exp. Med. 216, 482–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Honkala, A. T., Tailor, D. & Malhotra, S. V. Guanylate-binding protein 1: an emerging target in inflammation and cancer. Front. Immunol. 10, 3139 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Pagani, I., Poli, G. & Vicenzi, E. TRIM22. A multitasking antiviral factor. Cells 10, 1864 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeong, S. I. et al. XAF1 forms a positive feedback loop with IRF-1 to drive apoptotic stress response and suppress tumorigenesis. Cell Death Dis. 9, 806 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tessier, M. C. et al. Type 1 diabetes and the OAS gene cluster: association with splicing polymorphism or haplotype? J. Med. Genet. 43, 129–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Op de Beeck, A. & Eizirik, D. L. Viral infections in type 1 diabetes mellitus – why the β cells? Nat. Rev. Endocrinol. 12, 263–273 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Dunne, J. L. et al. Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia 62, 744–753 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lloyd, R. E., Tamhankar, M. & Lernmark, A. Enteroviruses and type 1 diabetes: multiple mechanisms and factors? Annu. Rev. Med. 73, 483–499 (2022).

    Article  PubMed  Google Scholar 

  51. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winkler, C. et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes 60, 685–690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marroqui, L. et al. Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells. eLife 4, e06990 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nigi, L. et al. Increased expression of viral sensor MDA5 in pancreatic islets and in hormone-negative endocrine cells in recent onset type 1 diabetic donors. Front. Immunol. 13, 833141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Welsh, N. et al. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol. Med. 1, 806–820 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lenzen, S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim. Biophys. Acta Gen. Subj. 1861, 1929–1942 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Redondo, M. J. et al. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol. 10, 597–608 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Szymczak, F., Colli, M. L., Mamula, M. J., Evans-Molina, C. & Eizirik, D. L. Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Sci. Adv. 7, eabd7600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eizirik, D. L. et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mawla, A. M. & Huising, M. O. Navigating the depths and avoiding the shallows of pancreatic islet cell transcriptomes. Diabetes 68, 1380–1393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marroqui, L. et al. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 63, 2516–2527 (2014).

    Article  PubMed  Google Scholar 

  63. Rasschaert, J. et al. Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA + interferon-γ-induced apoptosis in primary pancreatic β-cells. J. Biol. Chem. 280, 33984–33991 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Garcia, M. et al. Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells. Biochim. Biophys. Acta 1793, 1768–1775 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Colli, M. L., Moore, F., Gurzov, E. N., Ortis, F. & Eizirik, D. L. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA. Hum. Mol. Genet. 19, 135–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Richardson, S. J., Morgan, N. G. & Foulis, A. K. Pancreatic pathology in type 1 diabetes mellitus. Endocr. Pathol. 25, 80–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Kallionpaa, H. et al. Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63, 2402–2414 (2014).

    Article  PubMed  Google Scholar 

  68. Ferreira, R. C. et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63, 2538–2550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lundberg, M., Krogvold, L., Kuric, E., Dahl-Jorgensen, K. & Skog, O. Expression of interferon-stimulated genes in insulitic pancreatic islets of patients recently diagnosed with type 1 diabetes. Diabetes 65, 3104–3110 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Krogvold, L. et al. Detection of antiviral tissue responses and increased cell stress in the pancreatic islets of newly diagnosed type 1 diabetes patients: results from the DiViD study. Front. Endocrinol. 13, 881997 (2022).

    Article  Google Scholar 

  71. Marroqui, L. et al. Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia 60, 656–667 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Cho, H. et al. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lucas, T. M., Richner, J. M. & Diamond, M. S. The interferon-stimulated gene Ifi27l2a restricts West Nile virus infection and pathogenesis in a cell-type- and region-specific manner. J. Virol. 90, 2600–2615 (2015).

    Article  PubMed  Google Scholar 

  74. Croft, N. P. et al. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog. 9, e1003129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Colli, M. L., Szymczak, F. & Eizirik, D. L. Molecular footprints of the immune assault on pancreatic beta cells in type 1 diabetes. Front. Endocrinol. 11, 568446 (2020).

    Article  Google Scholar 

  76. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Borst, L., van der Burg, S. H. & van Hall, T. The NKG2A-HLA-E axis as a novel checkpoint in the tumor microenvironment. Clin. Cancer Res. 26, 5549–5556 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Schuit, F. C., In’t Veld, P. A. & Pipeleers, D. G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl Acad. Sci. USA 85, 3865–3869 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eizirik, D. L. & Cnop, M. ER stress in pancreatic β cells: the thin red line between adaptation and failure. Sci. Signal. 3, pe7 (2010).

    Article  PubMed  Google Scholar 

  80. Sahin, G. S., Lee, H. & Engin, F. An accomplice more than a mere victim: the impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol. Metab. 54, 101365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yong, J., Johnson, J. D., Arvan, P., Han, J. & Kaufman, R. J. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 17, 455–467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marchetti, P. et al. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50, 2486–2494 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Marhfour, I. et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417–2420 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Engin, F. et al. Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci. Transl Med. 5, 211ra156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen, C. W. et al. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat. Commun. 13, 4621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marroqui, L. et al. Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. EBioMedicine 2, 378–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. James, E. A., Mallone, R., Kent, S. C. & DiLorenzo, T. P. T-cell epitopes and neo-epitopes in type 1 diabetes: a comprehensive update and reappraisal. Diabetes 69, 1311–1335 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Moriyama, H. et al. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse. Proc. Natl Acad. Sci. USA 100, 10376–10381 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nakayama, M. et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krishnamurthy, B. et al. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest. 116, 3258–3265 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kracht, M. J. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Delong, T. et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science 351, 711–714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Babon, J. A. et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat. Med. 22, 1482–1487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baker, R. L. et al. Hybrid insulin peptides are autoantigens in type 1 diabetes. Diabetes 68, 1830–1840 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wiles, T. A. et al. Characterization of human CD4 T cells specific for a C-peptide/C-peptide hybrid insulin peptide. Front. Immunol. 12, 668680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Skowera, A. et al. CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J. Clin. Invest. 118, 3390–3402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kronenberg-Versteeg, D. et al. Molecular pathways for immune recognition of preproinsulin signal peptide in type 1 diabetes. Diabetes 67, 687–696 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Wan, X. et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 560, 107–111 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mallone, R. & Eizirik, D. L. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia 63, 1999–2006 (2020).

    Article  PubMed  Google Scholar 

  100. Scotto, M. et al. Zinc transporter (ZnT)8186–194 is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia 55, 2026–2031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Culina, S. et al. Islet-reactive CD8+ T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci. Immunol. 3, eaao4013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Blancou, P. et al. Immunization of HLA class I transgenic mice identifies autoantigenic epitopes eliciting dominant responses in type 1 diabetes patients. J. Immunol. 178, 7458–7466 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. MacDonald, P. E. & Rorsman, P. Metabolic messengers: glucagon. Nat. Metab. 5, 186–192 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Foster, M. C., Leapman, R. D., Li, M. X. & Atwater, I. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64, 525–532 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bach, J. F. The multi-faceted zinc dependency of the immune system. Immunol. Today 2, 225–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  107. Prasad, A. S. Lessons learned from experimental human model of zinc deficiency. J. Immunol. Res. 2020, 9207279 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Haase, H. et al. Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J. Immunol. 181, 6491–6502 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, M. et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 208, 775–785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Acevedo-Murillo, J. A. et al. Zinc supplementation promotes a Th1 response and improves clinical symptoms in fewer hours in children with pneumonia younger than 5 years old. A randomized controlled clinical trial. Front. Pediatr. 7, 431 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Beck, F. W., Prasad, A. S., Kaplan, J., Fitzgerald, J. T. & Brewer, G. J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol. 272, E1002–E1007 (1997).

