Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action

Abstract

Responses to hormones that act through nuclear receptors are controlled by modulating hormone concentrations not only in the circulation but also within target tissues. The role of enzymes that amplify or reduce local hormone concentrations is well established for glucocorticoid and other lipophilic hormones; moreover, transmembrane transporters have proven critical in determining tissue responses to thyroid hormones. However, there has been less consideration of the role of transmembrane transport for steroid hormones. ATP-binding cassette (ABC) proteins were first shown to influence the accumulation of glucocorticoids in cells almost three decades ago, but observations over the past 10 years suggest that differential transport propensities of both exogenous and endogenous glucocorticoids by ABCB1 and ABCC1 transporters provide a mechanism whereby different tissues are preferentially sensitive to different steroids. This Review summarizes this evidence and the new insights provided for the physiology and pharmacology of glucocorticoid action, including new approaches to glucocorticoid replacement.

Key points

  • Humans have two circulating glucocorticoid hormones, cortisol and corticosterone, which diffuse into cells to become transcription factors when bound to their intracellular receptors.

  • The availability of glucocorticoids to interact with their receptors depends not only on their plasma concentration but also on their intracellular concentration, which is modulated by intracellular enzymes and by transmembrane transporters.

  • Glucocorticoids are susceptible to cellular export by membrane transporters from the ABC (ATP-binding cassette) transporter family: cortisol is a substrate for the ABCB1 transporter, and corticosterone for ABCC1.

  • Tissues expressing ABCB1 (such as the brain) might be relatively sensitive to corticosterone over cortisol; those expressing ABCC1, such as adipose, might be more sensitive to cortisol.

  • In future, therapeutic glucocorticoids could be selected on the basis of lower tendency to be exported from sites of efficacy and higher tendency for export from sites where harmful adverse effects occur.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Action and structure of ABCB1 and ABCC1.
Fig. 2: Tissue-specific expression of ABCB1 and ABCC1.
Fig. 3: Tissue ABC transporter expression determines glucocorticoid sensitivity.
Fig. 4: Intracellular glucocorticoid regulatory pathways.
Fig. 5: Modulation of the hypothalamic–pituitary–adrenal (HPA) axis by ABCB1 and ABCC1.

Similar content being viewed by others

References

  1. Walker, B. R. Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 157, 545–559 (2007).

    Article  CAS  Google Scholar 

  2. Hammond, G. L. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J. Endocrinol. 230, R13–R25 (2016).

    Article  CAS  Google Scholar 

  3. Seckl, J. R. & Walker, B. R. Minireview: 11β-hydroxysteroid dehydrogenase type 1 – a tissue-specific amplifier of glucocorticoid action. Endocrinology 142, 1371–1376 (2001).

    Article  CAS  Google Scholar 

  4. Karssen, A. M. et al. Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142, 2686–2694 (2001).

    Article  CAS  Google Scholar 

  5. Meijer, O. C. et al. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139, 1789–1793 (1998).

    Article  CAS  Google Scholar 

  6. Nixon, M. et al. ABCC1 confers tissue-specific sensitivity to cortisol versus corticosterone: a rationale for safer glucocorticoid replacement therapy. Sci. Transl. Med. 8, 352ra109 (2016). This study shows the specificity of ABCC1 for the transport of corticosterone over cortisol in humans and rodents adipose.

    Article  Google Scholar 

  7. Mendel, C. M. The Free Hormone Hypothesis: a physiologically based mathematical model. Endocr. Rev. 10, 232–274 (1989).

    Article  CAS  Google Scholar 

  8. Ponec, M. & Kempenaar, J. A. Biphasic entry of glucocorticoids into cultured human skin keratinocytes and fibroblasts. Arch. Dermatol. Res. 275, 334–344 (1983).

    Article  CAS  Google Scholar 

  9. Friesema, E. C. et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278, 40128–40135 (2003).

    Article  CAS  Google Scholar 

  10. Friesema, E. C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).

    Article  CAS  Google Scholar 

  11. Okamoto, N. et al. A membrane transporter Is required for steroid hormone uptake in Drosophila. Dev. Cell 47, 294–305.e7 (2018).

    Article  CAS  Google Scholar 

  12. Allera, A. & Wildt, L. Glucocorticoid-recognizing and -effector sites in rat liver plasma membrane. Kinetics of corticosterone uptake by isolated membrane vesicles–II. Comparative influx and efflux. J. Steroid Biochem. Mol. Biol. 42, 757–771 (1992).

    Article  CAS  Google Scholar 

  13. Bossuyt, X., Muller, M., Hagenbuch, B. & Meier, P. J. Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J. Pharmacol. Exp. Ther. 276, 891–896 (1996).

    CAS  Google Scholar 

  14. Mason, B. L., Pariante, C. M., Jamel, S. & Thomas, S. A. Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood-CNS barriers and nonbarrier regions. Endocrinology 151, 5294–5305 (2010).

    Article  CAS  Google Scholar 

  15. Juan-Carlos, P. M., Perla-Lidia, P. P., Stephanie-Talia, M. M., Mónica-Griselda, A. M. & Luz-María, T. E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol. Biol. Rep. 48, 1883–1901 (2021).

    Article  CAS  Google Scholar 

  16. Silverton, L., Dean, M. & Moitra, K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease. Drug Metabol. Drug Interact. 26, 169–179 (2011).

    Article  CAS  Google Scholar 

  17. Vasiliou, V., Vasiliou, K. & Nebert, D. W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics 3, 281–290 (2009).

    Article  CAS  Google Scholar 

  18. Wilkens, S. Structure and mechanism of ABC transporters. F1000prime Rep. 7, 14 (2015).

    Article  Google Scholar 

  19. Seeger, M. A. & van Veen, H. W. Molecular basis of multidrug transport by ABC transporters. Biochim. Biophys. Acta 1794, 725–737 (2009).

    Article  CAS  Google Scholar 

  20. Kang, J. et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 107, 2355–2360 (2010).

    Article  CAS  Google Scholar 

  21. Hodges, L. M. et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet. Genomics 21, 152–161 (2011).

    Article  CAS  Google Scholar 

  22. Sissung, T. M. et al. Pharmacogenetics of membrane transporters: an update on current approaches. Mol. Biotechnol. 44, 152–167 (2010).

    Article  CAS  Google Scholar 

  23. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  Google Scholar 

  24. Esser, L. et al. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem. 292, 446–461 (2017).

    Article  CAS  Google Scholar 

  25. Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756 (2019). This paper provides novel insights into the structure and mechanism of human ABCB1.

    Article  CAS  Google Scholar 

  26. Lusvarghi, S., Robey, R. W., Gottesman, M. M. & Ambudkar, S. V. Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Res https://doi.org/10.12688/f1000research.21295.1 (2020).

    Article  Google Scholar 

  27. Nosol, K. et al. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc. Natl. Acad. Sci. USA 117, 26245–26253 (2020).

    Article  CAS  Google Scholar 

  28. Mares-Sámano, S., Badhan, R. & Penny, J. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Eur. J. Med. Chem. 44, 3601–3611 (2009).

    Article  Google Scholar 

  29. Gross, S. R., Aronow, L. & Pratt, W. B. The active transport of cortisol by mouse fibroblasts growing in vitro. Biochem. Biophys. Res. Commun. 32, 66–72 (1968).

    Article  CAS  Google Scholar 

  30. Ueda, K. et al. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267, 24248–24252 (1992). The original study showing that ABCB1 is a steroid transporter.

    Article  CAS  Google Scholar 

  31. Bourgeois, S., Gruol, D. J., Newby, R. F. & Rajah, F. M. Expression of an mdr gene is associated with a new form of resistance to dexamethasone-induced apoptosis. Mol. Endocrinol. 7, 840–851 (1993).

    CAS  Google Scholar 

  32. Yates, C. R. et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm. Res. 20, 1794–1803 (2003).

    Article  CAS  Google Scholar 

  33. Crowe, A. & Tan, A. M. Oral and inhaled corticosteroids: differences in P-glycoprotein (ABCB1) mediated efflux. Toxicol. Appl. Pharmacol. 260, 294–302 (2012).

    Article  CAS  Google Scholar 

  34. Yang, C. P., DePinho, S. G., Greenberger, L. M., Arceci, R. J. & Horwitz, S. B. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J. Biol. Chem. 264, 782–788 (1989).

    Article  CAS  Google Scholar 

  35. Wolf, D. C. & Horwitz, S. B. P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. Int. J. Cancer 52, 141–146 (1992).

    Article  CAS  Google Scholar 

  36. Lopez, J. P. et al. Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation. Sci. Adv. https://doi.org/10.1126/sciadv.abe4497 (2021). The authors use a variety of approaches to show the role of ABCB1 in humans and rodents in modulating steroid secretion and the HPA axis. Single-cell RNA profiling details expression of Abcb1a and Abcb1b across the axis.

    Article  Google Scholar 

  37. Medh, R. D., Lay, R. H. & Schmidt, T. J. Agonist-specific modulation of glucocorticoid receptor-mediated transcription by immunosuppressants. Mol. Cell. Endocrinol. 138, 11–23 (1998).

    Article  CAS  Google Scholar 

  38. Pariante, C. M. et al. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br. J. Pharmacol. 134, 1335–1343 (2001).

    Article  CAS  Google Scholar 

  39. Webster, J. I. & Carlstedt-Duke, J. Involvement of multidrug resistance proteins (MDR) in the modulation of glucocorticoid response. J. Steroid Biochem. Mol. Biol. 82, 277–288 (2002). This study in a murine cell line shows the specificity of Abcb1 for transport of cortisol over corticosterone, and of Abcc1 for transport of corticosterone over cortisol in vitro.

    Article  CAS  Google Scholar 

  40. Peng, R., Zhang, H., Zhang, Y. & Wei, D. Y. Impacts of ABCB1 (G1199A) polymorphism on resistance, uptake, and efflux to steroid drugs. Xenobiotica 46, 948–952 (2016).

    Article  CAS  Google Scholar 

  41. Pajic, M., Norris, M. D., Cohn, S. L. & Haber, M. The role of the multidrug resistance-associated protein 1 gene in neuroblastoma biology and clinical outcome. Cancer Lett. 228, 241–246 (2005).

    Article  CAS  Google Scholar 

  42. Paprocka, M. et al. MRP1 protein expression in leukemic stem cells as a negative prognostic marker in acute myeloid leukemia patients. Eur. J. Haematol. 99, 415–422 (2017).

    Article  CAS  Google Scholar 

  43. Cole, S. P. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    Article  CAS  Google Scholar 

  44. Cole, S. P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem. 289, 30880–30888 (2014).

    Article  CAS  Google Scholar 

  45. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9 (2017). This paper on bovine ABCC1 provides the best insight into the structure and function of the protein.

    Article  CAS  Google Scholar 

  46. Stride, B. D. et al. Pharmacological characterization of the murine and human orthologs of multidrug-resistance protein in transfected human embryonic kidney cells. Mol. Pharmacol. 52, 344–353 (1997).

    Article  CAS  Google Scholar 

  47. Higgins, C. F. & Gottesman, M. M. Is the multidrug transporter a flippase? Trends Biochem. Sci. 17, 18–21 (1992).

    Article  CAS  Google Scholar 

  48. Nishimura, M. & Naito, S. Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452–477 (2005).

    Article  CAS  Google Scholar 

  49. Flens, M. J. et al. Tissue distribution of the multidrug resistance protein. Am. J. Pathol. 148, 1237–1247 (1996).

    CAS  Google Scholar 

  50. Cole, S. P. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu. Rev. Pharmacol. Toxicol. 54, 95–117 (2014).

    Article  CAS  Google Scholar 

  51. Cordon-Cardo, C. et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86, 695–698 (1989).

    Article  CAS  Google Scholar 

  52. Gruol, D. J., Vo, Q. D. & Zee, M. C. Profound differences in the transport of steroids by two mouse P-glycoproteins. Biochem. Pharmacol. 58, 1191–1199 (1999).

    Article  CAS  Google Scholar 

  53. Su, L. et al. Abcb1a and Abcb1b genes function differentially in blood–testis barrier dynamics in the rat. Cell Death Dis. 8, e3038 (2017).

    Article  Google Scholar 

  54. Schinkel, A. H. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    Article  CAS  Google Scholar 

  55. Wagner, C. C. et al. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J. Nucl. Med. 50, 1954–1961 (2009).

    Article  Google Scholar 

  56. Schinkel, A. H., Wagenaar, E., van Deemter, L., Mol, C. A. & Borst, P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 96, 1698–1705 (1995).

    Article  CAS  Google Scholar 

  57. Uhr, M., Holsboer, F. & Muller, M. B. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J. Neuroendocrinol. 14, 753–759 (2002).

    Article  CAS  Google Scholar 

  58. Mason, B. L., Pariante, C. M. & Thomas, S. A. Changes in the brain accumulation of glucocorticoids in abcb1a-deficient CF-1 mice. J. Neuroendocrinol. 24, 1440–1446 (2012).

    Article  CAS  Google Scholar 

  59. Mason, B. L., Pariante, C. M. & Thomas, S. A. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology 149, 5244–5253 (2008).

    Article  CAS  Google Scholar 

  60. Pariante, C. M. The role of multi-drug resistance p-glycoprotein in glucocorticoid function: studies in animals and relevance in humans. Eur. J. Pharmacol. 583, 263–271 (2008).

    Article  CAS  Google Scholar 

  61. Muller, M. B. et al. ABCB1 (MDR1)-type P-glycoproteins at the blood-brain barrier modulate the activity of the hypothalamic-pituitary-adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28, 1991–1999 (2003).

    Article  Google Scholar 

  62. Thoeringer, C. K., Wultsch, T., Shahbazian, A., Painsipp, E. & Holzer, P. Multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) inhibition by tariquidar impacts on neuroendocrine and behavioral processing of stress. Psychoneuroendocrinology 32, 1028–1040 (2007).

    Article  CAS  Google Scholar 

  63. Mealey, K. L., Bentjen, S. A., Gay, J. M. & Cantor, G. H. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11, 727–733 (2001).

    Article  CAS  Google Scholar 

  64. Tappin, S. W. et al. Frequency of the mutant MDR1 allele in dogs in the UK. Vet. Rec. 171, 72 (2012).

    Article  CAS  Google Scholar 

  65. Mealey, K. L., Gay, J. M., Martin, L. G. & Waiting, D. K. Comparison of the hypothalamic–pituitary–adrenal axis in MDR1-1Δ and MDR1 wildtype dogs. J. Vet. Emerg. Crit. Care 17, 61–66 (2007). The importance of ABCB1 in modulating the HPA axis in a cortisol-dominant species is highlighted by these affected canines.

    Article  Google Scholar 

  66. Gramer, I. et al. Urinary cortisol metabolites are reduced in MDR1 mutant dogs in a pilot targeted GC-MS urinary steroid hormone metabolome analysis. J. Vet. Pharmacol. Ther. 45, 265–272 (2022).

    Article  CAS  Google Scholar 

  67. Raubenheimer, P. J., Young, E. A., Andrew, R. & Seckl, J. R. The role of corticosterone in human hypothalamic-pituitary-adrenal axis feedback. Clin. Endocrinol. 65, 22–26 (2006).

    Article  CAS  Google Scholar 

  68. Thomas, H. & Coley, H. M. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control. 10, 159–165 (2003).

    Article  Google Scholar 

  69. Bernstein, H. G. et al. Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. Mech. Ageing Dev. 141-142, 12–21 (2014).

    Article  CAS  Google Scholar 

  70. Kyle, C. J. et al. ABCC1 modulates negative feedback control of the hypothalamic-pituitary-adrenal axis in vivo in humans. Metabolism 128, 155118 (2022).

    Article  CAS  Google Scholar 

  71. Lee, M. J., Gong, D. W., Burkey, B. F. & Fried, S. K. Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: a microarray study. Am. J. Physiol. Endocrinol. Metab. 300, E571–E580 (2011).

    Article  CAS  Google Scholar 

  72. Rainey, W. E., Rehman, K. S. & Carr, B. R. Fetal and maternal adrenals in human pregnancy. Obstet. Gynecol. Clin. North. Am. 31, 817–835 (2004).

    Article  Google Scholar 

  73. Michael, A. E. & Papageorghiou, A. T. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy. Hum. Reprod. Update 14, 497–517 (2008).

    Article  CAS  Google Scholar 

  74. Larry, C. G. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH consensus development panel on the effect of corticosteroids for fetal maturation on perinatal outcomes. JAMA 273, 413–418 (1995).

    Article  Google Scholar 

  75. Brown, R. W., Chapman, K. E., Edwards, C. R. & Seckl, J. R. Human placental 11 beta-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology 132, 2614–2621 (1993).

    Article  CAS  Google Scholar 

  76. Stirrat, L. I. et al. Transfer and metabolism of cortisol by the isolated perfused human placenta. J. Clin. Endocrinol. Metab. 103, 640–648 (2018).

    Article  Google Scholar 

  77. Iqbal, M., Audette, M. C., Petropoulos, S., Gibb, W. & Matthews, S. G. Placental drug transporters and their role in fetal protection. Placenta 33, 137–142 (2012).

    Article  CAS  Google Scholar 

  78. Sun, M. et al. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta 27, 602–609 (2006).

    Article  CAS  Google Scholar 

  79. Lye, P. et al. Glucocorticoids modulate multidrug resistance transporters in the first trimester human placenta. J. Cell. Mol. Med. 22, 3652–3660 (2018).

    Article  CAS  Google Scholar 

  80. Nanovskaya, T. et al. Role of P-glycoprotein in transplacental transfer of methadone. Biochem. Pharmacol. 69, 1869–1878 (2005).

    Article  CAS  Google Scholar 

  81. Nagashige, M. et al. Basal membrane localization of MRP1 in human placental trophoblast. Placenta 24, 951–958 (2003).

    Article  CAS  Google Scholar 

  82. Pascolo, L. et al. Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem. Biophys. Res. Commun. 303, 259–265 (2003).

    Article  CAS  Google Scholar 

  83. Rahi, M. M., Heikkinen, T. M., Hakala, K. E. & Laine, K. P. The effect of probenecid and MK-571 on the feto-maternal transfer of saquinavir in dually perfused human term placenta. Eur. J. Pharm. Sci. 37, 588–592 (2009).

    Article  CAS  Google Scholar 

  84. Sippell, W. G., Becker, H., Versmold, H. T., Bidlingmaier, F. & Knorr, D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period. I. Spontaneous delivery. J. Clin. Endocrinol. Metab. 46, 971–985 (1978).

    Article  CAS  Google Scholar 

  85. Johnson, R. A., Ince, T. A. & Scotto, K. W. Transcriptional repression by p53 through direct binding to a novel DNA element. J. Biol. Chem. 276, 27716–27720 (2001).

    Article  CAS  Google Scholar 

  86. Labialle, S., Gayet, L., Marthinet, E., Rigal, D. & Baggetto, L. G. Transcriptional regulators of the human multidrug resistance 1 gene: recent views. Biochem. Pharmacol. 64, 943–948 (2002).

    Article  CAS  Google Scholar 

  87. Scotto, K. W. Transcriptional regulation of ABC drug transporters. Oncogene 22, 7496–7511 (2003).

    Article  CAS  Google Scholar 

  88. Yan, J. & Xie, W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharmaceutica Sin. B 6, 450–452 (2016).

    Article  Google Scholar 

  89. Miller, D. S. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol. Sci. 31, 246–254 (2010).

    Article  CAS  Google Scholar 

  90. Zhou, S. F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38, 802–832 (2008).

    Article  CAS  Google Scholar 

  91. Andersen, V., Christensen, J., Overvad, K., Tjønneland, A. & Vogel, U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer 10, 484 (2010).

    Article  Google Scholar 

  92. Demeule, M., Jodoin, J., Beaulieu, E., Brossard, M. & Béliveau, R. Dexamethasone modulation of multidrug transporters in normal tissues. FEBS Lett. 442, 208–214 (1999).

    Article  CAS  Google Scholar 

  93. Iqbal, M., Gibb, W. & Matthews, S. G. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology 152, 1067–1079 (2011).

    Article  CAS  Google Scholar 

  94. Manceau, S. et al. Expression and induction by dexamethasone of ABC transporters and nuclear receptors in a human T-lymphocyte cell line. J. Chemother. 24, 48–55 (2012).

    Article  CAS  Google Scholar 

  95. Narang, V. S. et al. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood-brain barrier. Am. J. Physiol. Cell Physiol. 295, C440–C450 (2008).

    Article  CAS  Google Scholar 

  96. Perloff, M. D., von Moltke, L. L. & Greenblatt, D. J. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica 34, 133–150 (2004).

    Article  CAS  Google Scholar 

  97. Zhang, Y. et al. Expression and activity of p-glycoprotein elevated by dexamethasone in cultured retinal pigment epithelium involve glucocorticoid receptor and pregnane X receptor. Investig. Ophthalmol. Vis. Sci. 53, 3508–3515 (2012).

    Article  CAS  Google Scholar 

  98. Nishimura, M. et al. Comparison of inducibility of multidrug resistance (MDR)1, multidrug resistance-associated protein (MRP)1, and MRP2 mRNAs by prototypical microsomal enzyme inducers in primary cultures of human and cynomolgus monkey hepatocytes. Biol. Pharm. Bull. 31, 2068–2072 (2008).

    Article  CAS  Google Scholar 

  99. Pascussi, J.-M., Drocourt, L., Fabre, J.-M., Maurel, P. & Vilarem, M.-J. Dexamethasone induces pregnane X receptor and retinoid X receptor-α expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol. Pharmacol. 58, 361–372 (2000).

    Article  CAS  Google Scholar 

  100. Pascussi, J. M., Busson-Le Coniat, M., Maurel, P. & Vilarem, M. J. Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: identification of a distal glucocorticoid response element. Mol. Endocrinol. 17, 42–55 (2003).

    Article  CAS  Google Scholar 

  101. Lin, J. L., Lin-Tan, D. T., Chen, K. H. & Huang, W. H. Repeated pulse of methylprednisolone and cyclophosphamide with continuous dexamethasone therapy for patients with severe paraquat poisoning. Crit. Care Med. 34, 368–373 (2006).

    Article  CAS  Google Scholar 

  102. Katayama, K. et al. Revealing the fate of cell surface human P-glycoprotein (ABCB1): the lysosomal degradation pathway. Biochim. Biophys. Acta 1853, 2361–2370 (2015).

    Article  CAS  Google Scholar 

  103. Zhu, Q. & Center, M. S. Evidence that SP1 modulates transcriptional activity of the multidrug resistance-associated protein gene. DNA Cell Biol. 15, 105–111 (1996).

    Article  CAS  Google Scholar 

  104. Wang, Q. & Beck, W. T. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res. 58, 5762–5769 (1998).

    CAS  Google Scholar 

  105. Kauffmann, H. M. et al. Influence of redox-active compounds and PXR-activators on human MRP1 and MRP2 gene expression. Toxicology 171, 137–146 (2002).

    Article  CAS  Google Scholar 

  106. Magnarin, M. et al. Induction of proteins involved in multidrug resistance (P-glycoprotein, MRP1, MRP2, LRP) and of CYP 3A4 by rifampicin in LLC-PK1 cells. Eur. J. Pharmacol. 483, 19–28 (2004).

    Article  CAS  Google Scholar 

  107. Gu, X. & Manautou, J. E. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab. Rev. 42, 482–538 (2010).

    Article  CAS  Google Scholar 

  108. Manceau, S. et al. ABC drug transporter and nuclear receptor expression in human cytotrophoblasts: influence of spontaneous syncytialization and induction by glucocorticoids. Placenta 33, 927–932 (2012).

    Article  CAS  Google Scholar 

  109. Zhu, Q. & Center, M. S. Cloning and sequence analysis of the promoter region of the MRP gene of HL60 cells isolated for resistance to adriamycin. Cancer Res. 54, 4488–4492 (1994).

    CAS  Google Scholar 

  110. Cherrington, N. J., Slitt, A. L., Li, N. & Klaassen, C. D. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos. 32, 734–741 (2004).

    Article  CAS  Google Scholar 

  111. Evseenko, D. A., Paxton, J. W. & Keelan, J. A. Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab. Dispos. 35, 595–601 (2007).

    Article  CAS  Google Scholar 

  112. von Wedel-Parlow, M., Wölte, P. & Galla, H. J. Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J. Neurochem. 111, 111–118 (2009).

    Article  Google Scholar 

  113. Neuser, J., Fraccarollo, D., Wick, M., Bauersachs, J. & Widder, J. D. Multidrug resistance associated protein-1 (MRP1) deficiency attenuates endothelial dysfunction in diabetes. J. Diabetes Complicat. 30, 623–627 (2016).

    Article  Google Scholar 

  114. Ling, S. et al. Metformin reverses multidrug resistance in human hepatocellular carcinoma Bel‑7402/5‑fluorouracil cells. Mol. Med. Rep. 10, 2891–2897 (2014).

    Article  CAS  Google Scholar 

  115. Seo, J. et al. Biallelic mutations in ABCB1 display recurrent reversible encephalopathy. Ann. Clin. Transl. Neurol. 7, 1443–1449 (2020).

    Article  CAS  Google Scholar 

  116. Baudou, E. et al. Serious ivermectin toxicity and human ABCB1 nonsense mutations. N. Engl. J. Med. 383, 787–789 (2020).

    Article  Google Scholar 

  117. Li, M. et al. Extrusion pump ABCC1 was first linked with nonsyndromic hearing loss in humans by stepwise genetic analysis. Genet. Med. 21, 2744–2754 (2019).

    Article  CAS  Google Scholar 

  118. Saito, T. et al. Expression of multidrug resistance protein 1 (MRP1) in the rat cochlea with special reference to the blood-inner ear barrier. Brain Res. 895, 253–257 (2001).

    Article  CAS  Google Scholar 

  119. Leschziner, G. D., Andrew, T., Pirmohamed, M. & Johnson, M. R. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J. 7, 154–179 (2007). A detailed overview of the significance of ABCB1 polymorphisms in humans and their clinical applications.

    Article  CAS  Google Scholar 

  120. Hoffmeyer, S. et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 97, 3473–3478 (2000).

    Article  CAS  Google Scholar 

  121. Cascorbi, I. et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin. Pharmacol. Ther. 69, 169–174 (2001).

    Article  CAS  Google Scholar 

  122. Dumond, J. B. et al. A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin. Pharmacol. Ther. 87, 735–742 (2010).

    Article  CAS  Google Scholar 

  123. Hu, W. et al. MDR1 gene polymorphism correlated with pathological characteristics and prognosis in patients with primary hepatocellular carcinoma receiving interventional therapy. Anticancer. Drugs 30, 233–240 (2019).

    Article  CAS  Google Scholar 

  124. Skalski, D. et al. Associations between MDR1 C3435T polymorphism and drug-resistant epilepsy in the Polish population. Acta Neurol. Belg. 117, 153–158 (2017).

    Article  Google Scholar 

  125. Suzuki, A. et al. C3435T polymorphism of the MDR1 gene is not associated with blood levels of hypothalamus-pituitary-adrenal axis hormones in healthy male subjects. Genet. Mol. Res. https://doi.org/10.4238/gmr16019447 (2017).

    Article  Google Scholar 

  126. Nakamura, T. et al. Effects of ABCB1 3435 C>T genotype on serum levels of cortisol and aldosterone in women with normal menstrual cycles. Genet. Mol. Res. 8, 397–403 (2009).

    Article  CAS  Google Scholar 

  127. Ichihara, S. et al. Association of a polymorphism of ABCB1 with obesity in Japanese individuals. Genomics 91, 512–516 (2008).

    Article  CAS  Google Scholar 

  128. Lovas, K. et al. Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur. J. Endocrinol. 160, 993–1002 (2009).

    Article  Google Scholar 

  129. Cuppen, B. V. et al. Polymorphisms in the multidrug-resistance 1 gene related to glucocorticoid response in rheumatoid arthritis treatment. Rheumatol. Int. 37, 531–536 (2017).

    Article  CAS  Google Scholar 

  130. Pawlik, A., Wrzesniewska, J., Fiedorowicz-Fabrycy, I. & Gawronska-Szklarz, B. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int. J. Clin. Pharmacol. Ther. 42, 496–503 (2004).

    Article  CAS  Google Scholar 

  131. Yang, Q. F. et al. Contribution of MDR1 gene polymorphisms on IBD predisposition and response to glucocorticoids in IBD in a Chinese population. J. Dig. Dis. 16, 22–30 (2015).

    Article  CAS  Google Scholar 

  132. Han, S. S., Xu, Y. Q., Lu, Y., Gu, X. C. & Wang, Y. A PRISMA-compliant meta-analysis of MDR1 polymorphisms and idiopathic nephrotic syndrome: susceptibility and steroid responsiveness. Medicine 96, e7191 (2017).

    Article  CAS  Google Scholar 

  133. Conseil, G., Deeley, R. G. & Cole, S. P. Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters. Pharmacogenet. Genomics 15, 523–533 (2005).

    Article  CAS  Google Scholar 

  134. Kunadt, D. et al. Multidrug-related protein 1 (MRP1) polymorphisms rs129081, rs212090, and rs212091 predict survival in normal karyotype acute myeloid leukemia. Ann. Hematol. 99, 2173–2180 (2020).

    Article  CAS  Google Scholar 

  135. Koren, L. et al. Cortisol and corticosterone independence in cortisol-dominant wildlife. Gen. Comp. Endocrinol. 177, 113–119 (2012).

    Article  CAS  Google Scholar 

  136. Arriza, J. L. et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237, 268–275 (1987).

    Article  CAS  Google Scholar 

  137. Dunn, J. F., Nisula, B. C. & Rodbard, D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. J. Clin. Endocrinol. Metab. 53, 58–68 (1981).

    Article  CAS  Google Scholar 

  138. Giannopoulos, G. & Keichline, D. Species-related differences in steroid-binding specificity of glucocorticoid receptors in lung. Endocrinology 108, 1414–1419 (1981).

    Article  CAS  Google Scholar 

  139. Mani, O., Nashev, L. G., Livelo, C., Baker, M. E. & Odermatt, A. Role of Pro-637 and Gln-642 in human glucocorticoid receptors and Ser-843 and Leu-848 in mineralocorticoid receptors in their differential responses to cortisol and aldosterone. J. Steroid Biochem. Mol. Biol. 159, 31–40 (2016).

    Article  CAS  Google Scholar 

  140. Nishida, S., Matsumura, S., Horino, M., Oyama, H. & Tenku, A. The variations of plasma corticosterone/cortisol ratios following ACTH stimulation or dexamethasone administration in normal men. J. Clin. Endocrinol. Metab. 45, 585–588 (1977).

    Article  CAS  Google Scholar 

  141. Peterson, R. E. Plasma corticosterone and hydrocortisone levels in man. J. Clin. Endocrinol. Metab. 17, 1150–1157 (1957).

    Article  CAS  Google Scholar 

  142. Peterson, R. E. & Pierce, C. E. The metabolism of corticosterone in man. J. Clin. Invest. 39, 741–757 (1960).

    Article  CAS  Google Scholar 

  143. Vera, F., Antenucci, C. D. & Zenuto, R. R. Cortisol and corticosterone exhibit different seasonal variation and responses to acute stress and captivity in tuco-tucos (Ctenomys talarum). Gen. Comp. Endocrinol. 170, 550–557 (2011).

    Article  CAS  Google Scholar 

  144. Hughes, K. A., Reynolds, R. M., Andrew, R., Critchley, H. O. & Walker, B. R. Glucocorticoids turn over slowly in human adipose tissue in vivo. J. Clin. Endocrinol. Metab. 95, 4696–4702 (2010).

    Article  CAS  Google Scholar 

  145. Sundahl, N., Bridelance, J., Libert, C., De Bosscher, K. & Beck, I. M. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol. Ther. 152, 28–41 (2015).

    Article  CAS  Google Scholar 

  146. Arlt, W. et al. Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J. Clin. Endocrinol. Metab. 95, 5110–5121 (2010).

    Article  CAS  Google Scholar 

  147. Bergthorsdottir, R., Leonsson-Zachrisson, M., Oden, A. & Johannsson, G. Premature mortality in patients with Addison’s disease: a population-based study. J. Clin. Endocrinol. Metab. 91, 4849–4853 (2006).

    Article  CAS  Google Scholar 

  148. Johannsson, G. et al. Improving glucocorticoid replacement therapy using a novel modified-release hydrocortisone tablet: a pharmacokinetic study. Eur. J. Endocrinol. 161, 119–130 (2009).

    Article  CAS  Google Scholar 

  149. Mallappa, A. et al. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 100, 1137–1145 (2015).

    Article  CAS  Google Scholar 

  150. Kyle, C. et al. Proof of concept that corticosterone has a higher therapeutic index than hydrocortisone in patients with congenital adrenal hyperplasia [abstract]. J. Endocr, Soc. 3(Suppl. 1), SAT-009 (2019).

    Article  Google Scholar 

  151. Grem, J. L. Recent insights into the molecular basis of intrinsic resistance of colorectal cancer: new challenges for systemic therapeutic approaches. Cancer Treat. Res. 98, 293–338 (1998).

    Article  CAS  Google Scholar 

  152. Byrgazov, K. et al. Up-regulation of multidrug resistance protein MDR1/ABCB1 in carfilzomib-resistant multiple myeloma differentially affects efficacy of anti-myeloma drugs. Leuk. Res. 101, 106499 (2021).

    Article  CAS  Google Scholar 

  153. Shaffer, B. C. et al. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist. Updat. 15, 62–69 (2012).

    Article  CAS  Google Scholar 

  154. Triller, N., Korosec, P., Kern, I., Kosnik, M. & Debeljak, A. Multidrug resistance in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease. Lung Cancer 54, 235–240 (2006).

    Article  Google Scholar 

  155. Haber, M. et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol. 24, 1546–1553 (2006).

    Article  CAS  Google Scholar 

  156. Yuan, Y. et al. The clinical significance of FRAT1 and ABCG2 expression in pancreatic ductal adenocarcinoma. Tumour Biol. 36, 9961–9968 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research on ABC transporters has been funded by the Wellcome Trust and British Heart Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.D., E.V. and M.N. researched data for the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission. K.D., E.V., M.N. and B.R.W. wrote the article.

Corresponding author

Correspondence to Brian R. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Tomoshige Kino, Edo de Kloet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Human Protein Atlas: https://www.proteinatlas.org/

Glossary

Sanctuary sites

Areas within the body that are relatively well protected from access by drugs (for example, anticancer agents) and toxins.

α-Helices

Secondary protein structures formed by hydrogen bonding between the amine and carbonyl groups of amino acids located four residues apart, resulting in a helical structure with a tightly coiled central backbone, with side chains extending outwards.

Luminal surfaces

The lining surfaces of body channels, such as the intestines or blood vessels.

Polyspecificity

The capacity to bind multiple unrelated substrates.

Glutathione coupling

Conjugation with the tripeptide glutathione.

Phase II hepatic metabolites

Endogenous and xenobiotic compounds conjugated with glutathione, glucuronide and sulfate in the liver to improve their water solubility and thus facilitate excretion.

Syncytiotrophoblasts

Cells forming the outer layer of the placenta, and the major site of gas and nutrient exchange between mother and fetus.

Cytotrophoblasts

The inner stem cell layer of the placenta villi — cellular precursors to syncytiotrophoblasts.

Adopted orphan receptors

An orphan receptor is a receptor whose ligand has not been identified; it can later be termed an ‘adopted orphan receptor’ when a ligand is discovered.

Compound heterozygosity

The presence of two different mutant alleles at a genetic locus.

Lymphoblastoid cell lines

Immortalized cells that are derived from, and closely resemble, peripheral blood lymphocytes.

Synonymous

A silent genetic mutation in which a change in DNA sequence does not result in a change in the amino acid sequence of the protein produced.

Therapeutic index

The margin between the desirable and undesirable effects of a drug; the narrower the margin, the more likely it is that adverse effects will occur at a therapeutic dose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devine, K., Villalobos, E., Kyle, C.J. et al. The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nat Rev Endocrinol 19, 112–124 (2023). https://doi.org/10.1038/s41574-022-00745-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00745-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing