Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in differential diagnosis and management of growth hormone deficiency in children

Abstract

Growth hormone (GH) deficiency (GHD) in children is defined as impaired production of GH by the pituitary gland that results in growth failure. This disease might be congenital or acquired, and occurs in isolation or in the setting of multiple pituitary hormone deficiency. Isolated GHD has an estimated prevalence of 1 patient per 4000–10,000 live births and can be due to multiple causes, some of which are yet to be determined. Establishing the correct diagnosis remains key in children with short stature, as initiating treatment with recombinant human GH can help them attain their genetically determined adult height. During the past two decades, our understanding of the benefits of continuing GH therapy throughout the transition period from childhood to adulthood has increased. Improvements in transitional care will help alleviate the consequent physical and psychological problems that can arise from adult GHD, although the consequences of a lack of hormone replacement are less severe in adults than in children. In this Review, we discuss the differential diagnosis in children with GHD, including details of clinical presentation, neuroimaging and genetic testing. Furthermore, we highlight advances and issues in the management of GHD, including details of transitional care.

Key points

  • Growth hormone (GH) affects growth, body composition, metabolic profile, bone mineral density and quality of life; a secretory defect leads to impaired growth and function, known as GH deficiency (GHD).

  • GHD can occur in isolation (isolated GHD, IGHD) or in conjunction with other pituitary hormone deficits (multiple pituitary hormone deficiency, MPHD); GHD might be congenital or acquired.

  • GHD is familial in 3–30% of affected patients: in IGHD, the most commonly mutated genes are GH1 or GHRHR, whereas MPHD can be caused by mutations in several pituitary-specific transcription factors.

  • Congenital hypothalamic–pituitary abnormalities confirmed via imaging, such as anterior pituitary hypoplasia, pituitary stalk anomalies and ectopic posterior pituitary, are common in both children with moderate to severe IGHD and those with MPHD.

  • Recombinant human GH (rhGH), 0.16–0.24 mg/kg per week, is used to treat children with GHD; rhGH is best when initiated upon diagnosis and adjusted by serum concentrations of IGF1, height velocity and bone age.

  • Transitional care is the shift from paediatric care to adult treatment that provides full-body maturation, metabolic control and improved quality of life for those at risk of persistent GHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Normal MRI study in a healthy 9-year-old boy.
Fig. 2: Pathological MRI in children with hypopituitarism.
Fig. 3: MRI findings in congenital hypopituitarism based on genotype.

Similar content being viewed by others

References

  1. Kelberman, D., Rizzoti, K., Lovell-Badge, R., Robinson, I. C. & Dattani, M. T. Genetic regulation of pituitary gland development in human and mouse. Endocr. Rev. 30, 790–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fang, Q. et al. Genetics of combined pituitary hormone deficiency: roadmap into the genome Era. Endocr. Rev. 37, 636–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schilbach, K. & Bidlingmaier, M. Laboratory investigations in the diagnosis and follow-up of GH-related disorders. Arch. Endocrinol. Metab. 63, 618–629 (2019).

    Article  PubMed  Google Scholar 

  4. Dehkhoda, F., Lee, C. M. M., Medina, J. & Brooks, A. J. The growth hormone receptor: mechanism of receptor activation, cell signaling, and physiological aspects. Front. Endocrinol. 9, 35 (2018).

    Article  Google Scholar 

  5. Bach, L. A. 40 Years of IGF1: IGF-binding proteins. J. Mol. Endocrinol. 61, T11–T28 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Blum, W. F. et al. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr. Connect. 7, R212–R222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Støving, R. K., Hangaard, J., Hagen, C. & Flyvbjerg, A. Low levels of the 150-kD insulin-like growth factor binding protein 3 ternary complex in patients with anorexia nervosa: effect of partial weight recovery. Horm. Res. 60, 43–48 (2003).

    PubMed  Google Scholar 

  8. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J. Clin. Endocrinol. Metab. 85, 3990–3993 (2000).

    Google Scholar 

  9. Sobrier, M. L. et al. Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J. Clin. Endocrinol. Metab. 91, 4528–4536 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Garavelli, L. et al. Solitary median maxillary central incisor syndrome: clinical case with a novel mutation of sonic hedgehog. Am. J. Med. Genet. A 127A, 93–95 (2004).

    Article  PubMed  Google Scholar 

  11. Secco, A. et al. The glucagon test in the diagnosis of growth hormone deficiency in children with short stature younger than 6 years. J. Clin. Endocrinol. Metab. 94, 4251–4257 (2009). This study shows that children younger than 6 years with GHD can have normal GH peaks after glucagon administration.

    Article  CAS  PubMed  Google Scholar 

  12. Flavelle, S. & Cummings, E. Case 2: An unusual case of delayed puberty. Paediatr. Child. Health 17, 505–507 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor, M. et al. Hypothalamic-pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J. Pediatr. 161, 855–863 (2012).

    Article  PubMed  Google Scholar 

  14. El Kholy, M. et al. Normal growth despite combined pituitary hormone deficiency. Horm. Res. Paediatr. 92, 133–142 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Binder, G. et al. Diagnosis of severe growth hormone deficiency in the newborn. Clin. Endocrinol. 93, 305–311 (2020). A comprehensive and updated review of the pituitary stalk interruption syndrome for further reading.

    Article  CAS  Google Scholar 

  16. Grimberg, A. et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm. Res. Paediatr. 86, 361–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Mamilly, L., Pyle-Eilola, A. L., Chaudhari, M. & Henry, R. K. The utility of a random growth hormone level in determining neonatal growth hormone sufficiency. Clin. Endocrinol. 94, 392–398 (2020).

    Article  CAS  Google Scholar 

  18. Kelly, A., Tang, R., Becker, S. & Stanley, C. A. Poor specificity of low growth hormone and cortisol levels during fasting hypoglycemia for the diagnoses of growth hormone deficiency and adrenal insufficiency. Pediatrics 122, e522–e528 (2008).

    Article  PubMed  Google Scholar 

  19. Cohen, P. et al. Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J. Clin. Endocrinol. Metab. 93, 4210–4217 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Binder, G. et al. GHD diagnostics in Europe and the US: an audit of national guidelines and practice. Horm. Res. Paediatr. 92, 150–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Juul, A. et al. European audit of current practice in diagnosis and treatment of childhood growth hormone deficiency. Horm. Res. 58, 233–241 (2002).

    CAS  PubMed  Google Scholar 

  22. Murray, P. G., Dattani, M. T. & Clayton, P. E. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Arch. Dis. Child. 101, 96–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Rosenfeld, R. G. Is growth hormone deficiency a viable diagnosis? J. Clin. Endocrinol. Metab. 82, 349–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Loche, S. et al. Effect of body mass index on the growth hormone response to clonidine stimulation testing in children with short stature. Clin. Endocrinol. 74, 726–731 (2011).

    Article  CAS  Google Scholar 

  25. Meinhardt, U. J. & Ho, K. K. Modulation of growth hormone action by sex steroids. Clin. Endocrinol. 65, 413–422 (2006).

    Article  CAS  Google Scholar 

  26. Martin, L. G. et al. Effect of androgen on growth hormone secretion and growth in boys with short stature. Acta Endocrinol. 91, 201–212 (1979).

    CAS  Google Scholar 

  27. Galazzi, E. et al. Clinical benefits of sex steroids given as a priming prior to GH provocative test or as a growth-promoting therapy in peripubertal growth delays: results of a retrospective study among ENDO-ERN centres. Clin. Endocrinol. 94, 219–228 (2021).

    Article  CAS  Google Scholar 

  28. Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Binder, G., Huller, E., Blumenstock, G. & Schweizer, R. Auxology-based cut-off values for biochemical testing of GH secretion in childhood. Growth Horm. IGF Res. 21, 212–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Guzzetti, C. et al. Cut-off limits of the peak GH response to stimulation tests for the diagnosis of GH deficiency in children and adolescents: study in patients with organic GHD. Eur. J. Endocrinol. 175, 41–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Manolopoulou, J. et al. Automated 22-kD growth hormone-specific assay without interference from Pegvisomant. Clin. Chem. 58, 1446–1456 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Shen, Y. et al. Diagnostic value of serum IGF-1 and IGFBP-3 in growth hormone deficiency: a systematic review with meta-analysis. Eur. J. Pediatr. 174, 419–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ibba, A. et al. IGF1 for the diagnosis of growth hormone deficiency in children and adolescents: a reappraisal. Endocr. Connect. 9, 1095–1102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Felício, J. S. et al. Diagnosis of idiopathic GHD in children based on response to rhGH treatment: the importance of GH provocative tests and IGF-1. Front. Endocrinol. 10, 638 (2019).

    Article  Google Scholar 

  35. Hadjadj, S. et al. Diagnostic strategy for growth hormone deficiency: relevance of IGF-1 determination as a screening test. Ann. Endocrinol. 68, 449–455 (2007).

    Article  CAS  Google Scholar 

  36. Ranke, M. B. et al. Relevance of IGF-I, IGFBP-3, and IGFBP-2 measurements during GH treatment of GH-deficient and non-GH-deficient children and adolescents. Horm. Res. 55, 115–124 (2001).

    CAS  PubMed  Google Scholar 

  37. Mavromati, M. et al. Classification of patients with GH disorders may vary according to the IGF-I assay. J. Clin. Endocrinol. Metab. 102, 2844–2852 (2017).

    Article  PubMed  Google Scholar 

  38. Hjortebjerg, R. & Frystyk, J. Determination of IGFs and their binding proteins. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 771–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Bidlingmaier, M. et al. Reference intervals for insulin-like growth factor-1 (IGF-1) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 99, 1712–1721 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Choi, Y. J. et al. Discriminatory performance of insulin-like growth factor 1 and insulin-like growth factor binding protein-3 by correlating values to chronological age, bone age, and pubertal status for diagnosis of isolated growth hormone deficiency. Ann. Pediatr. Endocrinol. Metab. 25, 240–247 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Inoue-Lima, T. H. et al. IGF-1 assessed by pubertal status has the best positive predictive power for GH deficiency diagnosis in peripubertal children. J. Pediatr. Endocrinol. Metab. 32, 173–179 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Löfqvist, C. et al. Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. J. Clin. Endocrinol. Metab. 90, 1420–1427 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Friedrich, N. et al. Age- and sex-specific reference intervals across life span for insulin-like growth factor binding protein 3 (IGFBP-3) and the IGF-I to IGFBP-3 ratio measured by new automated chemiluminescence assays. J. Clin. Endocrinol. Metab. 99, 1675–1686 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Tillmann, V. et al. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation. Horm. Res. 50, 71–77 (1998).

    CAS  PubMed  Google Scholar 

  45. Morrison, K. M. et al. Sample pre-treatment determines the clinical usefulness of acid-labile subunit immunoassays in the diagnosis of growth hormone deficiency and acromegaly. Eur. J. Endocrinol. 156, 331–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. De Rienzo, F. et al. Frequency of genetic defects in combined pituitary hormone deficiency: a systematic review and analysis of a multicentre Italian cohort. Clin. Endocrinol. 83, 849–860 (2015).

    Article  CAS  Google Scholar 

  47. Alatzoglou, K. S. et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3191–3199 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Wagner, J. K., Eblé, A., Hindmarsh, P. C. & Mullis, P. E. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr. Res. 43, 105–110 (1998).

    CAS  PubMed  Google Scholar 

  49. Alatzoglou, K. S. & Dattani, M. T. Genetic causes and treatment of isolated growth hormone deficiency–an update. Nat. Rev. Endocrinol. 6, 562–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Niall, H. D. Revised primary structure for human growth hormone. Nat. New Biol. 230, 90–91 (1971).

    Article  CAS  PubMed  Google Scholar 

  51. Ghizzoni, L. et al. Isolated growth hormone deficiency type IA associated with a 45-kilobase gene deletion within the human growth hormone gene cluster in an Italian family. Pediatr. Res. 36, 654–659 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Goossens, M., Brauner, R., Czernichow, P., Duquesnoy, P. & Rappaport, R. Isolated growth hormone (GH) deficiency type 1A associated with a double deletion in the human GH gene cluster. J. Clin. Endocrinol. Metab. 62, 712–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Kamijo, T. & Phillips, J. A. Detection of molecular heterogeneity in GH-1 gene deletions by analysis of polymerase chain reaction amplification products. J. Clin. Endocrinol. Metab. 74, 786–789 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Cogan, J. D. et al. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J. Clin. Endocrinol. Metab. 76, 1224–1228 (1993).

    CAS  PubMed  Google Scholar 

  55. Iughetti, L. et al. Complex disease phenotype revealed by GH deficiency associated with a novel and unusual defect in the GH-1 gene. Clin. Endocrinol. 69, 170–172 (2008).

    Article  Google Scholar 

  56. Hamid, R. et al. A molecular basis for variation in clinical severity of isolated growth hormone deficiency type II. J. Clin. Endocrinol. Metab. 94, 4728–4734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hess, O. et al. Variable phenotypes in familial isolated growth hormone deficiency caused by a G6664A mutation in the GH-1 gene. J. Clin. Endocrinol. Metab. 92, 4387–4393 (2007). A thought-provoking paper detailing the variable penetrance associated with a single mutation in GH1; some patients within the same family with this mutation manifested no phenotype.

    Article  CAS  PubMed  Google Scholar 

  58. Binder, G., Nagel, B. H., Ranke, M. B. & Mullis, P. E. Isolated GH deficiency (IGHD) type II: imaging of the pituitary gland by magnetic resonance reveals characteristic differences in comparison with severe IGHD of unknown origin. Eur. J. Endocrinol. 147, 755–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Salemi, S. et al. Isolated autosomal dominant growth hormone deficiency: stimulating mutant GH-1 gene expression drives GH-1 splice-site selection, cell proliferation, and apoptosis. Endocrinology 148, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Turton, J. P., Buchanan, C. R., Robinson, I. C., Aylwin, S. J. & Dattani, M. T. Evolution of gonadotropin deficiency in a patient with type II autosomal dominant GH deficiency. Eur. J. Endocrinol. 155, 793–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Petkovic, V. et al. GH mutant (R77C) in a pedigree presenting with the delay of growth and pubertal development: structural analysis of the mutant and evaluation of the biological activity. Eur. J. Endocrinol. 157(Suppl 1), 67–74 (2007).

    Article  CAS  Google Scholar 

  62. Takahashi, Y. et al. Short stature caused by a mutant growth hormone with an antagonistic effect. Endocr. J. 43(Suppl), 27–32 (1996).

    Article  Google Scholar 

  63. Alba, M. & Salvatori, R. Naturally-occurring missense mutations in the human growth hormone-releasing hormone receptor alter ligand binding. J. Endocrinol. 186, 515–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Godi, M. et al. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3939–3947 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Demirbilek, H. et al. Familial isolated growth hormone deficiency due to a novel homozygous missense mutation in the growth hormone releasing hormone receptor gene: clinical presentation with hypoglycemia. J. Clin. Endocrinol. Metab. 99, E2730–E2734 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Gregory, L. C. et al. Partial loss of function of the GHRH receptor leads to mild growth hormone deficiency. J. Clin. Endocrinol. Metab. 101, 3608–3615 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Zizzari, P. et al. Endogenous ghrelin regulates episodic growth hormone (GH) secretion by amplifying GH pulse amplitude: evidence from antagonism of the GH secretagogue-R1a receptor. Endocrinology 146, 3836–3842 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Pantel, J. et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. J. Clin. Invest. 116, 760–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pantel, J. et al. Recessive isolated growth hormone deficiency and mutations in the ghrelin receptor. J. Clin. Endocrinol. Metab. 94, 4334–4341 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Argente, J. et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol. Med. 6, 299–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Verberne, E. A., Faries, S., Mannens, M. M. A. M., Postma, A. V. & van Haelst, M. M. Expanding the phenotype of biallelic RNPC3 variants associated with growth hormone deficiency. Am. J. Med. Genet. A 182A, 1952–1956 (2020).

    Article  CAS  Google Scholar 

  72. Cogan, J. D. et al. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 83, 3346–3349 (1998).

    CAS  PubMed  Google Scholar 

  73. Deladoëy, J. et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 84, 1645–1650 (1999).

    PubMed  Google Scholar 

  74. Ward, R. D. et al. Role of PROP1 in pituitary gland growth. Mol. Endocrinol. 19, 698–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Riepe, F. G. et al. Longitudinal imaging reveals pituitary enlargement preceding hypoplasia in two brothers with combined pituitary hormone deficiency attributable to PROP1 mutation. J. Clin. Endocrinol. Metab. 86, 4353–4357 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Voutetakis, A. et al. Pituitary magnetic resonance imaging in 15 patients with Prop1 gene mutations: pituitary enlargement may originate from the intermediate lobe. J. Clin. Endocrinol. Metab. 89, 2200–2206 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Radovick, S. et al. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257, 1115–1118 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Cohen, R. N. et al. The role of CBP/p300 interactions and Pit-1 dimerization in the pathophysiological mechanism of combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 91, 239–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Hoppmann, J. et al. Novel variants in the POU1F1 beta isoform are associated with isolated growth hormone deficiency and combined pituitary hormone deficiency [abstract]. Horm. Res. Paediatr. 89 (Suppl. 1), FC9.1 (2018).

  80. Kale, S. et al. Genetic spectrum and predictors of mutations in four known genes in Asian Indian patients with growth hormone deficiency and orthotopic posterior pituitary: an emphasis on regional genetic diversity. Pituitary 23, 701–715 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Bashamboo, A., Bignon-Topalovic, J., Rouba, H., McElreavey, K. & Brauner, R. A nonsense mutation in the hedgehog receptor CDON associated with pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 101, 12–15 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Bashamboo, A., Bignon-Topalovic, J., Moussi, N., McElreavey, K. & Brauner, R. Mutations in the human ROBO1 gene in pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 102, 2401–2406 (2017).

    Article  PubMed  Google Scholar 

  83. Giri, D. et al. Novel FOXA2 mutation causes hyperinsulinism, hypopituitarism with craniofacial and endoderm-derived organ abnormalities. Hum. Mol. Genet. 26, 4315–4326 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Karaca, E. et al. Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 100, E140–E147 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Webb, E. A. & Dattani, M. T. Septo-optic dysplasia. Eur. J. Hum. Genet. 18, 393–397 (2010).

    Article  PubMed  Google Scholar 

  86. Morishima, A. & Aranoff, G. S. Syndrome of septo-optic-pituitary dysplasia: the clinical spectrum. Brain Dev. 8, 233–239 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Mehta, A. et al. Congenital hypopituitarism: clinical, molecular and neuroradiological correlates. Clin. Endocrinol. 71, 376–382 (2009).

    Article  Google Scholar 

  88. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Gaston-Massuet, C. et al. Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proc. Natl Acad. Sci. USA 113, E548–E557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Patel, L., McNally, R. J., Harrison, E., Lloyd, I. C. & Clayton, P. E. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J. Pediatr. 148, 85–88 (2006).

    Article  PubMed  Google Scholar 

  91. Cerbone, M., Güemes, M., Wade, A., Improda, N. & Dattani, M. Endocrine morbidity in midline brain defects: differences between septo-optic dysplasia and related disorders. EClinicalMedicine 19, 100224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kelberman, D. et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J. Clin. Invest. 116, 2442–2455 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Macchiaroli, A. et al. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency. Gene 534, 282–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Sisodiya, S. M. et al. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia 47, 534–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Tajima, T. et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J. Clin. Endocrinol. Metab. 94, 314–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Gregory, L. C. et al. The phenotypic spectrum associated with OTX2 mutations in humans. Eur. J. Endocrinol. 185, 121–135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brachet, C. et al. Truncating RAX mutations: anophthalmia, hypopituitarism, diabetes insipidus, and cleft palate in mice and men. J. Clin. Endocrinol. Metab. 104, 2925–2930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Alatzoglou, K. S. et al. SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J. Clin. Endocrinol. Metab. 99, E2702–E2708 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Laumonnier, F. et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am. J. Hum. Genet. 71, 1450–1455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Woods, K. S. et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am. J. Hum. Genet. 76, 833–849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Castinetti, F. et al. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. J. Clin. Endocrinol. Metab. 93, 2790–2799 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Pfaeffle, R. W. et al. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J. Clin. Endocrinol. Metab. 92, 1909–1919 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Rajab, A. et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum. Mol. Genet. 17, 2150–2159 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Gregory, L. C. et al. Novel lethal form of congenital hypopituitarism associated with the first recessive LHX4 mutation. J. Clin. Endocrinol. Metab. 100, 2158–2164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hufnagel, R. B. et al. Neuropathy target esterase impairments cause Oliver-McFarlane and Laurence-Moon syndromes. J. Med. Genet. 52, 85–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. McCabe, M. J. et al. Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction. J. Clin. Endocrinol. Metab. 96, E1709–E1718 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Roessler, E. et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Natl Acad. Sci. USA 100, 13424–13429 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tatsi, C. et al. Pituitary stalk interruption syndrome and isolated pituitary hypoplasia may be caused by mutations in holoprosencephaly-related genes. J. Clin. Endocrinol. Metab. 98, E779–E784 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Gregory, L. C. & Dattani, M. T. The molecular basis of congenital hypopituitarism and related disorders. J. Clin. Endocrinol. Metab. 105, E2103–E2120 (2020). A recent and up-to-date review of the molecular causes of congenital hypopituitarism.

    Article  Google Scholar 

  110. Correa, F. A. et al. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr. Connect. 4, 100–107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Raivio, T. et al. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J. Clin. Endocrinol. Metab. 97, E694–E699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martín, M. G. et al. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 145, 138–148 (2013).

    Article  PubMed  CAS  Google Scholar 

  113. Hughes, J. N. et al. Identification of an IGSF1-specific deletion in a five-generation pedigree with X-linked central hypothyroidism without macroorchidism. Clin. Endocrinol. 85, 609–615 (2016).

    Article  CAS  Google Scholar 

  114. Di Iorgi, N. et al. The use of neuroimaging for assessing disorders of pituitary development. Clin. Endocrinol. 76, 161–176 (2012).

    Article  Google Scholar 

  115. Vergier, J. et al. DIAGNOSIS OF ENDOCRINE DISEASE: Pituitary stalk interruption syndrome: etiology and clinical manifestations. Eur. J. Endocrinol. 181, R199–R209 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Cohen, E. et al. Contribution of LHX4 mutations to pituitary deficits in a cohort of 417 unrelated patients. J. Clin. Endocrinol. Metab. 102, 290–301 (2017).

    Article  PubMed  Google Scholar 

  117. Deal, C. et al. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study. Horm. Res. Paediatr. 79, 283–292 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, C. Z. et al. Pituitary stalk interruption syndrome: from clinical findings to pathogenesis. J. Neuroendocrinol. 29, 12451 (2017).

    Article  Google Scholar 

  119. Di Iorgi, N. et al. Classical and non-classical causes of GH deficiency in the paediatric age. Best. Pract. Res. Clin. Endocrinol. Metab. 30, 705–736 (2016).

    Article  PubMed  CAS  Google Scholar 

  120. Maghnie, M., Lindberg, A., Koltowska-Häggström, M. & Ranke, M. B. Magnetic resonance imaging of CNS in 15,043 children with GH deficiency in KIGS (Pfizer International Growth Database). Eur. J. Endocrinol. 168, 211–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Blum, W. F. et al. Screening a large pediatric cohort with GH deficiency for mutations in genes regulating pituitary development and GH secretion: frequencies, phenotypes and growth outcomes. EBioMedicine 36, 390–400 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. McCormack, S. E. et al. Digenic inheritance of PROKR2 and WDR11 mutations in pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 102, 2501–2507 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. David, O. et al. Pituitary stalk interruption syndrome broadens the clinical spectrum of the TTC26 ciliopathy. Clin. Genet. 98, 303–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Guo, Q. H. et al. Multi-genic pattern found in rare type of hypopituitarism: a whole-exome sequencing study of Han Chinese with pituitary stalk interruption syndrome. J. Cell Mol. Med. 21, 3626–3632 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnson-Tesch, B. A., Gawande, R. S., Zhang, L., MacMillan, M. L. & Nascene, D. R. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups. Pediatr. Radiol. 47, 868–876 (2017).

    Article  PubMed  Google Scholar 

  126. Zwaveling-Soonawala, N. et al. Clues for polygenic inheritance of pituitary stalk interruption syndrome from exome sequencing in 20 patients. J. Clin. Endocrinol. Metab. 103, 415–428 (2018).

    Article  PubMed  Google Scholar 

  127. Lodge, E. J. et al. Requirement of FAT and DCHS protocadherins during hypothalamic-pituitary development. JCI Insight 5, e134310 (2020).

    Article  PubMed Central  Google Scholar 

  128. Argyropoulou, M. I. & Kiortsis, D. N. MRI of the hypothalamic-pituitary axis in children. Pediatr. Radiol. 35, 1045–1055 (2005).

    Article  PubMed  Google Scholar 

  129. Sari, S. et al. Measures of pituitary gland and stalk: from neonate to adolescence. J. Pediatr. Endocrinol. Metab. 27, 1071–1076 (2014).

    PubMed  Google Scholar 

  130. Godano, E. et al. Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases. Eur. J. Endocrinol. 178, 613–622 (2018). This paper provides important evidence for MRI usage without contrast enhancement in the majority of children with GHD.

    Article  CAS  PubMed  Google Scholar 

  131. Severino, M. et al. Midbrain-hindbrain involvement in septo-optic dysplasia. AJNR Am. J. Neuroradiol. 35, 1586–1592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lenz, A. M. & Root, A. W. Empty sella syndrome. Pediatr. Endocrinol. Rev. 9, 710–715 (2012).

    PubMed  Google Scholar 

  133. Cacciari, E. et al. Empty sella in children and adolescents with possible hypothalamic-pituitary disorders. J. Clin. Endocrinol. Metab. 78, 767–771 (1994).

    CAS  PubMed  Google Scholar 

  134. Scala, M. et al. Familial ROBO1 deletion associated with ectopic posterior pituitary, duplication of the pituitary stalk and anterior pituitary hypoplasia. J. Pediatr. Endocrinol. Metab. 32, 95–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Netchine, I. et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25, 182–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Ybarra, M. et al. A new imaging entity consistent with partial ectopic posterior pituitary gland: report of six cases. Pediatr. Radiol. 50, 107–115 (2020).

    Article  PubMed  Google Scholar 

  137. Campbell, H. J. & Harris, G. W. The volume of the pituitary and median eminence in stalk-sectioned rabbits. J. Physiol. 136, 333–343 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Adams, J. H., Daniel, P. M. & Prichard, M. M. Degeneration and regeneration of hypothalamic nerve fibers in the neurohypophysis after pituitary stalk section in the ferret. J. Comp. Neurol. 135, 121–144 (1969).

    Article  CAS  PubMed  Google Scholar 

  139. Surtees, R., Adams, J., Price, D., Clayton, P. & Shalet, S. Association of adverse perinatal events with an empty sella turcica in children with growth hormone deficiency. Horm. Res. 28, 5–12 (1987).

    Article  CAS  PubMed  Google Scholar 

  140. Maghnie, M. et al. Hypothalamic-pituitary dysfunction in growth hormone-deficient patients with pituitary abnormalities. J. Clin. Endocrinol. Metab. 73, 79–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Pinto, G. et al. Pituitary stalk interruption syndrome: a clinical-biological-genetic assessment of its pathogenesis. J. Clin. Endocrinol. Metab. 82, 3450–3454 (1997).

    CAS  PubMed  Google Scholar 

  142. Lubinsky, M. S. Hypothesis: septo-optic dysplasia is a vascular disruption sequence. Am. J. Med. Genet. 69, 235–236 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Maghnie, M., Larizza, D., Zuliani, I. & Severi, F. Congenital central nervous system abnormalities, idiopathic hypopituitarism and breech delivery: what is the connection? Eur. J. Pediatr. 152, 175 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Fujita, K. et al. The association of hypopituitarism with small pituitary, invisible pituitary stalk, type 1 Arnold-Chiari malformation, and syringomyelia in seven patients born in breech position: a further proof of birth injury theory on the pathogenesis of “idiopathic hypopituitarism”. Eur. J. Pediatr. 151, 266–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Parks, J. S. Congenital hypopituitarism. Clin. Perinatol. 45, 75–91 (2018).

    Article  PubMed  Google Scholar 

  146. Murray, P. G. et al. Likelihood of persistent GH deficiency into late adolescence: relationship to the presence of an ectopic or normally sited posterior pituitary gland. Clin. Endocrinol. 71, 215–219 (2009).

    Article  CAS  Google Scholar 

  147. Binder, G. et al. Evolving pituitary hormone deficits in primarily isolated GHD: a review and experts’ consensus. Mol. Cell Pediatr. 7, 16 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Maghnie, M. et al. Dynamic MRI in the congenital agenesis of the neural pituitary stalk syndrome: the role of the vascular pituitary stalk in predicting residual anterior pituitary function. Clin. Endocrinol. 45, 281–290 (1996).

    Article  CAS  Google Scholar 

  149. Zenaty, D., Garel, C., Limoni, C., Czernichow, P. & Léger, J. Presence of magnetic resonance imaging abnormalities of the hypothalamic-pituitary axis is a significant determinant of the first 3 years growth response to human growth hormone treatment in prepubertal children with nonacquired growth hormone deficiency. Clin. Endocrinol. 58, 647–652 (2003).

    Article  CAS  Google Scholar 

  150. Richmond, E. & Rogol, A. D. Treatment of growth hormone deficiency in children, adolescents and at the transitional age. Best. Pract. Res. Clin. Endocrinol. Metab. 30, 749–755 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Lal, R. A. & Hoffman, A. R. Perspectives on long-acting growth hormone therapy in children and adults. Arch. Endocrinol. Metab. 63, 601–607 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Miller, B. S., Velazquez, E. & Yuen, K. C. J. Long-acting growth hormone preparations – current status and future considerations. J. Clin. Endocrinol. Metab. 105, e2121–e2133 (2020).

    Article  Google Scholar 

  153. Yuen, K. C. J., Miller, B. S. & Biller, B. M. K. The current state of long-acting growth hormone preparations for growth hormone therapy. Curr. Opin. Endocrinol. Diabetes Obes. 25, 267–273 (2018).

    Article  PubMed  Google Scholar 

  154. Johannsson, G. et al. Once-weekly somapacitan is effective and well tolerated in adults with GH deficiency: a randomized phase 3 trial. J. Clin. Endocrinol. Metab. 105, E1358–E1376 (2020).

    Article  PubMed Central  Google Scholar 

  155. Yang, Y. et al. Efficacy and safety of long-acting growth hormone in children with short stature: a systematic review and meta-analysis. Endocrine 65, 25–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Bakker, B., Frane, J., Anhalt, H., Lippe, B. & Rosenfeld, R. G. Height velocity targets from the national cooperative growth study for first-year growth hormone responses in short children. J. Clin. Endocrinol. Metab. 93, 352–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Bang, P. et al. A comparison of different definitions of growth response in short prepubertal children treated with growth hormone. Horm. Res. Paediatr. 75, 335–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Pozzobon, G. et al. Growth hormone therapy in children: predictive factors and short-term and long-term response criteria. Endocrine 66, 614–621 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Kriström, B. et al. Growth hormone (GH) dosing during catch-up growth guided by individual responsiveness decreases growth response variability in prepubertal children with GH deficiency or idiopathic short stature. J. Clin. Endocrinol. Metab. 94, 483–490 (2009).

    Article  PubMed  CAS  Google Scholar 

  160. Ranke, M. B., Lindberg, A. & Board, K. I. Observed and predicted growth responses in prepubertal children with growth disorders: guidance of growth hormone treatment by empirical variables. J. Clin. Endocrinol. Metab. 95, 1229–1237 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Carrascosa, A. et al. Growth hormone secretory status evaluated by growth hormone peak after two pharmacological growth hormone release stimuli did not significantly influence the two-year catch-up growth induced by growth hormone therapy in 318 prepubertal short children with idiopathic growth retardation. Horm. Res. Paediatr. 75, 106–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Ranke, M. B. & Lindberg, A. Predicting growth in response to growth hormone treatment. Growth Horm. IGF Res. 19, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Kaufman, F. R. & Sy, J. P. Regular monitoring of bone age is useful in children treated with growth hormone. Pediatrics 104, 1039–1042 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Wilson, D. M. Regular monitoring of bone age is not useful in children treated with growth hormone. Pediatrics 104, 1036–1039 (1999).

    Article  CAS  PubMed  Google Scholar 

  165. Martin, D. D., Sato, K., Sato, M., Thodberg, H. H. & Tanaka, T. Validation of a new method for automated determination of bone age in Japanese children. Horm. Res. Paediatr. 73, 398–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Martin, D. D., Schittenhelm, J. & Thodberg, H. H. Validation of adult height prediction based on automated bone age determination in the Paris Longitudinal Study of healthy children. Pediatr. Radiol. 46, 263–269 (2016).

    Article  PubMed  Google Scholar 

  167. Pinsker, J. E. et al. Automated bone age analysis with lossy image files. Mil. Med. 182, e1769–e1772 (2017).

    Article  PubMed  Google Scholar 

  168. Crock, P. A. et al. Benign intracranial hypertension and recombinant growth hormone therapy in Australia and New Zealand. Acta Paediatr. 87, 381–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Darendeliler, F., Karagiannis, G. & Wilton, P. Headache, idiopathic intracranial hypertension and slipped capital femoral epiphysis during growth hormone treatment: a safety update from the KIGS database. Horm. Res. 68(Suppl 5), 41–47 (2007).

    PubMed  Google Scholar 

  170. Mostoufi-Moab, S. et al. Childhood cancer survivors exposed to total body irradiation are at significant risk for slipped capital femoral epiphysis during recombinant growth hormone therapy. Pediatr. Blood Cancer 60, 1766–1771 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Miller, B. S. & Rosenfeld, R. G. Monitoring rhGH Safety: rhGH registries, SAGhE and future needs. Pediatr. Endocrinol. Rev. 16, 150–161 (2018).

    PubMed  Google Scholar 

  172. Carel, J. C. et al. Long-term mortality after recombinant growth hormone treatment for isolated growth hormone deficiency or childhood short stature: preliminary report of the French SAGhE study. J. Clin. Endocrinol. Metab. 97, 416–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Sävendahl, L. et al. Long-term mortality and causes of death in isolated GHD, ISS, and SGA patients treated with recombinant growth hormone during childhood in Belgium, The Netherlands, and Sweden: preliminary report of 3 countries participating in the EU SAGhE study. J. Clin. Endocrinol. Metab. 97, E213–E217 (2012). This paper presents a composite analysis of the data collected during the SAGhE study of the long-term safety of GH treatment.

    Article  PubMed  CAS  Google Scholar 

  174. Sävendahl, L. et al. Long-term mortality after childhood growth hormone treatment: the SAGhE cohort study. Lancet Diabetes Endocrinol. 8, 683–692 (2020).

    Article  PubMed  Google Scholar 

  175. Albertsson-Wikland, K. et al. Mortality is not increased in recombinant human growth hormone-treated patients when adjusting for birth characteristics. J. Clin. Endocrinol. Metab. 101, 2149–2159 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Boguszewski, C. L. & Boguszewski, M. C. D. S. Growth hormone’s links to cancer. Endocr. Rev. 40, 558–574 (2019).

    Article  PubMed  Google Scholar 

  177. Losa, M. et al. Growth hormone therapy does not increase the risk of craniopharyngioma and nonfunctioning pituitary adenoma recurrence. J. Clin. Endocrinol. Metab. 105, 1573–1580 (2020).

    Article  Google Scholar 

  178. Raman, S. et al. Risk of neoplasia in pediatric patients receiving growth hormone therapy–a report from the Pediatric Endocrine Society Drug and Therapeutics Committee. J. Clin. Endocrinol. Metab. 100, 2192–2203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Grimberg, A. & Allen, D. B. Growth hormone treatment for growth hormone deficiency and idiopathic short stature: new guidelines shaped by the presence and absence of evidence. Curr. Opin. Pediatr. 29, 466–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Abs, R. et al. Prevalence of diabetes mellitus in 6050 hypopituitary patients with adult-onset GH deficiency before GH replacement: a KIMS analysis. Eur. J. Endocrinol. 168, 297–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Downing, J. et al. Transition in endocrinology: the challenge of maintaining continuity. Clin. Endocrinol. 78, 29–35 (2013).

    Article  Google Scholar 

  182. Yuen, K. C. J. et al. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of growth hormone deficiency in adults and patients transitioning from pediatric to adult care. Endocr. Pract. 25, 1191–1232 (2019). The most recently updated guidelines for paediatric patients with GHD transitioning to adult care provides a practical tool for more in-depth detail.

    Article  PubMed  Google Scholar 

  183. Hartman, M. L. et al. Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J. Clin. Endocrinol. Metab. 87, 477–485 (2002).

    Article  CAS  PubMed  Google Scholar 

  184. Einaudi, S. et al. Hypothalamo-hypophysial dysfunction after traumatic brain injury in children and adolescents: a preliminary retrospective and prospective study. J. Pediatr. Endocrinol. Metab. 19, 691–703 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Gleeson, H. K., Gattamaneni, H. R., Smethurst, L., Brennan, B. M. & Shalet, S. M. Reassessment of growth hormone status is required at final height in children treated with growth hormone replacement after radiation therapy. J. Clin. Endocrinol. Metab. 89, 662–666 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Alatzoglou, K. S., Webb, E. A., Le Tissier, P. & Dattani, M. T. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr. Rev. 35, 376–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Colao, A. et al. A reappraisal of diagnosing GH deficiency in adults: role of gender, age, waist circumference, and body mass index. J. Clin. Endocrinol. Metab. 94, 4414–4422 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Garcia, J. M. et al. Sensitivity and specificity of the macimorelin test for diagnosis of AGHD. Endocr. Connect. 10, 76–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Kuzma, M. et al. Effect of growth hormone on bone status in growth hormone-deficient adults. Bratisl. Lek. Listy 114, 689–695 (2013).

    CAS  PubMed  Google Scholar 

  190. Davidson, P., Milne, R., Chase, D. & Cooper, C. Growth hormone replacement in adults and bone mineral density: a systematic review and meta-analysis. Clin. Endocrinol. 60, 92–98 (2004).

    Article  CAS  Google Scholar 

  191. Carroll, P. V. et al. Comparison of continuation or cessation of growth hormone (GH) therapy on body composition and metabolic status in adolescents with severe GH deficiency at completion of linear growth. J. Clin. Endocrinol. Metab. 89, 3890–3895 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. Yang, H. et al. Body composition and metabolic health of young male adults with childhood-onset multiple pituitary hormone deficiency after cessation of growth hormone treatment. J. Pediatr. Endocrinol. Metab. 31, 533–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Courtillot, C. et al. Monocentric study of 112 consecutive patients with childhood onset GH deficiency around and after transition. Eur. J. Endocrinol. 169, 587–596 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Elbornsson, M. et al. Fifteen years of GH replacement improves body composition and cardiovascular risk factors. Eur. J. Endocrinol. 168, 745–753 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hwu, C. M. et al. Growth hormone (GH) replacement reduces total body fat and normalizes insulin sensitivity in GH-deficient adults: a report of one-year clinical experience. J. Clin. Endocrinol. Metab. 82, 3285–3292 (1997).

    CAS  PubMed  Google Scholar 

  196. Hammarstrand, C. et al. Comorbidities in patients with non-functioning pituitary adenoma: influence of long-term growth hormone replacement. Eur. J. Endocrinol. 179, 229–237 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Attanasio, A. F. et al. Prevalence of metabolic syndrome in adult hypopituitary growth hormone (GH)-deficient patients before and after GH replacement. J. Clin. Endocrinol. Metab. 95, 74–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Luger, A. et al. Incidence of diabetes mellitus and evolution of glucose parameters in growth hormone-deficient subjects during growth hormone replacement therapy: a long-term observational study. Diabetes Care 35, 57–62 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Attanasio, A. F. et al. Prevalence and incidence of diabetes mellitus in adult patients on growth hormone replacement for growth hormone deficiency: a surveillance database analysis. J. Clin. Endocrinol. Metab. 96, 2255–2261 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Lanes, R. et al. Cardiac mass and function, carotid artery intima-media thickness, and lipoprotein levels in growth hormone-deficient adolescents. J. Clin. Endocrinol. Metab. 86, 1061–1065 (2001).

    Article  CAS  PubMed  Google Scholar 

  201. Setola, E. et al. Effects of growth hormone treatment on arginine to asymmetric dimethylarginine ratio and endothelial function in patients with growth hormone deficiency. Metabolism 57, 1685–1690 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Tidblad, A., Bottai, M., Kieler, H., Albertsson-Wikland, K. & Sävendahl, L. Association of childhood growth hormone treatment with long-term cardiovascular morbidity. JAMA Pediatr. 175, e205199 (2021).

    Article  PubMed  Google Scholar 

  203. Grimberg, A. Cardiovascular Disease in former pediatric recipients of growth hormone: another look at growth hormone safety. JAMA Pediatr. 175, e205232 (2021).

    Article  PubMed  Google Scholar 

  204. Aguiar-Oliveira, M. H. & Salvatori, R. Disruption of the GHRH receptor and its impact on children and adults: The Itabaianinha syndrome. Rev. Endocr. Metab. Disord. 22, 81–89 (2020). The GHRH signal disruption syndrome in a cohort followed for 26 years has been a valuable model to study the role of GH in body size and function.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Andrea Rossi and Prof. Giovanni Morana for their contributions to the neuroimaging. C.H. acknowledges the support of a generous gift from the Ward Family.

Author information

Authors and Affiliations

Authors

Contributions

C.H., H.-W.G., A. I. and G.P. researched data for the article. R.S., M.D. and S.L. contributed substantially to discussion of the content. C.H., H.-W.G., A.I., G.P. and M.M. wrote the article. R.S., M.D., S.L. and M.L. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Roberto Salvatori.

Ethics declarations

Competing interests

R.S. has served on advisory boards for Novo Nordisk and Ipsen. M.D. has served on advisory boards for Novo Nordisk, Pfizer and Ipsen and has received consulting/lecture fees from Sandoz, Pfizer and Novo Nordisk. M.M. has served on advisory boards for Ascendis, Biomarin, Merck, Novo Nordisk, Pfizer and Merk and has received lecture fees at several meetings. S.L. has received lecture fees and served on advisory board for Merck Serono, Ipsen and Sandoz. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks G. Binder, R. Brauner and C. Deal for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

OMIM #615961: https://www.omim.org/entry/615961

PSIS: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=95496

Supplementary information

Glossary

Ectopic posterior pituitary

A disruption of normal embryogenesis of the posterior pituitary resulting in an incomplete downward extension of the diencephalon (infundibulum).

Holoprosencephaly

A syndrome caused by failure of separation of the cerebral hemispheres and ventricles and associated with a wide range of midline facial defects, ranging from cyclopia to midfacial hypoplasia, cleft lip and/or palate and a single incisor.

T2-DRIVE

A T2-weighted driven equilibrium (DRIVE) imaging obtained via turbo fast spin-echo sequences at sub-millimetre thickness, which provide excellent contrast between the cerebrospinal fluid and the adjacent parenchymal structures.

Slipped capital femoral epiphysis

A disorder seen in adolescents in which the growth plate is damaged and the femoral head moves (‘slips’) with respect to the rest of the femur: the head of the femur stays in the cup of the hip joint while the rest of the femur is shifted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hage, C., Gan, HW., Ibba, A. et al. Advances in differential diagnosis and management of growth hormone deficiency in children. Nat Rev Endocrinol 17, 608–624 (2021). https://doi.org/10.1038/s41574-021-00539-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-021-00539-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing