Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic implications of pancreatic fat accumulation

Abstract

Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received considerable attention, pancreatic fat has become an important area of research throughout the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic fat, multi-echo Dixon MRI is currently the most developed method. Initial studies have shown associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat accumulation are discussed.

Key points

  • A number of studies have demonstrated a link between pancreatic fat and impaired glucose metabolism, as well as between pancreatic fat and type 2 diabetes mellitus.

  • Possible causes of pancreatic steatosis include the metabolic syndrome, non-alcoholic fatty liver disease, alcohol consumption and specific genetic diseases.

  • Chronic accumulation of fat in the pancreas can lead to chronic pancreatitis, pancreatic neoplasia, disturbed glucose metabolism and impaired insulin secretion.

  • Different approaches, such as a hypocaloric diet, exercise, bariatric surgery and pharmacological interventions, can reduce pancreatic fat content.

  • Preliminary evidence shows that a reduction in pancreatic fat improves insulin metabolism, but further experimental evidence is needed to untangle the underlying mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Histological detection of fat accumulation in adipocytes in pancreatic tissue.
Fig. 2: MR tomography detection of fat accumulation in pancreatic tissue.
Fig. 3: Total, parenchymal and pancreatic fat volumes.
Fig. 4: The metabolic pattern determines the role of pancreatic fat for β-cell function.
Fig. 5: Schematic overview of fat accumulation in the pancreas and possible metabolic consequences.

References

  1. 1.

    Mathur, A. et al. Pancreatic steatosis promotes dissemination and lethality of pancreatic cancer. J. Am. Coll. Surg. 208, 989–994 (2009).

    PubMed  Article  Google Scholar 

  2. 2.

    Zhou, J. et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology 16, 578–583 (2016).

    PubMed  Article  Google Scholar 

  3. 3.

    Olsen, T. S. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol. Microbiol. Scand. A 86A, 367–373 (1978). One of the first analyses of the relationship between fatty pancreas with obesity in ~400 autopsies.

    CAS  PubMed  Google Scholar 

  4. 4.

    Schwenzer, N. F. et al. Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest. Radiol. 43, 330–337 (2008).

    PubMed  Article  Google Scholar 

  5. 5.

    Rebours, V. et al. Obesity and fatty pancreatic infiltration are risk factors for pancreatic precancerous lesions (PanIN). Clin. Cancer Res. 21, 3522–3528 (2015).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Wang, H., Maitra, A. & Wang, H. Obesity, intrapancreatic fatty infiltration, and pancreatic cancer. Clin. Cancer Res. 21, 3369–3371 (2015).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Mathur, A. et al. Nonalcoholic fatty pancreas disease. HPB 9, 312–318 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Targher, G. et al. Pancreatic fat accumulation and its relationship with liver fat content and other fat depots in obese individuals. J. Endocrinol. Invest. 35, 748–753 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Lê, K.-A. et al. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care 34, 485–490 (2011). This work describes ethnic differences in pancreatic fat and associates it with clinical features.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Smits, M. M. & van Geenen, E. J. M. The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 8, 169–177 (2011).

    PubMed  Article  Google Scholar 

  11. 11.

    Wang, C.-Y., Ou, H.-Y., Chen, M.-F., Chang, T.-C. & Chang, C.-J. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J. Am. Heart Assoc. 3, e000297 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wong, V. W.-S. et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am. J. Gastroenterol. 109, 589–597 (2014).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Lesmana, C. R. A., Pakasi, L. S., Inggriani, S., Aidawati, M. L. & Lesmana, L. A. Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 15, 174 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Sepe, P. S. et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest. Endosc. 73, 987–993 (2011). This works identified pancreatic fat in a large number of patients using endoscopic ultrasonography and described a strong association with the metabolic syndrome.

    PubMed  Article  Google Scholar 

  15. 15.

    Walters, M. N.-I. Adipose atrophy of the exocrine pancreas. J. Pathol. Bacteriol. 92, 547–557 (1966).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Molnar, L., Kerekes, E. & Meszaros, A. Significance of the fatty infiltration of the pancreas [Hungarian]. Orv. Hetil. 99, 1243–1246 (1958). This is one of the first systematic descriptions of fatty pancreas identified in 47% of 250 autopsies.

    CAS  PubMed  Google Scholar 

  17. 17.

    Rosengren, A. H. et al. Reduced insulin exocytosis in human pancreatic β-cells with gene variants linked to type 2 diabetes. Diabetes 61, 1726–1733 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Tong, X. et al. Lipid droplet accumulation in human pancreatic islets is dependent on both donor age and health. Diabetes 69, 342–354 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Ionescu-Tirgoviste, C. et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep. 5, 14634 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Gerst, F. et al. Metabolic crosstalk between fatty pancreas and fatty liver: effects on local inflammation and insulin secretion. Diabetologia 60, 2240–2251 (2017). This is the first evidence that fetuin-A can mediate a metabolic crosstalk between liver fat, insulin resistance and pancreatic fat exacerbating local inflammation in the pancreas and leading to decreased insulin secretion.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Wagner, R. et al. Pancreatic steatosis associates with impaired insulin secretion in genetically predisposed individuals. J. Clin. Endocrinol. Metab. 105, 3518–3525 (2020). This study demonstrates that the link between fatty pancreas and impaired insulin secretion depends on genetic risk of type 2 diabetes mellitus.

    PubMed Central  Article  PubMed  Google Scholar 

  22. 22.

    Barroso Oquendo, M. et al. Pancreatic fat cells of humans with type 2 diabetes display reduced adipogenic and lipolytic activity. Am. J. Physiol. Cell Physiol. 320, C1000–C1012 (2021).

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Go, V. L. W. et al. The Pancreas: Biology, Pathobiology, and Disease (Lippincott Williams & Wilkins, 1993).

  24. 24.

    Nakamura, T. et al. Cotton rat (Sigmodon hispidus) develops metabolic disorders associated with visceral adipose inflammation and fatty pancreas without obesity. Cell Tissue Res. 375, 483–492 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Patel, S., Bellon, E. M., Haaga, J. & Park, C. H. Fat replacement of the exocrine pancreas. AJR Am. J. Roentgenol. 135, 843–845 (1980).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Murakami, R. et al. Pancreas fat and β cell mass in humans with and without diabetes: an analysis in the Japanese population. J. Clin. Endocrinol. Metab. 102, 3251–3260 (2017).

    PubMed  Article  Google Scholar 

  27. 27.

    Lee, J. S. et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World J. Gastroenterol. 15, 1869–1875 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Al-Haddad, M. et al. Risk factors for hyperechogenic pancreas on endoscopic ultrasound: a case-control study. Pancreas 38, 672–675 (2009).

    PubMed  Article  Google Scholar 

  29. 29.

    Saisho, Y. et al. Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type-2 diabetes. Clin. Anat. 20, 933–942 (2007). The study provides a systematic description of changes in pancreas anatomy across the human lifespan.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Zijl, V. D. et al. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on β-cell function in individuals with impaired glucose metabolism. J. Clin. Endocrinol. Metab. 96, 459–467 (2011).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Heni, M. et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab. Res. Rev. 26, 200–205 (2010). This work finds that pancreatic fat impacts insulin secretion in patients with prediabetes, but not in those with normal glucose tolerance.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wu, W.-C. & Wang, C.-Y. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case–control retrospective study. Cardiovasc. Diabetol. 12, 77 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Weng, S. et al. Prevalence and factors associated with nonalcoholic fatty pancreas disease and its severity in China. Medicine 97, e11293 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Hung, C.-S. et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology 287, 853–863 (2018). This paper describes the relationship between ultrasound-detected fatty pancreas and diabetes mellitus in approximately 32,000 participants.

    PubMed  Article  Google Scholar 

  35. 35.

    Ou, H.-Y., Wang, C.-Y., Yang, Y.-C., Chen, M.-F. & Chang, C.-J. The association between nonalcoholic fatty pancreas disease and diabetes. PLoS ONE 8, e62561 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Johnson, M. L. & Mack, L. A. Ultrasonic evaluation of the pancreas. Gastrointest. Radiol. 3, 257–266 (1978).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Lindsell, D. R. M. Ultrasound imaging of pancreas and biliary tract. Lancet 335, 390–393 (1990).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Choi, C. W. et al. Associated factors for a hyperechogenic pancreas on endoscopic ultrasound. World J. Gastroenterol. 16, 4329–4334 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Yamazaki, H. et al. Independent association between prediabetes and future pancreatic fat accumulation: a 5-year Japanese cohort study. J. Gastroenterol. 53, 873–882 (2018).

    PubMed  Article  Google Scholar 

  40. 40.

    Kim, S. Y. et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 271, 104–112 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Hong, C. W., Fazeli Dehkordy, S., Hooker, J. C., Hamilton, G. & Sirlin, C. B. Fat quantification in the abdomen. Top. Magn. Reson. Imaging 26, 221–227 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Kashiwagi, K. et al. Pancreatic fat content detected by computed tomography and its significant relationship with intraductal papillary mucinous neoplasm. Pancreas 47, 1087–1092 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Hu, H. H., Kim, H.-W., Nayak, K. S. & Goran, M. I. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity 18, 841–847 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Al-Mrabeh, A., Hollingsworth, K. G., Steven, S., Tiniakos, D. & Taylor, R. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PLoS ONE 12, e0174660 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Sakai, N. S., Taylor, S. A. & Chouhan, M. D. Obesity, metabolic disease and the pancreas–quantitative imaging of pancreatic fat. Br. J. Radiol. 91, 20180267 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Dixon, W. T. Simple proton spectroscopic imaging. Radiology 153, 189–194 (1984).

    CAS  Article  Google Scholar 

  47. 47.

    Sarma, M. K. et al. Noninvasive assessment of abdominal adipose tissues and quantification of hepatic and pancreatic fat fractions in type 2 diabetes mellitus. Magn. Reson. Imaging 72, 95–102 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Heber, S. D. et al. Pancreatic fat content by magnetic resonance imaging in subjects with prediabetes, diabetes, and controls from a general population without cardiovascular disease. PLoS ONE 12, e0177154 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Hernando, D. et al. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn. Reson. Med. 77, 1516–1524 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Hu, H. H. et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 298, 640–651 (2021).

    PubMed  Article  Google Scholar 

  51. 51.

    Meisamy, S. et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258, 767–775 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Kukuk, G. M. et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur. Radiol. 25, 2869–2879 (2015).

    PubMed  Article  Google Scholar 

  53. 53.

    Zhong, X. et al. Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn. Reson. Med. 72, 1353–1365 (2014).

    PubMed  Article  Google Scholar 

  54. 54.

    Hollingsworth, K. G., Al-Mrabeh, A., Steven, S. & Taylor, R. Pancreatic triacylglycerol distribution in type 2 diabetes. Diabetologia 58, 2676–2678 (2015).

    PubMed  Article  Google Scholar 

  55. 55.

    Fukui, H. et al. Evaluation of fatty pancreas by proton density fat fraction using 3-T magnetic resonance imaging and its association with pancreatic cancer. Eur. J. Radiol. 118, 25–31 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Yoon, J. H. et al. Pancreatic steatosis and fibrosis: quantitative assessment with preoperative multiparametric MR imaging. Radiology 279, 140–150 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Hakim, O. et al. Associations between pancreatic lipids and β-cell function in black African and white European men with type 2 diabetes. J. Clin. Endocrinol. Metab. 104, 1201–1210 (2019).

    PubMed  Article  Google Scholar 

  58. 58.

    Kato, S. et al. Three-dimensional analysis of pancreatic fat by fat-water magnetic resonance imaging provides detailed characterization of pancreatic steatosis with improved reproducibility. PLoS ONE 14, e0224921 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Tushuizen, M. E. et al. Pancreatic fat content and β-cell function in men with and without type 2 diabetes. Diabetes Care 30, 2916–2921 (2007). This is one of the first reports of the potential detrimental impact of fatty pancreas on β-cell function.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Machann, J. et al. Morning to evening changes of intramyocellular lipid content in dependence on nutrition and physical activity during one single day: a volume selective 1H-MRS study. MAGMA 24, 29–33 (2011).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Colgan, T. J., Van Pay, A. J., Sharma, S. D., Mao, L. & Reeder, S. B. Diurnal variation of proton density fat fraction in the liver using quantitative chemical shift encoded MRI. J. Magn. Reson. Imaging 51, 407–414 (2020).

    PubMed  Article  Google Scholar 

  62. 62.

    Machann, J. et al. Short-term variability of proton density fat fraction in pancreas and liver assessed by multi-echo chemical-shift encoding-based MRI at 3 T. medRxiv https://doi.org/10.1101/2021.06.08.21257560 (2021).

    Article  Google Scholar 

  63. 63.

    Staaf, J. et al. Pancreatic fat is associated with metabolic syndrome and visceral fat but not beta-cell function or body mass index in pediatric obesity. Pancreas 46, 358–365 (2017).

    PubMed  Article  Google Scholar 

  64. 64.

    Yamazaki, H. et al. Association between pancreatic fat and incidence of metabolic syndrome: a 5-year Japanese cohort study. J. Gastroenterol. Hepatol. 33, 2048–2054 (2018).

    PubMed  Article  Google Scholar 

  65. 65.

    Lingvay, I. et al. Noninvasive quantification of pancreatic fat in humans. J. Clin. Endocrinol. Metab. 94, 4070–4076 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Rossi, A. P. et al. Predictors of ectopic fat accumulation in liver and pancreas in obese men and women. Obesity 19, 1747–1754 (2011).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Jaghutriz, B. A. et al. Metabolomic characteristics of fatty pancreas. Exp. Clin. Endocrinol. Diabetes 128, 804–810 (2020).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Maggio, A. B. R. et al. Increased pancreatic fat fraction is present in obese adolescents with metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 54, 720–726 (2012).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Patel, N. S. et al. Insulin resistance increases MRI-estimated pancreatic fat in nonalcoholic fatty liver disease and normal controls. Gastroenterol. Res. Pract. 2013, 498296 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Hannukainen, J. C. et al. Liver and pancreatic fat content and metabolism in healthy monozygotic twins with discordant physical activity. J. Hepatol. 54, 545–552 (2011).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    van Geenen, E.-J. M. et al. Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas 39, 1185–1190 (2010).

    PubMed  Article  Google Scholar 

  72. 72.

    Milovanovic, T. et al. Ultrasonographic evaluation of fatty pancreas in Serbian patients with non alcoholic fatty liver disease–a cross sectional study. Medicina 55, 697 (2019).

    PubMed Central  Article  PubMed  Google Scholar 

  73. 73.

    Taylor, R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 51, 1781–1789 (2008).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Taylor, R. et al. Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for β cell recovery. Cell Metab. 28, 547–556.e3 (2018). This study demonstrates that fatty pancreas is reversible by a hypocaloric diet.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Al-Mrabeh, A. et al. Hepatic lipoprotein export and remission of human type 2 diabetes after weight loss. Cell Metab. 31, 233–249.e4 (2020). This study shows that changes in pancreatic fat are related to changes in β-cell function after weight loss.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Yadav, D. & Whitcomb, D. C. The role of alcohol and smoking in pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 7, 131–145 (2010).

    PubMed  Article  Google Scholar 

  78. 78.

    Apte, M. V., Pirola, R. C. & Wilson, J. S. Mechanisms of alcoholic pancreatitis. J. Gastroenterol. Hepatol. 25, 1816–1826 (2010).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Crane, J. D. et al. ELBW survivors in early adulthood have higher hepatic, pancreatic and subcutaneous fat. Sci. Rep. 6, 31560 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Curhan Gary, C. et al. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation 94, 3246–3250 (1996).

    Article  Google Scholar 

  81. 81.

    Raeder, H. et al. Pancreatic lipomatosis is a structural marker in nondiabetic children with mutations in carboxyl-ester lipase. Diabetes 56, 444–449 (2007).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Kashyap, S. et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52, 2461–2474 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Quiclet, C. et al. Pancreatic adipocytes mediate hypersecretion of insulin in diabetes-susceptible mice. Metabolism 97, 9–17 (2019). This is a study in mice that suggests that intermittent fasting prevents fatty pancreas.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    PubMed  Article  Google Scholar 

  85. 85.

    Engjom, T. et al. Sonographic pancreas echogenicity in cystic fibrosis compared to exocrine pancreatic function and pancreas fat content at Dixon-MRI. PLoS ONE 13, e0201019 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Feigelson, J. et al. Imaging changes in the pancreas in cystic fibrosis: a retrospective evaluation of 55 cases seen over a period of 9 years. J. Pediatr. Gastroenterol. Nutr. 30, 145–151 (2000).

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Soyer, P. et al. Cystic fibrosis in adolescents and adults: fatty replacement of the pancreas–CT evaluation and functional correlation. Radiology 210, 611–615 (1999).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Tham, R. T. et al. Cystic fibrosis: MR imaging of the pancreas. Radiology 179, 183–186 (1991).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Toiviainen-Salo, S. et al. Magnetic resonance imaging findings of the pancreas in patients with Shwachman-Diamond syndrome and mutations in the SBDS gene. J. Pediatr. 152, 434–436 (2008).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Argyropoulou, M. I. et al. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study. Eur. Radiol. 17, 3025–3030 (2007).

    PubMed  Article  Google Scholar 

  91. 91.

    Midiri, M. et al. MR imaging of pancreatic changes in patients with transfusion-dependent beta-thalassemia major. Am. J. Roentgenol. 173, 187–192 (1999).

    CAS  Article  Google Scholar 

  92. 92.

    Papakonstantinou, O. et al. The pancreas in β-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbances. Eur. Radiol. 17, 1535–1543 (2007).

    PubMed  Article  Google Scholar 

  93. 93.

    Pfeifer, C. D. et al. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J. Magn. Reson. Imaging 42, 196–203 (2015).

    PubMed  Article  Google Scholar 

  94. 94.

    Katz, D. et al. Using CT to reveal fat-containing abnormalities of the pancreas. Am. J. Roentgenol. 172, 393–396 (1999).

    CAS  Article  Google Scholar 

  95. 95.

    Tirkes, T. et al. Association of pancreatic steatosis with chronic pancreatitis, obesity, and type 2 diabetes mellitus. Pancreas 48, 420–426 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Fujii, M., Ohno, Y., Yamada, M., Kamada, Y. & Miyoshi, E. Impact of fatty pancreas and lifestyle on the development of subclinical chronic pancreatitis in healthy people undergoing a medical checkup. Environ. Health Prev. Med. 24, 10 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Stefan, N. & Häring, H.-U. Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat. Med. 19, 394–395 (2013). This study describes the interaction of fetuin-A and fatty acids on insulin resistance in humans.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Siegel-Axel, D. I. et al. Fetuin-A influences vascular cell growth and production of proinflammatory and angiogenic proteins by human perivascular fat cells. Diabetologia 57, 1057–1066 (2014).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Gerst, F. et al. What role do fat cells play in pancreatic tissue? Mol. Metab. 25, 1–10 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Michaud, D. S. et al. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286, 921–929 (2001).

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Maisonneuve, P. Epidemiology and burden of pancreatic cancer. La. Presse Méd. 48, e113–e123 (2019).

    Article  Google Scholar 

  104. 104.

    Takahashi, M. et al. Fatty pancreas: a possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 109, 3013–3023 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Yu, D.-Y. et al. Clinical significance of pancreatic intraepithelial neoplasia in resectable pancreatic cancer on survivals. Ann. Surg. Treat. Res. 94, 247–253 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Chang, H.-H. et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE 12, e0184455 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  107. 107.

    Kashiwagi, K. et al. Pancreatic fat content may increase the risk of imaging progression in low-risk branch duct intraductal papillary mucinous neoplasm. J. Dig. Dis. 20, 557–562 (2019).

    PubMed  Article  Google Scholar 

  108. 108.

    Stolzenberg-Solomon, R. Z. et al. Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294, 2872–2878 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Bao, Y. et al. A prospective study of plasma adiponectin and pancreatic cancer risk in five US cohorts. J. Natl Cancer Inst. 105, 95–103 (2013).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Roshani, R., McCarthy, F. & Hagemann, T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett. 345, 157–163 (2014).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Wisse, B. E. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. JASN 15, 2792–2800 (2004).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Gaborit, B. et al. Ectopic fat storage in the pancreas using 1H-MRS: importance of diabetic status and modulation with bariatric surgery-induced weight loss. Int. J. Obes. 39, 480–487 (2015).

    CAS  Article  Google Scholar 

  113. 113.

    Lu, T. et al. Pancreatic fat content is associated with β-cell function and insulin resistance in Chinese type 2 diabetes subjects. Endocr. J. 66, 265–270 (2019).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Chin, S. O. et al. Pancreatic fat accumulation is associated with decreased β-cell function and deterioration in glucose tolerance in Korean adults. Diabetes Metab. Res. Rev. https://doi.org/10.1002/dmrr.3425 (2020).

    Article  PubMed  Google Scholar 

  115. 115.

    Kühn, J.-P. et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 276, 129–136 (2015).

    PubMed  Article  Google Scholar 

  116. 116.

    Yamazaki, H. et al. Lack of independent association between fatty pancreas and incidence of type 2 diabetes: 5-year Japanese cohort study. Diabetes Care 39, 1677–1683 (2016).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Yamazaki, H. et al. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J. Gastroenterol. 55, 712–721 (2020). This study demonstrates that fatty pancreas predicts future type 2 diabetes mellitus in lean people.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Begovatz, P. et al. Pancreatic adipose tissue infiltration, parenchymal steatosis and beta cell function in humans. Diabetologia 58, 1646–1655 (2015).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Roh, E. et al. Comparison of pancreatic volume and fat amount linked with glucose homeostasis between healthy Caucasians and Koreans. Diabetes Obes. Metab. 20, 2642–2652 (2018).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Nowotny, B. et al. Circulating triacylglycerols but not pancreatic fat associate with insulin secretion in healthy humans. Metab. Clin. Exp. 81, 113–125 (2018).

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Szczepaniak, L. S. et al. Pancreatic steatosis and its relationship to β-cell dysfunction in humans: racial and ethnic variations. Diabetes Care 35, 2377–2383 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018). This study characterizes sub-phenotypes of type 2 diabetes mellitus and their clinical relevance.

    PubMed  Article  PubMed Central  Google Scholar 

  123. 123.

    Wagner, R. & Fritsche, A. Reclassification of diabetes mellitus based on pathophysiologic and genetic features [German]. Dtsch. Med. Wochenschr. 145, 601–608 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Wagner, R. et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat. Med. 27, 49–57 (2021). This study characterizes sub-phenotypes of people at risk of type 2 diabetes mellitus and their prospective clinical value.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. & Sul, H. S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27, 79–101 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Perea, A., Clemente, F., Martinell, J., Villanueva-Peñacarrillo, M. L. & Valverde, I. Physiological effect of glucagon in human isolated adipocytes. Horm. Metab. Res. 27, 372–375 (1995).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Heni, M. et al. Insulin action in the hypothalamus increases second-phase insulin secretion in humans. Neuroendocrinology 110, 929–937 (2020). This work demonstrates that the brain is able to modulate insulin secretion in humans.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Thorens, B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16, 87–95 (2014).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Wagner, R. et al. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes 62, 2106–2111 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Rodríguez, A., Ezquerro, S., Méndez-Giménez, L., Becerril, S. & Frühbeck, G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab. 309, E691–E714 (2015).

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Solimena, M. et al. Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61, 641–657 (2018).

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Man, Z. W. et al. Impaired beta-cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes 46, 1718–1724 (1997).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Winzell, M. S., Ström, K., Holm, C. & Ahrén, B. Glucose-stimulated insulin secretion correlates with β-cell lipolysis. Nutr. Metab. Cardiovasc. Dis. 16, S11–S16 (2006).

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Nolan, C. J. et al. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 49, 2120–2130 (2006).

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Cantley, J. et al. Deletion of PKCε selectively enhances the amplifying pathways of glucose-stimulated insulin secretion via increased lipolysis in mouse β-cells. Diabetes 58, 1826–1834 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Mulder, H., Yang, S., Winzell, M. S., Holm, C. & Ahrén, B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53, 122–128 (2004). This work describes the impact of β-cell lipid metabolism on insulin secretion.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Fex, M. et al. A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia 52, 271–280 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Beysen, C. et al. Interaction between specific fatty acids, GLP-1 and insulin secretion in humans. Diabetologia 45, 1533–1541 (2002).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Eitel, K. et al. Protein kinase C δ activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells. Diabetes 52, 991–997 (2003).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Lupi, R. et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51, 1437–1442 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Latour, M. G. et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56, 1087–1094 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Schmitz-Peiffer, C. & Biden, T. J. PKCδ blues for the β-cell. Diabetes 59, 1–3 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Hennige, A. M. et al. Overexpression of kinase-negative protein kinase Cδ in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes 59, 119–127 (2010).

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Ranta, F. et al. Protein kinase C delta (PKCδ) affects proliferation of insulin-secreting cells by promoting nuclear extrusion of the cell cycle inhibitor p21Cip1/WAF1. PLoS ONE 6, e28828 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Steven, S. et al. Weight loss decreases excess pancreatic triacylglycerol specifically in type 2 diabetes. Diabetes Care 39, 158–165 (2016).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Lim, E. L. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Heiskanen, M. A. et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial. Diabetologia 61, 1817–1828 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Dutour, A. et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes. Metab. 18, 882–891 (2016).

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Vanderheiden, A. et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J. Clin. Endocrinol. Metab. 101, 1798–1806 (2016).

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Kuchay, M. S. et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia 63, 2434–2445 (2020).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Yki-Järvinen, H. Thiazolidinediones. N. Engl. J. Med. 351, 1106–1118 (2004).

    PubMed  Article  Google Scholar 

  152. 152.

    Gastaldelli, A. et al. Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients. Am. J. Physiol. Endocrinol. Metab. 297, E225–E230 (2009).

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Eldor, R., DeFronzo, R. A. & Abdul-Ghani, M. In vivo actions of peroxisome Proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 36, S162–S174 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Lupi, R. et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARγ2 in the modulation of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 286, E560–E567 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Matsui, J. et al. Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-γ-deficient mice on a high-fat diet. Diabetes 53, 2844–2854 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Nissen, S. E. The rise and fall of rosiglitazone. Eur. Heart J. 31, 773–776 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Honka, H. et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J. Clin. Endocrinol. Metab. 100, 2015–2023 (2015). This work shows the effect of bariatric surgery on pancreatic fat and a possible link to improved glucose metabolism.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Umemura, A. et al. Pancreas volume reduction and metabolic effects in Japanese patients with severe obesity following laparoscopic sleeve gastrectomy. Endocr. J. 64, 487–498 (2017).

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Hui, S. C. N. et al. Observed changes in brown, white, hepatic and pancreatic fat after bariatric surgery: evaluation with MRI. Eur. Radiol. 29, 849–856 (2019).

    PubMed  Article  Google Scholar 

  160. 160.

    Slentz, C. A. et al. Effects of exercise training intensity on pancreatic β-cell function. Diabetes Care 32, 1807–1811 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Solomon, T. P. J. et al. Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J. Clin. Endocrinol. Metab. 98, 4176–4186 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Cen, J., Sargsyan, E. & Bergsten, P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr. Metab. 13, 59 (2016).

    Article  CAS  Google Scholar 

  163. 163.

    Dasgupta, S. et al. NF-κB mediates lipi d-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem. J. 429, 451–462 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Hülskämper (University of Tübingen) for artistic support in preparation of the first drafts of the figures. The authors acknowledge support (grant no. 01GI0925) from the Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD). The authors also acknowledge the support from JSPS KAKENHI (grant no. 19K16978).

Author information

Affiliations

Authors

Contributions

M.H., R.W. and S.S.E. contributed to all aspects of the article. H.Y. researched data for the article and contributed to discussion of the content. F.G., J.M., B.A.J., S.S. and A.S. researched data for the article, contributed to discussion of the content and wrote the article. S.U. contributed to discussion of the content and wrote the article. M.S., A.K., A.L.B., H.-U.H. and A.F. contributed to discussion of the content.

Corresponding author

Correspondence to Martin Heni.

Ethics declarations

Competing interests

Since January 2020, B.A.J. has been an employee and shareholder of Eli Lilly and Company. Outside the current work, R.W. reports lecture fees from Novo Nordisk and Sanofi, and travel grants from Eli Lilly. R.W. served on an advisory board for Akcea Therapeutics and Daiichi Sankyo. In addition to his current work, A.L.B. reports lecture fees from AstraZeneca, Boehringer Ingelheim and Novo Nordisk. A.L.B. served on advisory boards for AstraZeneca, Boehringer Ingelheim and Novo Nordisk. Besides his current work, A.F. reports lecture fees from and advisory board membership for Sanofi, Novo Nordisk, Eli Lilly and AstraZeneca. In addition to his current work, M.H. reports research grants from Boehringer Ingelheim and Sanofi (both to the University Hospital of Tübingen) and lecture fees from Sanofi, Novo Nordisk, Boehringer Ingelheim, Eli Lilly and Merck Sharp & Dohme. He also served on an advisory board for Boehringer Ingelheim. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks A. Gastaldelli and the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Echogenicity

The ability of a surface to reflect ultrasound in ultrasonography.

Attenuation

The radiological absorption of X-rays.

Hounsfield units

(HU). Units for quantitatively describing the radiodensity of different body tissues and materials, standardized in relation to the attenuation coefficients of air (−1,000 HU) and distilled water (0 HU), named after the developer of CT, Sir Godfrey Hounsfield.

Dixon method

An MR imaging technique that enables separation of fat and water by the inherent chemical shift difference of protons bound to lean tissues and lipids, named after the American physicist and developer W. Thomas Dixon.

Proton density fat fraction

The proton density fat fraction is a non-invasive and accurate measure of the percentage of fat infiltration in organs calculated from multi-echo Dixon images.

T2*

An effective transverse relaxation time resulting from the inherent transverse relaxation time T2 and microscopic magnetic field inhomogenities in MR gradient echo images.

Tesla

A unit of magnetic field strength. Typical clinical MR scanners work with field strengths between 1.5 T and 3 T.

Linearity

Describes the relationship between the measured signal and concentration/amount of the assessed substance, e.g. amount of lipids within the pancreas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wagner, R., Eckstein, S.S., Yamazaki, H. et al. Metabolic implications of pancreatic fat accumulation. Nat Rev Endocrinol (2021). https://doi.org/10.1038/s41574-021-00573-3

Download citation

Search

Quick links