    CAS  PubMed  Google Scholar 

  112. Hostens, K. et al. Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. J. Clin. Invest. 104, 67–72 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodriguez-Calvo, T. et al. Increase in pancreatic proinsulin and preservation of β-cell mass in autoantibody-positive donors prior to type 1 diabetes onset. Diabetes 66, 1334–1345 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wasserfall, C. et al. Persistence of pancreatic insulin mRNA expression and proinsulin protein in type 1 diabetes pancreata. Cell Metab. 26, 568–575.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sims, E. K. et al. Elevations in the fasting serum proinsulin-to-C-peptide ratio precede the onset of type 1 diabetes. Diabetes Care 39, 1519–1526 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sims, E. K., Evans-Molina, C., Tersey, S. A., Eizirik, D. L. & Mirmira, R. G. Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia 61, 2259–2265 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weiner, H. L., da Cunha, A. P., Quintana, F. & Wu, H. Oral tolerance. Immunol. Rev. 241, 241–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hadjiyanni, I., Siminovitch, K. A., Danska, J. S. & Drucker, D. J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 53, 730–740 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Thorel, F. et al. Normal glucagon signaling and β-cell function after near-total α-cell ablation in adult mice. Diabetes 60, 2872–2882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.L.E. acknowledges the support of grants from the Welbio-FNRS (Fonds National de la Recherche Scientifique) (WELBIO-CR-2019C-04), Belgium; the Dutch Diabetes Research Foundation (Innovate2CureType1), Netherlands; the JDRF (3-SRA-2022-1201-S-B); the National Institutes of Health Human Islet Research Network Consortium on Beta Cell Death & Survival from Pancreatic β-Cell Gene Networks to Therapy (HIRN-CBDS) (grant U01 DK127786). D.L.E. and R.M. acknowledge support from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreements 115797 (INNODIA) and 945268 (INNODIA HARVEST). These joint undertakings receive support from the European Union’s Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Associations (EFPIA), JDRF, and The Leona M. and Harry B. Helmsley Charitable Trust. F.S. is supported by a Research Fellow (Aspirant) fellowship from the Fonds National de la Recherche Scientifique (FNRS, Belgium). R.M. acknowledges the support of grants from Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Medicale (EQU20193007831), and from The Leona M. and Harry B. Helmsley Charitable Trust to INSERM.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote sections of the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Decio L. Eizirik.

Ethics declarations

Competing interests

D.L.E. received grant support from Eli Lilly, Indianapolis, IN, for research on new approaches to protect pancreatic β-cells in T1D (not directly related to the present study). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Maureen Gannon, Jason Collier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

Relevant publications were identified by searching the PubMed database (1 January 2005 to September 2022) using combinations of the following terms: ‘pancreatic beta cells’, ‘pancreatic alpha cells’, ‘pancreatic β-cells’, ‘pancreatic α-cells’, ‘pancreatic islets’, ‘insulin release’, ‘insulin secretion’, ‘glucagon release’, ‘glucagon secretion’, ‘diabetes’, ‘type 1 diabetes’, ‘type 2 diabetes’, ‘pathogenesis’, ‘histology’, ‘transcriptome’, ‘genetics’, ‘candidate genes’, ‘islet gene regulation’, ‘islet epigenomics’, ‘viral infection’, ‘endoplasmic reticulum stress’ and ‘apoptosis’. We preferentially selected publications from the past 5 years, plus earlier key publications for citation (of note, the literature on α-cells in T1D is rather limited). Some references cited in these papers or in relevant articles related to the fate of pancreatic β-cells and α-cells in diabetes were also searched manually. All selected papers were full-text articles in English. Review articles are often cited to provide the readers with additional references.

Glossary

Antigens

Molecular structures (proteins, peptides, polysaccharides, lipids or nucleic acids) that can bind to an antigen receptor (for example, antibodies for B cells and T cell receptors for T cells) and trigger an immune response. Antigens can originate from within the body (self-antigens or autoantigens) or from the external environment (foreign antigens).

Candidate genes

Genes related to particular traits that either increase or decrease the risk of disease, either as a result of their protein product or their position on a chromosome.

Epitopes

The specific parts of the antigen (most commonly peptides) to which antigen receptors bind.

Gene set enrichment analysis

Computational method to determine whether an a priori defined set of genes shows statistically significant differences between two biological states (for example, phenotypes).

Immune tolerance

The state of unresponsiveness of the immune system to antigens that have the potential to induce an immune response. Immune tolerance to self-antigens is achieved through both central tolerance and peripheral tolerance mechanisms in the thymus and in the periphery, respectively.

Insulitis

Inflammation of the islets of Langerhans, characterized by infiltration of immune cells within and at the periphery of islets.

Leading edges

Subsets of genes in a gene set that contribute the most to the enrichment or depletion in a gene set enrichment analysis.

Neoantigens

Peptide sequences not templated in the genome that can be preferentially recognized as non-self and trigger autoimmunity. Neoantigens can be generated by mis-initiated mRNA transcription, alternative mRNA splicing and post-translational modifications (that is, the addition of chemical groups to amino acid residues or the fusion of non-contiguous fragments from the same protein (cis-splicing) or of two fragments from different proteins (trans-splicing, generating so-called hybrid peptides)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eizirik, D.L., Szymczak, F. & Mallone, R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes?. Nat Rev Endocrinol 19, 425–434 (2023). https://doi.org/10.1038/s41574-023-00826-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00826-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing