Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophage functional diversity in NAFLD — more than inflammation

Abstract

Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.

Key points

  • Macrophages are highly plastic cells of the immune system that can acquire a spectrum of phenotypes according to their spatiotemporal pathophysiological context.

  • Liver macrophages are either embryo-derived resident macrophages or recruited peripheral monocyte-derived macrophages.

  • Liver macrophages have been shown to contribute to non-alcoholic fatty liver disease (NAFLD) progression in obesity through production of both inflammatory and non-inflammatory factors.

  • Single-cell RNA sequencing (scRNA-seq) has identified distinct liver macrophage subsets in mice and humans in health and liver disease.

  • scRNA-seq has enabled the identification of novel pathogenic factors expressed by liver macrophages that could exacerbate or protect from NAFLD progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liver macrophage turnover in health and disease.
Fig. 2: scRNA-seq studies in mouse and human livers revealed distinct macrophage subsets.
Fig. 3: Liver macrophage depletion and obesity-associated effects in mice.
Fig. 4: Key cellular interactions between liver macrophages and other liver cell types in NAFLD and NASH.

Similar content being viewed by others

References

  1. Gordon, S. & Plüddemann, A. Tissue macrophages: heterogeneity and functions. BMC Biol. 15, 53–53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liddiard, K. & Taylor, P. R. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nat. Med. 21, 119–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Wen, Y., Lambrecht, J., Ju, C. & Tacke, F. Hepatic macrophages in liver homeostasis and diseases–diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18, 45–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Kazankov, K. et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 145–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. David, B. A. et al. Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151, 1176–1191 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crispe, I. N. Liver antigen-presenting cells. J. Hepatol. 54, 357–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47, 374–388.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Seidman, J. S. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057–1074.e7 (2020). This paper characterized NASH-specific transcriptional programmes driving the phenotype of liver macrophage populations during metabolic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  PubMed  Google Scholar 

  15. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Soucie, E. L. et al. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science 351, aad5510 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bleriot, C. et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42, 145–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17, 451–460 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172, 4410–4417 (2004).

    Article  PubMed  Google Scholar 

  23. van de Laar, L. et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44, 755–768 (2016).

    Article  PubMed  Google Scholar 

  24. Sakai, M. et al. Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655–670.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Devisscher, L. et al. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell. Immunol. 322, 74–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident Kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193, 344–353 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. & Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165, 668–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, H. et al. Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat. Commun. 12, 2863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tak, T. et al. Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood 130, 1474–1477 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Eguíluz-Gracia, I. M. D. et al. Rapid recruitment of CD14+ monocytes in experimentally induced allergic rhinitis in human subjects. J. Allergy Clin. Immunol. 137, 1872–1881.e12 (2016).

    Article  PubMed  Google Scholar 

  34. Jardine, L. et al. Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nat. Commun. 10, 1999 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).

    Article  PubMed  Google Scholar 

  36. Bittmann, I. et al. The role of graft-resident Kupffer cells and lymphocytes of donor type during the time course after liver transplantation–a clinico-pathological study. Virchows Arch. 443, 541–548 (2003).

    Article  PubMed  Google Scholar 

  37. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020). This paper studied the turnover of human liver macrophages in patients undergoing liver transplantation.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77–77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631–643.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Brancale, J. & Vilarinho, S. A single cell gene expression atlas of 28 human livers. J. Hepatol. 75, 219–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018). This paper characterized two distinct intrahepatic populations of liver macrophages in healthy human livers.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019). This paper characterized the heterogeneity of human liver macrophages in healthy and cirrhotic livers and identified two pathogenic macrophage populations associated with liver disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, J. et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discov. 6, 22–22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, X. et al. Human liver macrophage subsets defined by CD32. Front. Immunol. 11, 2108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andrews, T. S. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6, 821–840 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962–970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krenkel, O. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69, 551–563 (2019).

    Article  PubMed  Google Scholar 

  52. Remmerie, A. et al. Osteopontin expression identifies a subset of recruited macrophages distinct from Kupffer cells in the fatty liver. Immunity 53, 641–657.e14 (2020). This paper characterized a distinct subset of recruited macrophages during the progression of NASH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scott, C. L. et al. The transcription factor ZEB2 is required to maintain the tissue-specific identities of macrophages. Immunity 49, 312–325.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiong, X. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol. Cell 75, 644–660.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blériot, C. et al. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 54, 2101–2116.e6 (2021). This paper identified two functionally distinct populations of embryo-derived Kuppfer cells in mice.

    Article  PubMed  Google Scholar 

  56. De Simone, G. et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54, 2089–2100.e8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tran, S. et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627–640.e5 (2020). This paper demonstrated Kupffer cell renewal is impaired in NASH, leading to increased recruitment of monocyte-derived macrophages with altered metabolic responses to liver disease.

    Article  CAS  PubMed  Google Scholar 

  58. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bykov, I., Ylipaasto, P., Eerola, L. & Lindros, K. O. Functional differences between periportal and perivenous Kupffer cells isolated by digitonin-collagenase perfusion. Comp. Hepatol. 3 (Suppl. 1), 34 (2004).

    Article  Google Scholar 

  60. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Daemen, S. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep. 34, 108626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Neuschwander-Tetri, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788 (2010).

    Article  PubMed  Google Scholar 

  63. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease–meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  64. Albhaisi, S., Chowdhury, A. & Sanyal, A. J. Non-alcoholic fatty liver disease in lean individuals. JHEP Rep. 1, 329–341 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    Article  PubMed  Google Scholar 

  66. Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. Mech. Dis. 11, 451–496 (2016).

    Article  CAS  Google Scholar 

  67. Feldstein, A. E. et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125, 437–443 (2003).

    Article  PubMed  Google Scholar 

  68. Ribeiro, P. S. et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am. J. Gastroenterol. 99, 1708–1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Alonso, C. et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 152, 1449–1461.e7 (2017).

    Article  PubMed  Google Scholar 

  70. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Tamura, S. & Shimomura, I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1139–1142 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marchesini, G. et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 107, 450–455 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Hirsova, P., Ibrahim, S. H., Gores, G. J. & Malhi, H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J. Lipid Res. 57, 1758–1770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Puri, P. et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134, 568–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Mota, M., Banini, B. A., Cazanave, S. C. & Sanyal, A. J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65, 1049–1061 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Neyrinck, A. M. et al. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem. Biophys. Res. Commun. 385, 351–356 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Thomas, D. & Apovian, C. Macrophage functions in lean and obese adipose tissue. Metab. Clin. Exp. 72, 120–143 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Myoung Sook, H. et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339, 218–222 (2013).

    Article  Google Scholar 

  80. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stienstra, R. et al. Kupffer cells promote hepatic steatosis via interleukin-1β-dependent suppression of peroxisome proliferator-activated receptor α activity. Hepatology 51, 511–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Papackova, Z. et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr. Metab. 9, 22 (2012).

    Article  CAS  Google Scholar 

  84. Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Clementi, A. H., Gaudy, A. M., van Rooijen, N., Pierce, R. H. & Mooney, R. A. Loss of Kupffer cells in diet-induced obesity is associated with increased hepatic steatosis, STAT3 signaling, and further decreases in insulin signaling. Biochim. Biophys. Acta 1792, 1062–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, L. et al. Selective depletion of hepatic Kupffer cells significantly alleviated hepatosteatosis and intrahepatic inflammation induced by high fat diet. Hepatogastroenterology 59, 1208–1212 (2012).

    CAS  PubMed  Google Scholar 

  87. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maeda, S. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  PubMed  Google Scholar 

  89. Morinaga, H. et al. Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice. Diabetes 64, 1120–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Morgantini, C. et al. Liver macrophages regulate systemic metabolism through non-inflammatory factors. Nat. Metab. 1, 445–459 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Ramachandran, P., Kylie, K. P., Dobie, R., Wilson-Kanamori, J. R. & Henderson, N. C. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat. Rev. Gastroenterol. Hepatol. 17, 457–472 (2020).

    Article  PubMed  Google Scholar 

  92. Tencerova, M. et al. Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J. 29, 2959–2969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Azzimato, V. et al. Liver macrophages inhibit the endogenous antioxidant response in obesity-associated insulin resistance. Sci. Transl. Med. 12, eaaw9709 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Aouadi, M. et al. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 307, E374–E383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wan, J. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Issa, R. et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48, 548–557 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morita, Y. et al. Impact of tissue macrophage proliferation on peripheral and systemic insulin resistance in obese mice with diabetes. BMJ Open Diabetes Res. Care 8, e001578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Zimmermann, H. W. et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE 5, e11049 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/record/NCT03028740 (2022).

  104. Francque, S. et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat. Rev. Gastroenterol. Hepatol. 18, 24–39 (2021).

    Article  PubMed  Google Scholar 

  105. Francque, S. M. et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N. Engl. J. Med. 385, 1547–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Deczkowska, A. et al. XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27, 1043–1054 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Bril, F. et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65, 1132–1144 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Rosso, C. et al. Crosstalk between adipose tissue insulin resistance and liver macrophages in non-alcoholic fatty liver disease. J. Hepatol. 71, 1012–1021 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Lomonaco, R. et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care 39, 632–638 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Priest, C. & Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nat. Metab. 1, 1177–1188 (2019).

    Article  PubMed  Google Scholar 

  111. Metlakunta, A. et al. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism. Am. J. Physiol. 312, E11–E18 (2017).

    Google Scholar 

  112. Azzimato, V. et al. Hepatic miR-144 drives fumarase activity preventing NRF2 activation during obesity. Gastroenterology 161, 1982–1997.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Li, H. et al. Crosstalk between liver macrophages and surrounding cells in nonalcoholic steatohepatitis. Front. Immunol. 11, 1169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chu, P. S. et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology 58, 337–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Pradere, J. P. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58, 1461–1473 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Kremer, M. et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 51, 130–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Hirsova, P. et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150, 956–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Tateya, S. et al. Endothelial NO/cGMP/VASP signaling attenuates Kupffer cell activation and hepatic insulin resistance induced by high-fat feeding. Diabetes 60, 2792–2801 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McMahan, R. H., Porsche, C. E., Edwards, M. G. & Rosen, H. R. Free fatty acids differentially downregulate chemokines in liver sinusoidal endothelial cells: insights into non-alcoholic fatty liver disease. PLoS ONE 11, e0159217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu, X. L. et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology 72, 454–469 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Miyachi, Y. et al. Roles for cell-cell adhesion and contact in obesity-induced hepatic myeloid cell accumulation and glucose intolerance. Cell Rep. 18, 2766–2779 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Al Attar, A., Antaramian, A. & Noureddin, M. Review of galectin-3 inhibitors in the treatment of nonalcoholic steatohepatitis. Expert. Rev. Clin. Pharmacol. 14, 457–464 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Harris (Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden) and S. Craige (Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia) for their valuable comments on the manuscript. M.A., E.B. and P.C. acknowledge the support of funds from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 864788), the EFSD supported by EFDS/Lilly European Diabetes research programme, the Karolinska Institutet, the Swedish Research Council (M.A.; 2015-03582 and 2019-01056), the Novo Nordisk Foundation (M.A.; NNF20OC0060053, NNF19OC0057127), including the Metabolite-Related Inflammation and Disease Consortium (MeRIAD; NNF0064142), and the Strategic Research Programmes in Diabetes (M.A.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Myriam Aouadi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Charlotte Scott, Frank Tacke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Fate mapping

Labelling of specific cell subsets in the embryo to trace their contribution to cell populations and tissues in the adult organism.

Yolk sac

A sac attached to the embryo during development that provides nutrients and cells to the embryo.

Sterile injury

Injury or inflammation not caused by pathogenic infection.

Tissue monocytes

Cell population identified in the liver tissue by single-cell RNA sequencing (scRNA-seq) with a phenotype similar to circulating monocytes.

Scar-associated macrophages

Liver macrophages with a lipid-handling phenotype mainly associated with the development of liver fibrosis in patients with cirrhosis.

Tissue-specific enhancer

A regulatory element that induces tissue-specific transcription factors shaping the phenotype of tissue-resident cells.

Lipid-associated macrophages

Tissue macrophages with a lipid handling phenotype mainly associated with the development of obesity and non-alcoholic steatohepatitis.

Crown-like structures

Histological finding where macrophages are surrounding lipid-laden hepatocytes (in the liver) or dying adipocytes (in the adipose tissue) in a crown-like structure.

Liver non-parenchymal cells

Liver cells that do not make up the liver parenchyma including liver sinusoidal endothelial cells, hepatic stellate cells and immune cells.

Temporal trajectory analysis

In silico analysis of cell trajectories or cell differentiation patterns based on scRNA-seq data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreby, E., Chen, P. & Aouadi, M. Macrophage functional diversity in NAFLD — more than inflammation. Nat Rev Endocrinol 18, 461–472 (2022). https://doi.org/10.1038/s41574-022-00675-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00675-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing