Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The MMP14–caveolin axis and its potential relevance for lipoedema


Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mutual impact of MMP14, CAV1, PROX1 and oestrogen receptors in lipoedema.
Fig. 2: Cellular consequences of a disruption of the CAV1–MMP14 interaction.


  1. 1.

    Szél, E., Kemény, L., Groma, G. & Szolnoky, G. Pathophysiological dilemmas of lipedema. Med. Hypotheses 83, 599–606 (2014).

    PubMed  Google Scholar 

  2. 2.

    Child, A. H. et al. Lipedema: an inherited condition. Am. J. Med. Genet. Part A 152, 970–976 (2010).

    Google Scholar 

  3. 3.

    Warren, A. G., Janz, B. A., Borud, L. J. & Slavin, S. A. Evaluation and management of the fat leg syndrome. Plast. Reconst. Surg. 119, 9e–15e (2007).

    PubMed  Google Scholar 

  4. 4.

    Suga, H. et al. Adipose tissue remodeling in lipedema: adipocyte death and concurrent regeneration. J. Cutan. Pathol. 36, 1293–1298 (2009).

    PubMed  Google Scholar 

  5. 5.

    Li, X. et al. The critical role of MMP14 in adipose tissue remodeling during obesity. Mol. Cell. Biol. 40, e00564-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 5, 3485 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Bu, D. et al. Human endotrophin as a driver of malignant tumor growth. JCI Insight 4, e125094 (2019).

    PubMed Central  Google Scholar 

  8. 8.

    Chun, T. H. et al. Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59, 2484–2494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sounni, N. E. et al. Stromal regulation of vessel stability by MMP14 and TGFβ. Dis. Model. Mech. 3, 317–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Chun, T. H. Peri-adipocyte ECM remodeling in obesity and adipose tissue fibrosis. Adipocyte 1, 89–95 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chun, T. H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    CAS  PubMed  Google Scholar 

  12. 12.

    Annabi, B. et al. Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem. J. 353, 547–553 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Puyraimond, A., Fridman, R., Lemesle, M., Arbeille, B. & Menashi, S. MMP-2 colocalizes with caveolae on the surface of endothelial cells. Exp. Cell Res. 262, 28–36 (2001).

    CAS  PubMed  Google Scholar 

  14. 14.

    Aga, M. et al. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 55, 5497–5509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kruglikov, I. L. & Scherer, P. E. Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech. Dis. 5, 4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kruglikov, I. L. & Scherer, P. E. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen. Med. 4, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kruglikov, I. L., Zhang, Z. & Scherer, P. E. Caveolin-1 in skin aging — from innocent bystander to major contributor. Ageing Res. Rev. 55, 100959 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Kruglikov, I. L. & Scherer, P. E. Caveolin-1 as a possible target in treatment for acne. Exp. Dermatol. 29, 177–183 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kruglikov, I. L. & Scherer, P. E. Caveolin as a universal target in dermatology. Int. J. Mol. Sci. 21, 80 (2020).

    CAS  Google Scholar 

  20. 20.

    Kim, H. N. & Chung, H. S. Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity. BMB Rep. 41, 858–862 (2008).

    CAS  PubMed  Google Scholar 

  21. 21.

    Labrecque, L. et al. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J. Biol. Chem. 279, 52132–52140 (2004).

    CAS  PubMed  Google Scholar 

  22. 22.

    Deng, J. et al. Overexpression of Prox1 induces the differentiation of human adipose-derived stem cells into lymphatic endothelial-like cells in vitro. Cell. Reprogram 19, 54–63 (2017).

    CAS  PubMed  Google Scholar 

  23. 23.

    Gramolelli, S. et al. PROX1 is a transcriptional regulator of MMP14. Sci. Rep. 8, 1–13 (2018).

    CAS  Google Scholar 

  24. 24.

    Escobedo, N. & Oliver, G. The lymphatic vasculature: its role in adipose metabolism and obesity. Cell Metab. 26, 598–609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ragusa, S. et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. J. Clin. Invest. 130, 1199–1216 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    CAS  PubMed  Google Scholar 

  27. 27.

    Escobedo, N. et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight 1, e85096 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Nores, G. G. et al. Obesity but not high-fat diet impairs lymphatic function. Int. J. Obes. 40, 1582–1590 (2016).

    CAS  Google Scholar 

  29. 29.

    Nitti, M. D. et al. Obesity-induced lymphatic dysfunction is reversible with weight loss. J. Physiol. 594, 7073–7087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  31. 31.

    Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Alkhouli, N. et al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Physiol. Endocrinol. Metab. 305, E1427–E1435 (2013).

    CAS  PubMed  Google Scholar 

  33. 33.

    Sun, K., Tordjman, J., Clément, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Lackey, D. E. et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 306, E233–E246 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Comley, K. & Fleck, N. A. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47, 2982–2990 (2010).

    Google Scholar 

  37. 37.

    Kruglikov, I. L. General theory of body contouring: 2. Modulation of mechanical properties of subcutaneous fat tissue. J. Cosmet. Dermatol. Sci. Appl. 4, 117–127 (2014).

    Google Scholar 

  38. 38.

    Chang, E., Varghese, M. & Singer, K. Gender and sex differences in adipose tissue. Curr. Diab. Rep. 18, 69 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Pasarica, M. et al. Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab. 94, 5155–5162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Davis, K. E. et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol. Metab. 2, 227–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Zhang, X. et al. Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17β-estradiol-stimulated mammary tumorigenesis. Anticancer Res. 25, 369–375 (2005).

    PubMed  Google Scholar 

  42. 42.

    Edvardsson, K., Ström, A., Jonsson, P., Gustafsson, J. Å. & Williams, C. Estrogen receptor β induces antiinflammatory and antitumorigenic networks in colon cancer cells. Mol. Endocrinol. 25, 969–979 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Han, B., Copeland, C. A., Tiwari, A. & Kenworthy, A. K. Assembly and turnover of caveolae: what do we really know? Front. Cell Dev. Biol. 4, 68 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gu, X., Reagan, A. M., McClellan, M. E. & Elliott, M. H. Caveolins and caveolae in ocular physiology and pathophysiology. Prog. Retin. Eye Res. 56, 84–106 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Rong, S. S. et al. Ethnic specific association of the CAV1/CAV2 locus with primary open-angle glaucoma. Sci. Rep. 6, 27837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wiggs, J. L. et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum. Mol. Genet. 20, 4707–4713 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Loomis, S. J. et al. Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss. Ophthalmology 121, 508–516 (2014).

    PubMed  Google Scholar 

  48. 48.

    Omaira, M., Mehrotra, A., Fankhauser, M. J., Hrinczenko, B. & Dimitrov, N. V. Lipedema: a clinical challenge-revisited. Br. J. Med. Res. 5, 1328–1337 (2015).

    Google Scholar 

  49. 49.

    Munoz, A., Abate, N. & Chandalia, M. Adipose tissue collagen and inflammation in nonobese Asian Indian men. J. Clin. Endocrin. Metab. 98, E1360–E1363 (2013).

    CAS  Google Scholar 

  50. 50.

    Balakrishnan, P., Grundy, S. M., Islam, A., Dunn, F. & Vega, G. L. Influence of upper and lower body adipose tissue on insulin sensitivity in South Asian men. J. Invest. Med. 60, 999–1004 (2012).

    CAS  Google Scholar 

  51. 51.

    Sanchez-De la Torre, Y., Wadeea, R., Rosas, V. & Herbst, K. L. Lipedema: friend and foe. Horm. Mol. Biol. Clin. Investig. 33, 20170076 (2018).

    Google Scholar 

  52. 52.

    Beltran, K. & Herbst, K. L. Differentiating lipedema and Dercum’s disease. Int. J. Obes. 41, 240–245 (2017).

    CAS  Google Scholar 

  53. 53.

    Song, B. et al. Loss of angiotensin-converting enzyme 2 exacerbates myocardial injury via activation of the CTGF–fractalkine signaling pathway. Circ. J. 77, 2997–3006 (2013).

    CAS  PubMed  Google Scholar 

  54. 54.

    Rao, S., Lau, A. & So, H.-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: a Mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care 43, 1416–1426 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Roca-Ho, H., Riera, M., Palau, V., Pascual, J. & Soler, M. J. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int. J. Mol. Sci. 18, E563 (2017).

    PubMed  Google Scholar 

  56. 56.

    Zhang, W. et al. Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Sci. World J. 2014, 603409 (2014).

    Google Scholar 

  57. 57.

    Rapprich, S., Baum, S., Kaak, I., Kottmann, T. & Podda, M. Treatment of lipoedema using liposuction. Phlebologie 44, 121–132 (2015).

    Google Scholar 

  58. 58.

    Ji, R. R., Xu, Z. Z., Wang, X. & Lo, E. H. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol. Sci. 30, 336–340 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Herbst, K. L., Mirkovskaya, L., Bharhagava, A., Chava, Y. & Te, C. H. T. Lipedema fat and signs and symptoms of illness, increase with advancing stage. Arch. Med. 7, 1–8 (2015).

    Google Scholar 

  60. 60.

    Paolacci, S. et al. Genetics of lipedema: new perspectives on genetic research and molecular diagnoses. Eur. Rev. Med. Pharmacol. Sci. 23, 5581–5594 (2019).

    CAS  PubMed  Google Scholar 

  61. 61.

    Tae, H. J. et al. Chronic treatment with a broad-spectrum metalloproteinase inhibitor, doxycycline, prevents the development of spontaneous aortic lesions in a mouse model of vascular Ehlers-Danlos syndrome. J. Pharmacol. Exp. Ther. 343, 246–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Manjaly, Z. M. et al. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 90, 642–651 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mathay, C. et al. Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways. J. Invest. Dermatol. 131, 46–58 (2011).

    CAS  PubMed  Google Scholar 

  64. 64.

    Sillat, T. et al. Basement membrane collagen type IV expression by human mesenchymal stem cells during adipogenic differentiation. J. Cell. Mol. Med. 16, 1485–1495 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sternlicht, M. D. & Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17, 463–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Owen, C. A., Hu, Z., Barrick, B. & Shapiro, S. D. Inducible expression of tissue inhibitor of metalloproteinases-resistant matrix metalloproteinase-9 on the cell surface of neutrophils. Am. J. Respir. Cell Mol. Biol. 29, 283–294 (2003).

    CAS  PubMed  Google Scholar 

  67. 67.

    Razandi, M., Oh, P., Pedram, A., Schnitzer, J. & Levin, E. R. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16, 100–115 (2002).

    CAS  PubMed  Google Scholar 

  68. 68.

    Pastore, M. B., Landeros, R. V., Chen, D. B. & Magness, R. R. Structural analysis of estrogen receptors: interaction between estrogen receptors and Cav-1 within the caveolae. Biol. Reprod. 100, 495–504 (2019).

    PubMed  Google Scholar 

  69. 69.

    Li, T. et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor α-positive status. Am. J. Pathol. 168, 1998–2013 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 61, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  71. 71.

    Kim, S. et al. Expression-associated polymorphisms of CAV1–CAV2 affect intraocular pressure and high-tension glaucoma risk. Mol. Vis. 21, 548–544 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


N.J. acknowledges the support of a postdoctoral fellowship from the Lipedema Foundation (LFA #18). P.E.S. acknowledges the support of NIH grants R01-DK55758, R01-DK099110, RC2-DK118620, P01-DK088761 and P01-AG051459, and is also supported by an unrestricted grant from the Novo Nordisk Research Foundation.

Author information




The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Philipp E. Scherer.

Ethics declarations

Competing interests

I.L.K. is the managing partner of Wellcomet GmbH. Wellcomet GmbH provided support in the form of salaries for I.L.K., but did not have any additional role in decision to publish or preparation of the manuscript. The commercial affiliation of I.L.K. with Wellcomet GmbH does not alter the adherence to all journal policies on sharing data and materials. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks K. Herbst, G. Szolnoky and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kruglikov, I.L., Joffin, N. & Scherer, P.E. The MMP14–caveolin axis and its potential relevance for lipoedema. Nat Rev Endocrinol 16, 669–674 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing