Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Type 2 diabetes mellitus in sub-Saharan Africa: challenges and opportunities

Abstract

Type 2 diabetes mellitus (T2DM), which was once thought to be rare in sub-Saharan Africa (SSA), is now well established in this region. The SSA region is undergoing a rapid but variable epidemiological transition fuelled by the pace of urbanization, with disease burden profiles shifting from communicable diseases to non-communicable diseases (NCDs). Information on the epidemiology of T2DM has increased, but wide variations in study methods, diagnostic biomarkers and criteria hamper analytical comparison, and data from high-quality studies are limited. The prevalence of T2DM is still low in some rural populations but moderate or high rates are reported in many countries/regions, with evidence for an increase in some. In addition, the proportion of undiagnosed T2DM is still high. The prevalence of T2DM is highest in African people living in urban areas, and the gradient between African people living in urban areas and people in the African diaspora is rapidly fading. However, data from longitudinal studies are lacking and there is limited information on chronic complications and the genetics of T2DM. The large unmet needs for T2DM care call for greater investment of resources into health systems to manage NCDs in SSA. Proposed health-system paradigms are being developed in some countries/regions. However, national NCD programmes need to be adequately funded and coordinated to stem the tide of T2DM and its complications.

Key points

  • Previously considered rare, type 2 diabetes mellitus (T2DM) is now firmly established in sub-Saharan Africa (SSA).

  • Although prevalence is low in some rural populations, moderate or high rates are reported in many countries/regions, with evidence for an increase in prevalence in some areas.

  • Information on the burden of T2DM has increased, but there is a need for high-quality epidemiology studies using harmonized approaches for sampling, data collection and diagnostic methods.

  • The increase in T2DM in SSA is associated with modifiable risk factors, such as urbanization and obesity, and there is a high proportion of undiagnosed T2DM.

  • Data on the genetics of T2DM are emerging and suggests a greater degree of genetic diversity in T2DM susceptibility in African people compared with other populations.

  • There are large unmet needs for T2DM care and national programmes need to be adequately funded and coordinated; integrated models of chronic disease health care that leverage resources across health-care systems are being piloted in some countries/regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The prevalence of T2DM in studies from some areas of sub-Saharan Africa.
Fig. 2: T2DM complications in some middle Africa countries.
Fig. 3: Proposed integrated primary care model of chronic care.

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

    Article  Google Scholar 

  2. World Health Organization. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736–1788 (2018).

    Article  Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas, 9th edn. https://diabetesatlas.org/atlas/ninth-edition/ (2019).

  4. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article  PubMed  Google Scholar 

  5. Mbanya, J. C., Motala, A. A., Sobngwi, E., Assah, F. K. & Enoru, S. T. Diabetes in sub-Saharan Africa. Lancet 375, 2254–2266 (2010).

    Article  PubMed  Google Scholar 

  6. Atun, R. et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. Lancet Diabetes Endocrinol. 5, 622–667 (2017).

    Article  PubMed  Google Scholar 

  7. McLarty, D. G., Pollitt, C. & Swai, A. B. Diabetes in Africa. Diabet. Med. 7, 670–684 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Manne-Goehler, J. et al. Diabetes diagnosis and care in sub-Saharan Africa: pooled analysis of individual data from 12 countries. Lancet Diabetes Endocrinol. 4, 903–912 (2016).

    Article  PubMed  Google Scholar 

  9. NCD Risk Factor Collaboration (NCD-RisC)–Africa Working Group. Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int. J. Epidemiol. 46, 1421–1432 (2017).

    Article  Google Scholar 

  10. Gouda, H. N. et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990-2017: results from the Global Burden of Disease Study 2017. Lancet Glob. Health 7, e1375–e1387 (2019).

    Article  PubMed  Google Scholar 

  11. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (2019).

  12. United Nations. Prevention and control of non-communicable diseases: Report of the Secretary-General https://undocs.org/en/A/66/83 (2011).

  13. United Nations Development Program. Goal 3: Good Health and Well-Being https://sdgs.un.org/goals/goal3 (2016).

  14. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020 https://www.who.int/publications/i/item/9789241506236 (2013).

  15. Peck, R. et al. Preparedness of Tanzanian health facilities for outpatient primary care of hypertension and diabetes: a cross-sectional survey. Lancet Glob. Health 2, e285–e292 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nyaaba, G. N., Stronks, K., de-Graft Aikins, A., Kengne, A. P. & Agyemang, C. Tracing Africa’s progress towards implementing the Non-Communicable Diseases Global action plan 2013-2020: a synthesis of WHO country profile reports. BMC Public Health 17, 297 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hall, V., Thomsen, R. W., Henriksen, O. & Lohse, N. Diabetes in sub Saharan Africa 1999-2011: epidemiology and public health implications. A systematic review. BMC Public Health 11, 564 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Motala, A. A., Omar, M. A. & Pirie, F. J. Diabetes in Africa. Epidemiology of type 1 and type 2 diabetes in Africa. J. Cardiovasc. Risk 10, 77–83 (2003).

    Article  PubMed  Google Scholar 

  19. Levitt, N. S. Diabetes in Africa: epidemiology, management and healthcare challenges. Heart 94, 1376–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. World Health Organization. Diabetes mellitus: report of a WHO Study Group https://apps.who.int/iris/handle/10665/39592 (1985).

  21. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kahn, R. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20, 1183–1197 (1997).

    Article  Google Scholar 

  23. King, H. & Rewers, M. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care 16, 157–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Peer, N. et al. Rising diabetes prevalence among urban-dwelling black South Africans. PLoS ONE 7, e43336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hird, T. R. et al. Burden of diabetes and first evidence for the utility of HbA1c for diagnosis and detection of diabetes in urban Black South Africans: The Durban Diabetes Study. PLoS ONE 11, e0161966 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agyemang, C. et al. Obesity and type 2 diabetes in sub-Saharan Africans - is the burden in today’s Africa similar to African migrants in Europe? The RODAM study. BMC Med. 14, 166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Price, A. J. et al. Prevalence of obesity, hypertension, and diabetes, and cascade of care in sub-Saharan Africa: a cross-sectional, population-based study in rural and urban Malawi. Lancet Diabetes Endocrinol. 6, 208–222 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. World Health Organization. NCDs, STEPS Country Reports https://www.who.int/teams/noncommunicable-diseases/surveillance/data (2020).

  29. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 37 (Suppl. 1), S81–S90 (2014).

    Article  Google Scholar 

  30. World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation https://www.who.int/diabetes/publications/report-hba1c_2011.pdf (2011).

  31. Shisana, O. et al. The South African National Health and Nutrition Examination Survey, 2012: SANHANES-1: the health and nutritional status of the nation. 72-98 (HSRC Press, 2014).

  32. Ekoru, K. et al. H3Africa multi-centre study of the prevalence and environmental and genetic determinants of type 2 diabetes in sub-Saharan Africa: study protocol. Glob. Health Epidemiol. Genom. 1, e5 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levitt, N. S., Katzenellenbogen, J. M., Bradshaw, D., Hoffman, M. N. & Bonnici, F. The prevalence and identification of risk factors for NIDDM in urban Africans in Cape Town, South Africa. Diabetes Care 16, 601–607 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Omar, M. A., Seedat, M. A., Motala, A. A., Dyer, R. B. & Becker, P. The prevalence of diabetes mellitus and impaired glucose tolerance in a group of urban South African blacks. S. Afr. Med. J. 83, 641–643 (1993).

    CAS  PubMed  Google Scholar 

  35. Abubakari, A. R. et al. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public Health 123, 602–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Werfalli, M., Engel, M. E., Musekiwa, A., Kengne, A. P. & Levitt, N. S. The prevalence of type 2 diabetes among older people in Africa: a systematic review. Lancet Diabetes Endocrinol. 4, 72–84 (2016).

    Article  PubMed  Google Scholar 

  37. Hird, T. R. Risk factors for cardiometabolic disease in the eThekwini Municipality (City of Durban), South Africa. Thesis, Univ. Cambridge https://doi.org/10.17863/CAM.13719 (2017).

  38. Erasmus, R. T. et al. High prevalence of diabetes mellitus and metabolic syndrome in a South African coloured population: baseline data of a study in Bellville, Cape Town. S. Afr. Med. J. 102, 841–844 (2012).

    Article  PubMed  Google Scholar 

  39. Prakaschandra, D. R., Esterhuizen, T. M., Motala, A. A., Gathiram, P. & Naidoo, D. P. High prevalence of cardiovascular risk factors in Durban South African Indians: the Phoenix Lifestyle Project. S. Afr. Med. J. 106, 284–289 (2016).

    Article  PubMed  Google Scholar 

  40. Galbete, C. et al. Dietary patterns and type 2 diabetes among Ghanaian migrants in Europe and their compatriots in Ghana: the RODAM study. Nutr. Diabetes 8, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Levitt, N. S. et al. Increased risk of dysglycaemia in South Africans with HIV; especially those on protease inhibitors. Diabetes Res. Clin. Pract. 119, 41–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. NCD Risk Factor CollaborationFactor. Collaboration (NCD-RisC). Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331,288 participants. Lancet Diabetes Endocrinol. 3, 624–637 (2015).

    Article  Google Scholar 

  43. Rathod, S. D. et al. Glycated haemoglobin A1c (HbA1c) for detection of diabetes mellitus and impaired fasting glucose in Malawi: a diagnostic accuracy study. BMJ Open 8, e020972 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hird, T. R. et al. HIV infection and anaemia do not affect HbA1c for the detection of diabetes in black South Africans: evidence from the Durban Diabetes Study. Diabet. Med. 38, e14605 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44 (Suppl. 1), S15–S33 (2021).

    Article  Google Scholar 

  46. Mayega, R. W. et al. Comparison of fasting plasma glucose and haemoglobin A1c point-of-care tests in screening for diabetes and abnormal glucose regulation in a rural low income setting. Diabetes Res. Clin. Pract. 104, 112–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Peer, N., George, J., Lombard, C., Levitt, N. & Kengne, A. P. Associations of glycated albumin and fructosamine with glycaemic status in urban black South Africans. Clin. Chim. Acta 519, 291–297 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Abdullah, A., Peeters, A., de Courten, M. & Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 89, 309–319 (2010).

    Article  PubMed  Google Scholar 

  49. DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 1, 15019 (2015).

    Article  PubMed  Google Scholar 

  50. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505–1513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y. & Lou, X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emerging evidence and challenges. Clinics 75, e1277 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ahmed, S. A. H., Ansari, S. A., Mensah-Brown, E. P. K. & Emerald, B. S. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin. Epigenet. 12, 104 (2020).

    Article  CAS  Google Scholar 

  53. Erasmus, R. T. et al. Importance of family history in type 2 black South African diabetic patients. Postgrad. Med. J. 77, 323–325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mbanya, J. C., Pani, L. N., Mbanya, D. N., Sobngwi, E. & Ngogang, J. Reduced insulin secretion in offspring of African type 2 diabetic parents. Diabetes Care 23, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Adeleye, J. O. & Abbiyesuku, F. M. Glucose and insulin responses in offspring of Nigerian type 2 diabetics. Afr. J. Med. Med. Sci. 31, 253–257 (2002).

    CAS  PubMed  Google Scholar 

  56. Asamoah, E. A. et al. Heritability and genetics of type 2 diabetes mellitus in sub-Saharan Africa: a systematic review and meta-analysis. J. Diabetes Res. 2020, 3198671 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Danquah, I. et al. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: a hospital-based case-control study. BMC Med. Genet. 14, 96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guewo-Fokeng, M. et al. Contribution of the TCF7L2 rs7903146 (C/T) gene polymorphism to the susceptibility to type 2 diabetes mellitus in Cameroon. J. Diabetes Metab. Disord. 14, 26 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nanfa, D. et al. Association between the TCF7L2 rs12255372 (G/T) gene polymorphism and type 2 diabetes mellitus in a Cameroonian population: a pilot study. Clin. Transl Med. 4, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, J. et al. Genome-wide association study of type 2 diabetes in Africa. Diabetologia 62, 1204–1211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Adeyemo, A. A. et al. ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat. Commun. 10, 3195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hwang, J. Y. et al. Genome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East Asians. Diabetes 64, 291–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Cole, J. B. & Florez, J. C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 16, 377–390 (2020).

    Article  PubMed  Google Scholar 

  65. Liu, C. et al. Genome-wide association study for proliferative diabetic retinopathy in Africans. NPJ Genom. Med. 4, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ekoru, K. et al. Genetic risk scores for cardiometabolic traits in sub-Saharan African populations. Int. J. Epidemiol. 50, 1283–1296 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meeks, K. A. C. et al. Epigenome-wide association study in whole blood on type 2 diabetes among sub-Saharan African individuals: findings from the RODAM study. Int. J. Epidemiol. 48, 58–70 (2019).

    Article  PubMed  Google Scholar 

  70. Grieco, G. E. et al. The landscape of microRNAs in βcell: between phenotype maintenance and protection. Int. J. Mol. Sci. 22, 803 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  71. Ying, W. et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Matsha, T. E. et al. MicroRNA profiling and their pathways in South African individuals with prediabetes and newly diagnosed type 2 diabetes mellitus. Oncotarget 9, 30485–30498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goedecke, J. H. & Olsson, T. Pathogenesis of type 2 diabetes risk in black Africans: a South African perspective. J. Intern. Med. 288, 284–294 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Goedecke, J. H. et al. Ethnic differences in hepatic and systemic insulin sensitivity and their associated determinants in obese black and white South African women. Diabetologia 58, 2647–2652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Evans, J. et al. Depot- and ethnic-specific differences in the relationship between adipose tissue inflammation and insulin sensitivity. Clin. Endocrinol. 74, 51–59 (2011).

    Article  CAS  Google Scholar 

  76. Crowther, N. J., Cameron, N., Trusler, J. & Gray, I. P. Association between poor glucose tolerance and rapid post natal weight gain in seven-year-old children. Diabetologia 41, 1163–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Ekoru, K. et al. Type 2 diabetes complications and comorbidity in sub-Saharan Africans. EClinicalMedicine 16, 30–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sobngwi, E. et al. Type 2 diabetes control and complications in specialised diabetes care centres of six sub-Saharan African countries: the Diabcare Africa study. Diabetes Res. Clin. Pract. 95, 30–36 (2012).

    Article  PubMed  Google Scholar 

  79. Mbanya, J. C. & Sobngwi, E. Diabetes in Africa. Diabetes microvascular and macrovascular disease in Africa. J. Cardiovasc. Risk 10, 97–102 (2003).

    Article  PubMed  Google Scholar 

  80. Hayfron-Benjamin, C. et al. Microvascular and macrovascular complications in type 2 diabetes Ghanaian residents in Ghana and Europe: The RODAM study. J. Diabetes Complications 33, 572–578 (2019).

    Article  PubMed  Google Scholar 

  81. Burgess, P. I. et al. High prevalence in Malawi of sight-threatening retinopathy and visual impairment caused by diabetes: identification of population-specific targets for intervention. Diabet. Med. 31, 1643–1650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ojo, A. Addressing the global burden of chronic kidney disease through clinical and translational research. Trans. Am. Clin. Climatol. Assoc. 125, 229–243 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Crews, D. C., Pfaff, T. & Powe, N. R. Socioeconomic factors and racial disparities in kidney disease outcomes. Semin. Nephrol. 33, 468–475 (2013).

    Article  PubMed  Google Scholar 

  84. Naicker, S. End-stage renal disease in sub-Saharan Africa. Ethn. Dis. 19 (Suppl. 1), S1-13-5 (2009).

    PubMed  Google Scholar 

  85. Engidaw, N. A., Wubetu, A. D. & Basha, E. A. Prevalence of depression and its associated factors among patients with diabetes mellitus at Tirunesh-Beijing general hospital, Addis Ababa, Ethiopia. BMC Public Health 20, 266 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mohamed, H. G. et al. Association between oral health status and type 2 diabetes mellitus among Sudanese adults: a matched case-control study. PLoS ONE 8, e82158 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Abegunde, D. O., Mathers, C. D., Adam, T., Ortegon, M. & Strong, K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 370, 1929–1938 (2007).

    Article  PubMed  Google Scholar 

  88. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

    Article  Google Scholar 

  89. Renzaho, A. M. The post-2015 development agenda for diabetes in sub-Saharan Africa: challenges and future directions. Glob. Health Action 8, 27600 (2015).

    Article  PubMed  Google Scholar 

  90. Hove, M., Ngwerume, E. T. & Muchemwa, C. The urban crisis in Sub-Saharan Africa: a threat to human security and sustainable development. Stab. Int. J. Security Dev. 2, 7 (2003).

    Article  Google Scholar 

  91. Agyei-Mensah, S. & de-Graft Aikins, A. Epidemiological transition and the double burden of disease in Accra, Ghana. J. Urban. Health 87, 879–897 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Manne-Goehler, J. et al. Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys. PLoS Med. 16, e1002751 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chan, J. C. N. et al. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. Lancet 396, 2019–2082 (2021).

    Article  PubMed  Google Scholar 

  94. International Diabetes Federation. Type 2 Diabetes Clinical Practise Guidelines for sub-Saharan Africa: IDF Africa Region https://www.worlddiabetesfoundation.org/sites/default/files/Type_2_IDF_Diabetes_Practical_Guidelines_small_eng.pdf (2006).

  95. World Health Organization. Global Status Report on Noncommunicable Diseases 2014 https://www.who.int/publications/i/item/9789241564854 (2014).

  96. World Health Organization. The Global Burden of Disease: 2004 update https://www.who.int/publications/i/item/9789241563710 (2004).

  97. Lupafya, P. C., Mwagomba, B. L., Hosig, K., Maseko, L. M. & Chimbali, H. Implementation of policies and strategies for control of noncommunicable diseases in Malawi: challenges and opportunities. Health Educ. Behav. 43, 64s–69s (2016).

    Article  PubMed  Google Scholar 

  98. Remais, J. V., Zeng, G., Li, G., Tian, L. & Engelgau, M. M. Convergence of non-communicable and infectious diseases in low- and middle-income countries. Int. J. Epidemiol. 42, 221–227 (2013).

    Article  PubMed  Google Scholar 

  99. Rabkin, M. et al. Strengthening Health systems for chronic care: leveraging HIV programs to support diabetes services in Ethiopia and Swaziland. J. Trop. Med. 2012, 137460 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Njuguna, B. et al. Models of integration of HIV and noncommunicable disease care in sub-Saharan Africa: lessons learned and evidence gaps. AIDS 32 (Suppl. 1), S33–S42 (2018).

    Article  PubMed  Google Scholar 

  101. Bekele, H., Asefa, A., Getachew, B. & Belete, A. M. Barriers and strategies to lifestyle and dietary pattern interventions for prevention and management of type-2 diabetes in Africa, systematic review. J. Diabetes Res. 2020, 7948712 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.E. is supported by the Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health (NIH), USA. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official view of the NIH.

Review criteria

PubMed was searched using keywords including ‘diabetes and sub-Saharan Africa/Africa’, ‘diabetes prevalence and sub-Saharan Africa/Africa’, ‘risk of diabetes and sub-Saharan Africa/Africa’, ‘epidemiology of diabetes and sub-Saharan Africa/Africa’, ‘urbanization/urban/rural and diabetes and sub-Saharan Africa/Africa’, ‘physical activity and diabetes and Africa’, ‘genetics of diabetes and sub-Saharan Africa/Africa’, ‘GWAS and type 2 diabetes and sub-Saharan Africa’, ‘mortality and diabetes and Africa’, ‘HIV and diabetes and Africa’, ‘standards of care and sub-Saharan Africa’, ‘diabetes and … [each country in sub-Saharan Africa]’. Published peer-reviewed reviews and book chapters were included. The World Health Organization (WHO), International Diabetes Federation (IDF), United Nations and World Bank publications were used and their websites were also accessed for relevant information.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ayesha A. Motala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks R. Erasmus, B. Longo-Mbenza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motala, A.A., Mbanya, J.C., Ramaiya, K. et al. Type 2 diabetes mellitus in sub-Saharan Africa: challenges and opportunities. Nat Rev Endocrinol 18, 219–229 (2022). https://doi.org/10.1038/s41574-021-00613-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00613-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing