Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adrenal cortex renewal in health and disease

Abstract

Resident progenitor and/or stem cell populations in the adult adrenal cortex enable cortical cells to undergo homeostatic renewal and regeneration after injury. Renewal occurs predominantly in the outer layers of the adrenal gland but newly formed cells undergo centripetal migration, differentiation and lineage conversion in the process of forming the different functional steroidogenic zones. Over the past 10 years, advances in the genetic characterization of adrenal diseases and studies of mouse models with altered adrenal phenotypes have helped to elucidate the molecular pathways that regulate adrenal tissue renewal, several of which are fine-tuned via complex paracrine and endocrine influences. Moreover, the adrenal gland is a sexually dimorphic organ, and testicular androgens have inhibitory effects on cell proliferation and progenitor cell recruitment in the adrenal cortex. This Review integrates these advances, including the emerging role of sex hormones, into existing knowledge on adrenocortical cell renewal. An in-depth understanding of these mechanisms is expected to contribute to the development of novel therapies for severe endocrine diseases, for which current treatments are unsatisfactory.

Key points

  • The adrenal cortex undergoes renewal throughout life and can regenerate after injury thanks to resident progenitor populations.

  • Paracrine and endocrine mechanisms regulate progenitor cell activity and establish adrenal cortex zonation; disruption of these mechanisms leads to alterations in adrenal size.

  • Adrenocortical tissue turnover is sexually dimorphic owing, at least in part, to a suppressive effect of testicular androgens.

  • Dysregulation of adrenocortical turnover pathways is associated with development of adrenal tumours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Homeostatic tissue renewal in the mouse adult adrenal cortex and capsule.
Fig. 2: Paracrine communication between zona glomerulosa and capsule cells is dysregulated in adrenocortical carcinoma.

References

  1. 1.

    Bandiera, R., Sacco, S., Vidal, V. P. I., Chaboissier, M. C. & Schedl, A. Steroidogenic organ development and homeostasis: a WT1-centric view. Mol. Cell. Endocrinol. 408, 145–155 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Zubair, M., Ishihara, S., Oka, S., Okumura, K. & Morohashi, K. Two-step regulation of Ad4BP/SF-1 gene transcription during fetal adrenal development: initiation by a Hox-Pbx1-Prep1 complex and maintenance via autoregulation by Ad4BP/SF-1. Mol. Cell. Biol. 26, 4111–4121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zubair, M., Parker, K. L. & Morohashi, K. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell. Biol. 28, 7030–7040 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bandiera, R. et al. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev. Cell 27, 5–18 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Wood, M. A. et al. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140, 4522–4532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Engeland, W. C., Ennen, W. B., Elayaperumal, A., Durand, D. A. & Levay-Young, B. K. Zone-specific cell proliferation during compensatory adrenal growth in rats. Am. J. Physiol. Metab. 288, E298–E306 (2005).

    CAS  Google Scholar 

  7. 7.

    Beuschlein, F. et al. Steroidogenic factor-1 is essential for compensatory adrenal growth following unilateral adrenalectomy. Endocrinology 143, 3122–3135 (2002).

    CAS  PubMed  Google Scholar 

  8. 8.

    Holzwarth, M. A., Shinsako, J. & Dallman, M. F. Adrenal regeneration. Time course, effect of hypothalamic hemi-islands and response to unilateral adrenalectomy. Neuroendocrinology 31, 168–176 (1980).

    CAS  PubMed  Google Scholar 

  9. 9.

    Greep, R. O. & Deane, H. W. Histological, cytochemical and physiological observations on the regeneration of the rat’s adrenal gland following enucleation. Endocrinology 45, 42–56 (1949).

    CAS  PubMed  Google Scholar 

  10. 10.

    Grabek, A. et al. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell 25, 290–296.e2 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Magrassi, L., Leto, K. & Rossi, F. Lifespan of neurons is uncoupled from organismal lifespan. Proc. Natl Acad. Sci. USA 110, 4374–4379 (2013).

    CAS  PubMed  Google Scholar 

  13. 13.

    Simons, B. D. & Clevers, H. Stem cell self-renewal in intestinal crypt. Exp. Cell Res. 317, 2719–2724 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Chang, S. P. et al. Cell proliferation, movement and differentiation during maintenance of the adult mouse adrenal cortex. PLoS ONE 8, e81865 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Basham, K. J. et al. A ZNRF3-dependent Wnt/β-catenin signaling gradient is required for adrenal homeostasis. Genes Dev. 33, 209–220 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mitani, F., Mukai, K., Miyamoto, H., Suematsu, M. & Ishimura, Y. The undifferentiated cell zone is a stem cell zone in adult rat adrenal cortex. Biochim. Biophys. Acta 1619, 317–324 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Zajicek, G., Ariel, I. & Arber, N. The streaming adrenal cortex: direct evidence of centripetal migration of adrenocytes by estimation of cell turnover rate. J. Endocrinol. 111, 477–482 (1986).

    CAS  PubMed  Google Scholar 

  18. 18.

    Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Belgorosky, A., Baquedano, M. S., Guercio, G. & Rivarola, M. A. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche. Rev. Endocr. Metab. Disord. 10, 51–61 (2009).

    CAS  PubMed  Google Scholar 

  20. 20.

    King, P., Paul, A. & Laufer, E. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl Acad. Sci. USA 106, 21185–21190 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Huang, C.-C. J., Miyagawa, S., Matsumaru, D., Parker, K. L. & Yao, H. H.-C. Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151, 1119–1128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Finco, I., Lerario, A. M. & Hammer, G. D. Sonic hedgehog and WNT signaling promote adrenal gland regeneration in male mice. Endocrinology 159, 579–596 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Walczak, E. M. et al. Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol. Endocrinol. 28, 1471–1486 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Val, P., Martinez-Barbera, J. P. & Swain, A. Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage. Development 134, 2349–2358 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Wilhelm, D. & Englert, C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 16, 1839–1851 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Steenblock, C. et al. Isolation and characterization of adrenocortical progenitors involved in the adaptation to stress. Proc. Natl Acad. Sci. USA 115, 12997–13002 (2018).

    CAS  PubMed  Google Scholar 

  27. 27.

    Steenblock, C. et al. Adrenal cortical and chromaffin stem cells: is there a common progeny related to stress adaptation? Mol. Cell. Endocrinol. 441, 156–163 (2017).

    CAS  PubMed  Google Scholar 

  28. 28.

    Ching, S. & Vilain, E. Targeted disruption of sonic hedgehog in the mouse adrenal leads to adrenocortical hypoplasia. Genesis 47, 628–637 (2009).

    CAS  PubMed  Google Scholar 

  29. 29.

    Bourdeau, I. et al. Primary pigmented nodular adrenocortical disease: paradoxical responses of cortisol secretion to dexamethasone occur in vitro and are associated with increased expression of the glucocorticoid receptor. J. Clin. Endocrinol. Metab. 88, 3931–3937 (2003).

    CAS  PubMed  Google Scholar 

  30. 30.

    Louiset, E. et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J. Clin. Endocrinol. Metab. 94, 2406–2413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Kim, A. C. et al. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135, 2593–2602 (2008).

    CAS  PubMed  Google Scholar 

  32. 32.

    Zebisch, M. et al. Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin. Nat. Commun. 4, 2787 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Hao, H. X. et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 485, 195–202 (2012).

    CAS  PubMed  Google Scholar 

  34. 34.

    Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes Dev. 30, 1389–1394 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Berthon, A. et al. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum. Mol. Genet. 19, 1561–1576 (2010).

    CAS  PubMed  Google Scholar 

  36. 36.

    Pignatti, E. et al. β-Catenin causes adrenal hyperplasia by blocking zonal transdifferentiation. Cell Rep. 31, 107524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Berthon, A. et al. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum. Mol. Genet. 23, 889–905 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Leng, S. et al. β-Catenin and FGFR2 regulate postnatal rosette-based adrenocortical morphogenesis. Nat. Commun. 11, 1680 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Rocha, A. S. et al. The angiocrine factor Rspondin3 is a key determinant of liver zonation. Cell Rep. 13, 1757–1764 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Wang, B., Zhao, L., Fish, M., Logan, C. Y. & Nusse, R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Deane, H. W. & Greep, R. O. A morphological and histochemical study of the rat’s adrenal cortex after hypophysectomy, with comments on the liver. Am. J. Anat. 79, 117–145 (1946).

    CAS  PubMed  Google Scholar 

  42. 42.

    Gallo-Payet, N. 60 Years of POMC: adrenal and extra-adrenal functions of ACTH. J. Mol. Endocrinol. 56, T135–T156 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gorrigan, R. J., Guasti, L., King, P., Clark, A. J. & Chan, L. F. Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland. J. Mol. Endocrinol. 46, 227–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Drelon, C. et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat. Commun. 7, 12751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mathieu, M. et al. Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc. Natl Acad. Sci. USA 115, E12265–E12274 (2018).

    CAS  PubMed  Google Scholar 

  46. 46.

    Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is polycomb-independent. Science 338, 1465–1469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Hornsby, P. J. Adrenarche: a cell biological perspective. J. Endocrinol. 214, 113–119 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Dumontet, T. et al. PKA signaling drives reticularis differentiation and sexually dimorphic adrenal cortex renewal. JCI Insight 3, e98394 (2018).

    PubMed Central  Google Scholar 

  49. 49.

    Mcewan, P. E., Lindop, G. B. M. & Kenyon, C. J. In vivo studies of the control of DNA synthesis in the rat adrenal cortex and medulla. Endocr. Res. 21, 91–102 (1995).

    CAS  PubMed  Google Scholar 

  50. 50.

    McEwan, P. E., Vinson, G. P. & Kenyon, C. J. Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet. Am. J. Physiol. Endocrinol. Metab. 276, E303–E309 (1999).

    CAS  Google Scholar 

  51. 51.

    Nishimoto, K., Harris, R. B. S., Rainey, W. E. & Seki, T. Sodium deficiency regulates rat adrenal zona glomerulosa gene expression. Endocrinology 155, 1363–1372 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Clyne, C. D., Nicol, M. R., Macdonald, S. T., Williams, B. C. & Walker, S. W. Angiotensin II stimulates growth and steroidogenesis in zona fasciculata/reticularis cells from bovine adrenal cortex via the AT1 receptor subtype. Endocrinology 132, 2206–2212 (1993).

    CAS  PubMed  Google Scholar 

  53. 53.

    Coll, A. P. et al. The effects of proopiomelanocortin deficiency on murine adrenal development and responsiveness to adrenocorticotropin. Endocrinology 145, 4721–4727 (2004).

    CAS  PubMed  Google Scholar 

  54. 54.

    Jefcoate, C. R., Lee, J., Cherradi, N., Takemori, H. & Duan, H. cAMP stimulation of StAR expression and cholesterol metabolism is modulated by co-expression of labile suppressors of transcription and mRNA turnover. Mol. Cell. Endocrinol. 336, 53–62 (2011).

    CAS  PubMed  Google Scholar 

  55. 55.

    Xing, Y., Parker, C. R., Edwards, M. & Rainey, W. E. ACTH is a potent regulator of gene expression in human adrenal cells. J. Mol. Endocrinol. 45, 59–68 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lefrançois-Martinez, A. M. et al. Product of side-chain cleavage of cholesterol, isocaproaldehyde, is an endogenous specific substrate of mouse vas deferens protein, an aldose reductase-like protein in adrenocortical cells. J. Biol. Chem. 274, 32875–32880 (1999).

    PubMed  Google Scholar 

  57. 57.

    Thomas, M., Keramidas, M., Monchaux, E. & Feige, J.-J. Dual hormonal regulation of endocrine tissue mass and vasculature by adrenocorticotropin in the adrenal cortex. Endocrinology 145, 4320–4329 (2004).

    CAS  PubMed  Google Scholar 

  58. 58.

    Metherell, L. A. et al. Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nat. Genet. 37, 166–170 (2005).

    CAS  PubMed  Google Scholar 

  59. 59.

    Meimaridou, E. et al. ACTH resistance: genes and mechanisms. Endocr. Dev. 24, 57–66 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Novoselova, T. V. et al. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation. FASEB J. 32, fj201701274RR (2018).

    Google Scholar 

  61. 61.

    Chida, D. et al. Melanocortin 2 receptor is required for adrenal gland development, steroidogenesis, and neonatal gluconeogenesis. Proc. Natl Acad. Sci. USA 104, 18205–18210 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    Novoselova, T. V. et al. ACTH signalling and adrenal development: lessons from mouse models. Endocr. Connect. 8, R122–R130 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Ulrich-Lai, Y. M. et al. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 291, E965–E973 (2006).

    CAS  PubMed  Google Scholar 

  64. 64.

    Estivariz, F. E., Carino, M., Lowry, P. J. & Jackson, S. Further evidence that N-terminal pro-opiomelanocortin peptides are involved in adrenal mitogenesis. J. Endocrinol. 116, 201–206 (1988).

    CAS  PubMed  Google Scholar 

  65. 65.

    de Mendonça, P. O. R. & Lotfi, C. F. P. The proliferative effect of synthetic N-POMC1-28 peptides in rat adrenal cortex: a possible role for cyclin E. Mol. Cell. Endocrinol. 336, 156–161 (2011).

    PubMed  Google Scholar 

  66. 66.

    Fassnacht, M. et al. N-terminal proopiomelanocortin acts as a mitogen in adrenocortical tumor cells and decreases adrenal steroidogenesis. J. Clin. Endocrinol. Metab. 88, 2171–2179 (2003).

    CAS  PubMed  Google Scholar 

  67. 67.

    Coll, A. P. et al. Peripheral administration of the N-terminal pro-opiomelanocortin fragment 1–28 to Pomc–/– mice reduces food intake and weight but does not affect adrenal growth or corticosterone production. J. Endocrinol. 190, 515–525 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    De Joussineau, C. et al. The cAMP pathway and the control of adrenocortical development and growth. Mol. Cell. Endocrinol. 351, 28–36 (2012).

    PubMed  Google Scholar 

  69. 69.

    Fragoso, M. C. B. V. et al. Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J. Clin. Endocrinol. Metab. 88, 2147–2151 (2003).

    CAS  PubMed  Google Scholar 

  70. 70.

    Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    CAS  PubMed  Google Scholar 

  71. 71.

    Taylor, M. J. et al. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J. Clin. Invest. 130, 83–93 (2020).

    CAS  PubMed  Google Scholar 

  72. 72.

    Suthiworachai, C. et al. Identification and functional analysis of six DAX1 mutations in patients with X-linked adrenal hypoplasia congenita. J. Endocr. Soc. 3, 171–180 (2019).

    CAS  PubMed  Google Scholar 

  73. 73.

    Zanaria, E. et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372, 635–641 (1994).

    CAS  PubMed  Google Scholar 

  74. 74.

    Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    CAS  PubMed  Google Scholar 

  75. 75.

    Vargas, M. C. C. et al. Spontaneous fertility and variable spectrum of reproductive phenotype in a family with adult-onset X-linked adrenal insufficiency harboring a novel DAX-1/NR0B1 mutation. BMC Endocr. Disord. 20, 21 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Ito, M., Yu, R. & Jameson, J. L. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol. Cell. Biol. 17, 1476–1483 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Crawford, P. A., Dorn, C., Sadovsky, Y. & Milbrandt, J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol. Cell. Biol. 18, 2949–2956 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Xing, Y., Morohashi, K. I., Ingraham, H. A. & Hammer, G. D. Timing of adrenal regression controlled by synergistic interaction between SF1 SUMOylation and Dax1. Development 144, 3798–3807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Khalfallah, O., Rouleau, M., Barbry, P., Bardoni, B. & Lalli, E. Dax-1 knockdown in mouse embryonic stem cells induces loss of pluripotency and multilineage differentiation. Stem Cell 27, 1529–1537 (2009).

    CAS  Google Scholar 

  80. 80.

    Gummow, B. M., Scheys, J. O., Cancelli, V. R. & Hammer, G. D. Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Mol. Endocrinol. 20, 2711–2723 (2006).

    CAS  PubMed  Google Scholar 

  81. 81.

    Babu, P. S. et al. Interaction between Dax-1 and steroidogenic factor-1 in vivo: Increased adrenal responsiveness to ACTH in the absence of Dax-1. Endocrinology 143, 665–673 (2002).

    CAS  PubMed  Google Scholar 

  82. 82.

    Scheys, J. O., Heaton, J. H. & Hammer, G. D. Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology 152, 3430–3439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Levasseur, A., St-Jean, G., Paquet, M., Boerboom, D. & Boyer, A. Targeted disruption of YAP and TAZ impairs the maintenance of the adrenal cortex. Endocrinology 158, 3738–3753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Abduch, R. H. et al. Unraveling the expression of the oncogene YAP1, a Wnt/β-catenin target, in adrenocortical tumors and its association with poor outcome in pediatric patients. Oncotarget 7, 84634–84644 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Ménard, A. et al. Targeted disruption of Lats1 and Lats2 in mice impairs adrenal cortex development and alters adrenocortical cell fate. Endocrinology 161, bqaa052 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Dimartino, J. F. et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98, 618–626 (2001).

    CAS  PubMed  Google Scholar 

  87. 87.

    Lichtenauer, U. D. et al. Pre-B-cell transcription factor 1 and steroidogenic factor 1 synergistically regulate adrenocortical growth and steroidogenesis. Endocrinology 148, 693–704 (2007).

    CAS  PubMed  Google Scholar 

  88. 88.

    Bland, M. L., Fowkes, R. C. & Ingraham, H. A. Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. Mol. Endocrinol. 18, 941–952 (2004).

    CAS  PubMed  Google Scholar 

  89. 89.

    Bielohuby, M. et al. Growth analysis of the mouse adrenal gland from weaning to adulthood: time- and gender-dependent alterations of cell size and number in the cortical compartment. Am. J. Physiol. Metab. 293, E139–E146 (2007).

    CAS  Google Scholar 

  90. 90.

    Seale, J. V. et al. Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats. J. Neuroendocrinol. 16, 516–524 (2004).

    CAS  PubMed  Google Scholar 

  91. 91.

    Bastida, C. M. et al. Sexual dimorphism of ornithine decarboxylase in the mouse adrenal: influence of polyamine deprivation on catecholamine and corticoid levels. Am. J. Physiol. Endocrinol. Metab. 292, E1010–E1017 (2007).

    CAS  PubMed  Google Scholar 

  92. 92.

    Mukai, T. et al. Sexually dimorphic expression of Dax-1 in the adrenal cortex. Genes Cell 7, 717–729 (2002).

    CAS  Google Scholar 

  93. 93.

    Hershkovitz, L., Beuschlein, F., Klammer, S., Krup, M. & Weinstein, Y. Adrenal 20α-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is restricted to the X-zone. Endocrinology 148, 976–988 (2007).

    CAS  PubMed  Google Scholar 

  94. 94.

    El Wakil, A., Mari, B., Barhanin, J. & Lalli, E. Genomic analysis of sexual dimorphism of gene expression in the mouse adrenal gland. Horm. Metab. Res. 45, 870–873 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Jopek, K. et al. Transcriptome profile of rat adrenal evoked by gonadectomy and testosterone or estradiol replacement. Front. Endocrinol. 8, 26 (2017).

    Google Scholar 

  96. 96.

    Pisu, M. G. et al. Sex differences in the outcome of juvenile social isolation on HPA axis function in rats. Neuroscience 320, 172–182 (2016).

    CAS  PubMed  Google Scholar 

  97. 97.

    Viau, V., Lee, P., Sampson, J. & Wu, J. A testicular influence on restraint-induced activation of medial parvocellular neurons in the paraventricular nucleus in the male rat. Endocrinology 144, 3067–3075 (2003).

    CAS  PubMed  Google Scholar 

  98. 98.

    Goel, N., Workman, J. L., Lee, T. T., Innala, L. & Viau, V. Sex differences in the HPA axis. Compr. Physiol. 4, 1121–1155 (2014).

    PubMed  Google Scholar 

  99. 99.

    Bentvelsen, F. M., Mcphaul, M. J., Wilson, C. M., Wilson, J. D. & George, F. W. Regulation of immunoreactive androgen receptor in the adrenal gland of the adult rat. Endocrinology 137, 2659–2663 (1996).

    CAS  PubMed  Google Scholar 

  100. 100.

    Sar, M., Lubahn, D. B., French, F. S. & Wilson, E. M. Immunohistochemical localization of the androgen receptor in rat and human tissues. Endocrinology 127, 3180–3186 (1990).

    CAS  PubMed  Google Scholar 

  101. 101.

    Gannon, A.-L. et al. Androgen receptor signalling in the male adrenal facilitates X-zone regression, cell turnover and protects against adrenal degeneration during ageing. Sci. Rep. 9, 10457 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Miyamoto, J. et al. The pituitary function of androgen receptor constitutes a glucocorticoid production circuit. Mol. Cell. Biol. 27, 4807–4814 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Huang, C.-C. J. & Kang, Y. The transient cortical zone in the adrenal gland: the mystery of the adrenal X-zone. J. Endocrinol. 241, R51–R63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Stein, E., McCrank, E., Schaefer, B. & Goyer, R. Adrenal gland weight and suicide. Can. J. Psychiatry 38, 563–566 (1993).

    CAS  PubMed  Google Scholar 

  105. 105.

    Lam, K. Y., Chan, A. C. L. & Lo, C. Y. Morphological analysis of adrenal glands: a prospective analysis. Endocr. Pathol. 12, 33–38 (2001).

    CAS  PubMed  Google Scholar 

  106. 106.

    Nonaka, K. et al. Correlation between telomere attrition of zona fasciculata and adrenal weight reduction in older men. J. Clin. Endocrinol. Metab. 105, e200–e210 (2019).

    Google Scholar 

  107. 107.

    Ludescher, B. et al. Gender specific correlations of adrenal gland size and body fat distribution: a whole body MRI study. Horm. Metab. Res. 39, 515–518 (2007).

    CAS  PubMed  Google Scholar 

  108. 108.

    Levasseur, A., Dumontet, T. & Martinez, A. Sexual dimorphism in adrenal gland development and tumorigenesis. Curr. Opin. Endocr. Metab. Res. 8, 60–65 (2019).

    Google Scholar 

  109. 109.

    Lacroix, A., Feelders, R. A., Stratakis, C. A. & Nieman, L. K. Cushing’s syndrome. Lancet 386, 913–927 (2015).

    CAS  PubMed  Google Scholar 

  110. 110.

    Audenet, F., Méjean, A., Chartier-Kastler, E. & Rouprêt, M. Adrenal tumours are more predominant in females regardless of their histological subtype: a review. World J. Urol. 31, 1037–1043 (2013).

    PubMed  Google Scholar 

  111. 111.

    Michalkiewicz, E. et al. Clinical and outcome characteristics of children with adrenocortical tumors: a report from the international pediatric adrenocortical tumor registry. J. Clin. Oncol. 22, 838–845 (2004).

    CAS  PubMed  Google Scholar 

  112. 112.

    Sirianni, R. et al. Targeting estrogen receptor-α reduces adrenocortical cancer (ACC) cell growth in vitro and in vivo: potential therapeutic role of selective estrogen receptor modulators (SERMs) for ACC treatment. J. Clin. Endocrinol. Metab. 97, E2238–E2250 (2012).

    CAS  PubMed  Google Scholar 

  113. 113.

    Rossi, R. et al. Evidence for androgen receptor gene expression and growth inhibitory effect of dihydrotestosterone on human adrenocortical cells. J. Endocrinol. 159, 373–380 (1998).

    CAS  PubMed  Google Scholar 

  114. 114.

    Crona, J. & Beuschlein, F. Adrenocortical carcinoma — towards genomics guided clinical care. Nat. Rev. Endocrinol. 15, 548–560 (2019).

    CAS  PubMed  Google Scholar 

  115. 115.

    Else, T. et al. Adrenocortical carcinoma. Endocr. Rev. 35, 282–326 (2014).

    CAS  PubMed  Google Scholar 

  116. 116.

    Borges, K. S. et al. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 39, 5282–5291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Jouinot, A., Armignacco, R. & Assié, G. Genomics of benign adrenocortical tumors. J. Steroid Biochem. Mol. Biol. 193, 105414 (2019).

    CAS  PubMed  Google Scholar 

  118. 118.

    Goh, G. et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat. Genet. 46, 613–617 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Sato, Y. et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 344, 917–920 (2014).

    CAS  PubMed  Google Scholar 

  120. 120.

    Cao, Y. et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 344, 913–917 (2014).

    CAS  PubMed  Google Scholar 

  121. 121.

    Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Horvath, A., Mericq, V. & Stratakis, C. A. Mutation in PDE8B, a cyclic AMP–specific phosphodiesterase in adrenal hyperplasia. N. Engl. J. Med. 358, 750–752 (2008).

    CAS  PubMed  Google Scholar 

  123. 123.

    Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    CAS  PubMed  Google Scholar 

  124. 124.

    Bertherat, J. et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab. 94, 2085–2091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Sahut-Barnola, I. et al. Cushing’s syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice. PLoS Genet. 6, 1–16 (2010).

    Google Scholar 

  126. 126.

    Ronchi, C. L. et al. Genetic landscape of sporadic unilateral adrenocortical adenomas without PRKACA p.Leu206Arg mutation. J. Clin. Endocrinol. Metab. 101, 3526–3538 (2016).

    CAS  PubMed  Google Scholar 

  127. 127.

    Åkerström, T. et al. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci. Rep. 6, 19546 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Bonnet, S. et al. Wnt/β-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and -nonsecreting tumors. J. Clin. Endocrinol. Metab. 96, E419–E426 (2011).

    CAS  PubMed  Google Scholar 

  129. 129.

    Berthon, A. et al. Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function. Hum. Mol. Genet. 26, 3495–3507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    St-Jean, M., Ghorayeb, N. E. L., Bourdeau, I. & Lacroix, A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best Pract. Res. Clin. Endocrinol. Metab. 32, 165–187 (2018).

    CAS  PubMed  Google Scholar 

  131. 131.

    Lacroix, A., Hamet, P. & Boutin, J.-M. Leuprolide acetate therapy in luteinizing hormone–dependent Cushing’s syndrome. N. Engl. J. Med. 341, 1577–1581 (1999).

    CAS  PubMed  Google Scholar 

  132. 132.

    Rao, C. V., Zhou, X. L. & Lei, Z. M. Functional luteinizing hormone/chorionic gonadotropin receptors in human adrenal cortical H295R cells. Biol. Reprod. 71, 579–587 (2004).

    CAS  PubMed  Google Scholar 

  133. 133.

    Pabon, J. E. et al. Novel presence of luteinizing hormone/chorionic gonadotropin receptors in human adrenal glands. J. Clin. Endocrinol. Metab. 81, 2397–2400 (1996).

    CAS  PubMed  Google Scholar 

  134. 134.

    Beuschlein, F. et al. Activin induces X-zone apoptosis that inhibits luteinizing hormone-dependent adrenocortical tumor formation in inhibin-deficient mice. Mol. Cell. Biol. 23, 3951–3964 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Johnsen, I. K. et al. Gonadectomy in mice of the inbred strain CE/J induces proliferation of sub-capsular adrenal cells expressing gonadal marker genes. J. Endocrinol. 190, 47–57 (2006).

    CAS  PubMed  Google Scholar 

  136. 136.

    Doroszko, M. et al. Luteinizing hormone and GATA4 action in the adrenocortical tumorigenesis of gonadectomized female mice. Cell. Physiol. Biochem. 43, 1064–1076 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Chrusciel, M. et al. Transgenic GATA-4 expression induces adrenocortical tumorigenesis in C57BL/6 mice. J. Cell Sci. 126, 1845–1857 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Saner-Amigh, K. et al. Elevated expression of luteinizing hormone receptor in aldosterone- producing adenomas. J. Clin. Endocrinol. Metab. 91, 1136–1142 (2006).

    CAS  PubMed  Google Scholar 

  139. 139.

    Ye, P., Mariniello, B., Mantero, F., Shibata, H. & Rainey, W. E. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. J. Endocrinol. 195, 39–48 (2007).

    CAS  PubMed  Google Scholar 

  140. 140.

    Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 29, 723–736 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Assié, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014).

    PubMed  Google Scholar 

  142. 142.

    Juhlin, C. C. et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J. Clin. Endocrinol. Metab. 100, E493–E502 (2015).

    CAS  PubMed  Google Scholar 

  143. 143.

    Fiorentini, C. et al. Molecular drivers of potential immunotherapy failure in adrenocortical carcinoma. J. Oncol. 2019, 6072863 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    Habra, M. A. et al. Phase II clinical trial of pembrolizumab efficacy and safety in advanced adrenocortical carcinoma. J. Immunother. Cancer 7, 253 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Shang, S., Hua, F. & Hu, Z. W. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8, 33972–33989 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Krishnamurthy, N. & Kurzrock, R. Targeting the Wnt/β-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat. Rev. 62, 50–60 (2018).

    CAS  PubMed  Google Scholar 

  147. 147.

    Madan, B. et al. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene 35, 2197–2207 (2016).

    CAS  PubMed  Google Scholar 

  148. 148.

    Zhong, Z. et al. PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene 38, 6662–6677 (2019).

    CAS  PubMed  Google Scholar 

  149. 149.

    Koo, B. K., Van Es, J. H., Van Den Born, M. & Clevers, H. Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc. Natl Acad. Sci. USA 112, 7548–7550 (2015).

    CAS  PubMed  Google Scholar 

  150. 150.

    Gurney, A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl Acad. Sci. USA 109, 11717–11722 (2012).

    CAS  PubMed  Google Scholar 

  151. 151.

    Fischer, M. M. et al. WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Sci. Adv. 3, e1700090 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. 152.

    Hallett, R. M. et al. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS ONE 7, e33976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153.

    Gandhirajan, R. K. et al. Small molecule inhibitors of Wnt/β-Catenin/Lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 12, 326–335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Trosset, J. Y. et al. Inhibition of protein-protein interactions: the discovery of druglike β-catenin inhibitors by combining virtual and biophysical screening. Proteins Struct. Funct. Genet. 64, 60–67 (2006).

    CAS  PubMed  Google Scholar 

  155. 155.

    Leal, L. F. et al. Inhibition of the Tcf/β-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 6, 43016–43032 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Rimkus, T., Carpenter, R., Qasem, S., Chan, M. & Lo, H.-W. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8, 22 (2016).

    PubMed Central  Google Scholar 

  157. 157.

    Charmandari, E., Nicolaides, N. C. & Chrousos, G. P. Adrenal insufficiency. Lancet 383, 2152–2167 (2014).

    CAS  PubMed  Google Scholar 

  158. 158.

    Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat. Genet. 22, 125–126 (1999).

    CAS  PubMed  Google Scholar 

  159. 159.

    Hughes, C. R. et al. MCM4 mutation causes adrenal failure, short stature, and natural killer cell deficiency in humans. J. Clin. Invest. 122, 814–820 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Prasad, R. et al. Thioredoxin reductase 2 (TXNRD2) mutation associated with familial glucocorticoid deficiency (FGD). J. Clin. Endocrinol. Metab. 99, E1556–E1563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Meimaridou, E. et al. Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency. Nat. Genet. 44, 740–742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Handschug, K. et al. Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum. Mol. Genet. 10, 283–290 (2001).

    CAS  PubMed  Google Scholar 

  163. 163.

    Bergthorsdottir, R., Leonsson-Zachrisson, M., Odén, A. & Johannsson, G. Premature mortality in patients with Addison’s disease: a population-based study. J. Clin. Endocrinol. Metab. 91, 4849–4853 (2006).

    CAS  PubMed  Google Scholar 

  164. 164.

    Gan, E. H. & Pierce, S. H. Regenerative therapies in autoimmune Addison’s disease. Eur. J. Endocrinol. 3, R123–R135 (2017).

    Google Scholar 

  165. 165.

    Ruiz-Babot, G., Hadjidemetriou, I., King, P. J. & Guasti, L. New directions for the treatment of adrenal insufficiency. Front. Endocrinol. 6, 70 (2015).

    Google Scholar 

  166. 166.

    Sonoyama, T. et al. Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells. Endocrinology 153, 4336–4345 (2012).

    CAS  PubMed  Google Scholar 

  167. 167.

    Li, L. et al. Directing differentiation of human induced pluripotent stem cells toward androgen-producing Leydig cells rather than adrenal cells. Proc. Natl Acad. Sci. USA 116, 23274–23283 (2019).

    CAS  PubMed  Google Scholar 

  168. 168.

    Smans, L. C. C. J. & Zelissen, P. M. J. Partial recovery of adrenal function in a patient with autoimmune Addison’s disease. J. Endocrinol. Invest. 31, 672–674 (2008).

    CAS  PubMed  Google Scholar 

  169. 169.

    Baxter, M., Gorick, S. & Swords, F. M. Recovery of adrenal function in a patient with confirmed Addison’s disease. Endocrinol. Diabetes Metab. Case Rep. 2013, 130070 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Chakera, A. J. & Vaidya, B. Spontaneously resolving Addison’s disease. QJM 105, 1113–1115 (2012).

    CAS  PubMed  Google Scholar 

  171. 171.

    Poirier, J. et al. Recovery of adrenal insufficiency is frequent after adjuvant mitotane therapy in patients with adrenocortical carcinoma. Cancers 12, 639 (2020).

    CAS  PubMed Central  Google Scholar 

  172. 172.

    Baker, P. R. et al. Predicting the onset of Addison’s disease: ACTH, renin, cortisol and 21-hydroxylase autoantibodies. Clin. Endocrinol. 76, 617–624 (2012).

    CAS  Google Scholar 

  173. 173.

    Fassnacht, M., Libé, R., Kroiss, M. & Allolio, B. Adrenocortical carcinoma: a clinician’s update. Nat. Rev. Endocrinol. 7, 323–335 (2011).

    CAS  PubMed  Google Scholar 

  174. 174.

    Luton, J. P. et al. Clinical features of adrenocortical carcinoma, prognostic factors, and the effect of mitotane therapy. N. Engl. J. Med. 322, 1195–1201 (1990).

    CAS  PubMed  Google Scholar 

  175. 175.

    Lindholm, J. et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study 1. J. Clin. Endocrinol. Metab. 86, 117–123 (2001).

    CAS  PubMed  Google Scholar 

  176. 176.

    Steffensen, C., Bak, A. M., Zøylner Rubeck, K. & Jørgensen, J. O. L. Epidemiology of Cushing’s syndrome. Neuroendocrinology 92, 1–5 (2010).

    CAS  PubMed  Google Scholar 

  177. 177.

    Stratakis, C. Cushing syndrome caused by adrenocortical tumors and hyperplasias (corticotropin-independent Cushing syndrome). Endocr. Dev. 13, 117–132 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Kong, M.-F. & Jeffcoate, W. Eighty-six cases of Addison’s disease. Clin. Endocrinol. 41, 757–761 (1994).

    CAS  Google Scholar 

  179. 179.

    Myhre, A. G. et al. Autoimmune adrenocortical failure in norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J. Clin. Endocrinol. Metab. 87, 618–623 (2002).

    CAS  PubMed  Google Scholar 

  180. 180.

    Heaton, J. H. et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am. J. Pathol. 181, 1017–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Engeland, W. C. et al. Sex differences in adrenal Bmal1 deletion-induced augmentation of glucocorticoid responses to stress and ACTH in mice. Endocrinology 160, 2215–2229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Lambert-Langlais, S. et al. A transgenic mouse line with specific Cre recombinase expression in the adrenal cortex. Mol. Cell. Endocrinol. 300, 197–204 (2009).

    CAS  PubMed  Google Scholar 

  183. 183.

    Mandel, H. et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in WNT4. Am. J. Hum. Genet. 82, 39–47 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Heikkilä, M. et al. Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143, 4358–4365 (2002).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Stratakis for his input and for critically reading this manuscript. The authors’ research work is supported by La Ligue Contre le Cancer (Equipe Labellisée to A.S.), Agence Nationale de la Recherche (ANR-11-LABX-0028-01 to A.S. and ANR-18-CE14-0012), World Wide Cancer Research (WWCR) (18-0437 to A.S.), International Fund for Congenital Adrenal Hyperpalsia (IFCAH 2017 to A.S.) and Fondation pour la Recherche Médicale (FRM SPF201809007141 to R.L.).

Author information

Affiliations

Authors

Contributions

A.S. and R.L. researched data for the article, contributed to discussions of its content, wrote the manuscript, and participated in review or editing of the manuscript before submission.

Corresponding author

Correspondence to Andreas Schedl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks J. Bertherat, who co-reviewed with I. Cavalcante, F. Beuschlein, and S. Bornstein for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lyraki, R., Schedl, A. Adrenal cortex renewal in health and disease. Nat Rev Endocrinol 17, 421–434 (2021). https://doi.org/10.1038/s41574-021-00491-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing