Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sodium–glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus

Abstract

The management of type 2 diabetes mellitus (T2DM) is becoming increasingly complex. Sodium–glucose cotransporter type 2 inhibitors (SGLT2is) are the newest antidiabetic agents for T2DM. By targeting the kidney, they have a unique mechanism of action, which results in enhanced glucosuria, osmotic diuresis and natriuresis, thereby improving glucose control with a limited risk of hypoglycaemia and exerting additional positive effects such as weight loss and the lowering of blood pressure. Several outcome studies with canagliflozin, dapagliflozin or empagliflozin reported a statistically significant reduction in major cardiovascular events, hospitalization for heart failure and progression to advanced renal disease in patients with T2DM who have established atherosclerotic cardiovascular disease, several cardiovascular risk factors, albuminuric mild to moderate chronic kidney disease or heart failure. Current guidelines proposed a new paradigm in the management of T2DM, with a preferential place for SGLT2is, after metformin, in patients with atherosclerotic cardiovascular disease, heart failure and progressive kidney disease. Ongoing trials might extend the therapeutic potential of SGLT2is in patients with, but also without, T2DM. This Review provides an update of the current knowledge on SGLT2is, moving from their use as glucose-lowering medications to their new positioning as cardiovascular and renal protective agents.

Key points

  • Sodium–glucose cotransporter type 2 inhibitors (SGLT2is) improve glucose control through direct and indirect mechanisms, with limited risk of hypoglycaemia, and exert other positive effects on body weight, blood pressure, blood uric acid levels and inflammation.

  • SGLT2is, added to standard care, reduce the incidence of major cardiovascular events (cardiovascular mortality, non-fatal myocardial infarction, non-fatal stroke) in patients with type 2 diabetes mellitus (T2DM) who are at high cardiovascular risk.

  • SGLT2is reduce the risk of hospitalization for heart failure and progression to end-stage renal disease in patients with T2DM who have high cardiovascular risk, an effect independent of improved glucose control.

  • SGLT2is can be associated with several adverse events, including genital infections, volume depletion, diabetic ketoacidosis and lower-limb amputations, which deserve caution by the physician and further pharmacovigilance studies.

  • SGLT2is are now considered preferential, after metformin, in patients with T2DM and atherosclerotic cardiovascular disease (as alternative to glucagon-like peptide 1 receptor agonists), heart failure or chronic kidney disease.

  • Ongoing trials in patients with heart failure, renal disease and fatty liver, with and without T2DM, will give new insights on the potential role of SGLT2is in a broader population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple beneficial effects related to enhanced sodium excretion by SGLT2is.
Fig. 2: Pleiotropic effects of SGLT2is that can contribute to improving cardiovascular outcomes.
Fig. 3: Position of SGLT2is in international guidelines.

Similar content being viewed by others

References

  1. Tancredi, M. et al. Excess mortality among persons with type 2 diabetes. N. Engl. J. Med. 373, 1720–1732 (2015).

    CAS  PubMed  Google Scholar 

  2. Bommer, C. et al. The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 5, 423–430 (2017).

    PubMed  Google Scholar 

  3. Scheen, A. J. & Charbonnel, B. Effects of glucose-lowering agents on vascular outcomes in type 2 diabetes: A critical reappraisal. Diabetes Metab. 40, 176–185 (2014).

    CAS  PubMed  Google Scholar 

  4. Kirkman, M. S., Mahmud, H. & Korytkowski, M. T. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes mellitus. Endocrinol. Metab. Clin. North. Am. 47, 81–96 (2018).

    PubMed  Google Scholar 

  5. Lipska, K. J. et al. Trends in drug utilization, glycemic control, and rates of severe hypoglycemia, 2006-2013. Diabetes Care 40, 468–475 (2017).

    PubMed  Google Scholar 

  6. Ryden, L. et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur. Heart J. 34, 3035–3087 (2013).

    PubMed  Google Scholar 

  7. Rawshani, A. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 379, 633–644 (2018).

    PubMed  Google Scholar 

  8. Fattah, H. & Vallon, V. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs 78, 717–726 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Pereira, M. J. & Eriksson, J. W. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs 79, 219–230 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Inzucchi, S. E. et al. Retinopathy outcomes with empagliflozin versus placebo in the EMPA-REG OUTCOME trial. Diabetes Care 42, e53–e55 (2019).

    PubMed  Google Scholar 

  11. Ferrannini, E. Sodium-glucose co-transporters and their inhibition: clinical physiology. Cell Metab. 26, 27–38 (2017).

    CAS  PubMed  Google Scholar 

  12. Brown, E., Rajeev, S. P., Cuthbertson, D. J. & Wilding, J. P. H. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes. Metab. 21, 9–18 (2019).

    CAS  PubMed  Google Scholar 

  13. DeFronzo, R. A., Norton, L. & Abdul-Ghani, M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 13, 11–26 (2017).

    CAS  PubMed  Google Scholar 

  14. Trujillo, J. M. & Nuffer, W. A. Impact of sodium-glucose cotransporter 2 inhibitors on nonglycemic outcomes in patients with type 2 diabetes. Pharmacotherapy 37, 481–491 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Chilton, R. J. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes. Metab. 22, 16–29 (2020).

    CAS  PubMed  Google Scholar 

  16. Abdul-Ghani, M. A., Norton, L. & Defronzo, R. A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 32, 515–531 (2011).

    CAS  PubMed  Google Scholar 

  17. Scheen, A. J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75, 33–59 (2015).

    CAS  PubMed  Google Scholar 

  18. Scheen, A. J. & Paquot, N. Metabolic effects of SGLT2 inhibitors beyond increased glucosuria: a review of clinical evidence. Diabetes Metab. 40, S4–S11 (2014).

    CAS  PubMed  Google Scholar 

  19. DeFronzo, R. A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yki-Jarvinen, H. Glucose toxicity. Endocr. Rev. 13, 415–431 (1992).

    CAS  PubMed  Google Scholar 

  21. Kaneto, H. et al. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic β-cell function and reduction of insulin resistance. J. Diabetes 9, 219–225 (2017).

    CAS  PubMed  Google Scholar 

  22. Merovci, A. et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J. Clin. Endocrinol. Metab. 100, 1927–1932 (2015).

  23. Al Jobori, H. et al. Empagliflozin treatment is associated with improved β-cell function in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 103, 1402–1407 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pedersen, M. G., Ahlstedt, I., El Hachmane, M. F. & Gopel, S. O. Dapagliflozin stimulates glucagon secretion at high glucose: experiments and mathematical simulations of human A-cells. Sci. Rep. 6, 31214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 124, 509–514 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Goldenberg, R. M., Verma, S., Perkins, B. A., Gilbert, J. D. & Zinman, B. Can the combination of incretin agents and sodium-glucose cotransporter 2 (SGLT2) inhibitors reconcile the Yin and Yang of glucagon? Can. J. Diabetes 41, 6–9 (2017).

    PubMed  Google Scholar 

  28. Imprialos, K. et al. SGLT-2 inhibitors and cardiovascular risk in diabetes mellitus: a comprehensive and critical review of the literature. Curr. Pharm. Des. 23, 1510–1521 (2017).

    CAS  PubMed  Google Scholar 

  29. Vallon, V. & Thomson, S. C. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60, 215–225 (2017).

    CAS  PubMed  Google Scholar 

  30. Lee, P. C., Ganguly, S. & Goh, S. Y. Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes. Rev. 19, 1630–1641 (2018).

    CAS  PubMed  Google Scholar 

  31. Bolinder, J. et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 97, 1020–1031 (2012).

    CAS  PubMed  Google Scholar 

  32. Schork, A. et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 18, 46 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Cai, X. et al. Comparisons of weight changes between sodium-glucose cotransporter 2 inhibitors treatment and glucagon-like peptide-1 analogs treatment in type 2 diabetes patients: A meta-analysis. J. Diabetes Investig. 8, 510–517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrannini, E. et al. Shift to fatty substrates utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    CAS  PubMed  Google Scholar 

  35. Wang, Y., Hu, X., Liu, X. & Wang, Z. An overview of the effect of sodium glucose cotransporter 2 inhibitor monotherapy on glycemic and other clinical laboratory parameters in type 2 diabetes patients. Ther. Clin. Risk Manag. 12, 1113–1131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bays, H. E., Sartipy, P., Xu, J., Sjostrom, C. D. & Underberg, J. A. Dapagliflozin in patients with type II diabetes mellitus, with and without elevated triglyceride and reduced high-density lipoprotein cholesterol levels. J. Clin. Lipidol. 11, 450–458 (2017).

    PubMed  Google Scholar 

  37. Zaccardi, F. et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes. Metab. 18, 783–794 (2016).

    CAS  PubMed  Google Scholar 

  38. Fadini, G. P. et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc. Diabetol. 16, 42 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  40. Zhao, Y. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20, 458–462 (2018).

    CAS  PubMed  Google Scholar 

  41. Ahmadieh, H. & Azar, S. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus. Diabetes Technol. Ther. 19, 507–512 (2017).

    CAS  PubMed  Google Scholar 

  42. Xu, L. & Ota, T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte 7, 121–128 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Garvey, T. W. et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism 85, 32–37 (2018).

    CAS  PubMed  Google Scholar 

  44. Bonnet, F. & Scheen, A. J. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: potential contribution for diabetic complications and cardiovascular disease. Diabetes Metab. 44, 457–464 (2018).

    CAS  PubMed  Google Scholar 

  45. Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62, 1154–1166 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Prattichizzo, F., De Nigris, V., Micheloni, S., La Sala, L. & Ceriello, A. Increases in circulating levels of ketone bodies and cardiovascular protection with SGLT2 inhibitors: Is low-grade inflammation the neglected component? Diabetes Obes. Metab. 20, 2515–2522 (2018).

    CAS  PubMed  Google Scholar 

  47. List, J. F., Woo, V., Morales, E., Tang, W. & Fiedorek, F. T. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32, 650–657 (2009).

    CAS  PubMed  Google Scholar 

  48. Yasui, A. et al. Empagliflozin induces transient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabetes. Diabetes Ther. 9, 863–871 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Blau, J. E. et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 3, 99123 (2018).

    PubMed  Google Scholar 

  50. Tanaka, H. et al. Factors affecting canagliflozin-induced transient urine volume increase in patients with type 2 diabetes mellitus. Adv. Ther. 34, 436–451 (2017).

    CAS  PubMed  Google Scholar 

  51. Eickhoff, M. K. et al. Effects of dapagliflozin on volume status when added to renin-angiotensin system inhibitors. J. Clin. Med. 8, 779 (2019).

    CAS  PubMed Central  Google Scholar 

  52. Ansary, T. M., Nakano, D. & Nishiyama, A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int. J. Mol. Sci. 20, 629 (2019).

    CAS  PubMed Central  Google Scholar 

  53. Sha, S. et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 16, 1087–1095 (2014).

    CAS  PubMed  Google Scholar 

  54. Lambers Heerspink, H. J., de Zeeuw, D., Wie, L., Leslie, B. & List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 15, 853–862 (2013).

    CAS  PubMed  Google Scholar 

  55. Dekkers, C. C. J. et al. Effects of the sodium-glucose co-transporter-2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabetes Obes. Metab. 21, 2667–2673 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohara, K. et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: A comparison study with furosemide and tolvaptan. Nephrology 24, 904–911 (2018).

    Google Scholar 

  57. Oliva, R. V. & Bakris, G. L. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens. 8, 330–339 (2014).

    CAS  PubMed  Google Scholar 

  58. Maliha, G. & Townsend, R. R. SGLT2 inhibitors: their potential reduction in blood pressure. J. Am. Soc. Hypertens. 9, 48–53 (2015).

    CAS  PubMed  Google Scholar 

  59. Imprialos, K. P., Sarafidis, P. A. & Karagiannis, A. I. Sodium-glucose cotransporter-2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class? J. Hypertens. 33, 2185–2197 (2015).

    CAS  PubMed  Google Scholar 

  60. Sternlicht, H. & Bakris, G. L. Blood pressure lowering and sodium-glucose co-transporter 2 inhibitors (SGLT2is): more than osmotic diuresis. Curr. Hypertens. Rep. 21, 12 (2019).

    PubMed  Google Scholar 

  61. Scheen, A. J. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr. Cardiol. Rep. 21, 70 (2019).

    PubMed  Google Scholar 

  62. Baker, W. L. et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J. Am. Soc. Hypertens. 8, 262–275 (2014).

    CAS  PubMed  Google Scholar 

  63. Mazidi, M., Rezaie, P., Gao, H. K. & Kengne, A. P. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J. Am. Heart Assoc. 6, e004007 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Baker, W. L. et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J. Am. Heart Assoc. 6, e005686 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Sano, M. & Goto, S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation 139, 1985–1987 (2019).

    CAS  PubMed  Google Scholar 

  66. Tang, H. et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia 59, 2546–2551 (2016).

    CAS  PubMed  Google Scholar 

  67. Toto, R. D. et al. Correction of hypomagnesemia by dapagliflozin in patients with type 2 diabetes: A post hoc analysis of 10 randomized, placebo-controlled trials. J. Diabetes Complications 33, 107402 (2019).

    PubMed  Google Scholar 

  68. Weir, M. R., Kline, I., Xie, J., Edwards, R. & Usiskin, K. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr. Med. Res. Opin. 30, 1759–1768 (2014).

    CAS  PubMed  Google Scholar 

  69. Vinke, J. S. J., Heerspink, H. J. L. & de Borst, M. H. Effects of sodium glucose cotransporter 2 inhibitors on mineral metabolism in type 2 diabetes mellitus. Curr. Opin. Nephrol. Hypertens. 28, 321–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Filippatos, T. D., Tsimihodimos, V., Liamis, G. & Elisaf, M. S. SGLT2 inhibitors-induced electrolyte abnormalities: an analysis of the associated mechanisms. Diabetes Metab. Syndr. 12, 59–63 (2018).

    CAS  PubMed  Google Scholar 

  71. Scheen, A. J. Pharmacokinetics, pharmacodynamics and clinical use of SGLT2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease. Clin. Pharmacokinet. 54, 691–708 (2015).

    CAS  PubMed  Google Scholar 

  72. van Baar, M. J. B. et al. SGLT2 inhibitors in combination therapy: from mechanisms to clinical considerations in type 2 diabetes management. Diabetes Care 41, 1543–1556 (2018).

    PubMed  Google Scholar 

  73. Shyangdan, D. S., Uthman, O. A. & Waugh, N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open 6, e009417 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Feng, M. et al. Efficacy and safety of dapagliflozin as monotherapy in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Medicine 98, e16575 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors as monotherapy or add-on to metformin in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes. Metab. 20, 113–120 (2018).

    CAS  PubMed  Google Scholar 

  76. Jingfan, Z., Ling, L., Cong, L., Ping, L. & Yu, C. Efficacy and safety of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus with inadequate glycemic control on metformin: a meta-analysis. Arch. Endocrinol. Metab. 63, 478–486 (2019).

    PubMed  Google Scholar 

  77. Zhang, Q., Dou, J. & Lu, J. Combinational therapy with metformin and sodium-glucose cotransporter inhibitors in management of type 2 diabetes: systematic review and meta-analyses. Diabetes Res. Clin. Pract. 105, 313–321 (2014).

    CAS  PubMed  Google Scholar 

  78. Scheen, A. J. Reduction in HbA1c with SGLT2 inhibitors vs. DPP-4 inhibitors as add-ons to metformin monotherapy according to baseline HbA1c: A systematic review of randomized controlled trials. Diabetes Metab. 46, 186–196 (2020).

    CAS  PubMed  Google Scholar 

  79. Milder, T. Y. et al. Combination therapy with an SGLT2 inhibitor as initial treatment for type 2 diabetes: a systematic review and meta-analysis. J. Clin. Med. 8, 45 (2019).

    CAS  PubMed Central  Google Scholar 

  80. Li, J. et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors as add-on to metformin and sulfonylurea treatment for the management of type 2 diabetes: a meta-analysis. Endocr. J. 65, 335–344 (2018).

    CAS  PubMed  Google Scholar 

  81. Scheen, A. J. DPP-4 inhibitor plus SGLT-2 inhibitor as combination therapy for type 2 diabetes: from rationale to clinical aspects. Expert Opin. Drug Metab. Toxicol. 12, 1407–1417 (2016).

    CAS  PubMed  Google Scholar 

  82. Dey, J. SGLT2 inhibitor/DPP-4 inhibitor combination therapy - complementary mechanisms of action for management of type 2 diabetes mellitus. Postgrad. Med. 129, 409–420 (2017).

    PubMed  Google Scholar 

  83. Li, D., Shi, W., Wang, T. & Tang, H. SGLT2 inhibitor plus DPP-4 inhibitor as combination therapy for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 20, 1972–1976 (2018).

    CAS  PubMed  Google Scholar 

  84. Liao, H. W., Wu, Y. L., Sue, Y. M., Lee, M. & Ovbiagele, B. Sodium-glucose cotransporter 2 inhibitor plus pioglitazone vs pioglitazone alone in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Endocrinol. Diabetes Metab. 2, e00050 (2019).

    PubMed  Google Scholar 

  85. Fulcher, G. et al. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes. Diabetes Obes. Metab. 18, 82–91 (2016).

    CAS  PubMed  Google Scholar 

  86. Ludvik, B. et al. Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 6, 370–381 (2018).

    CAS  PubMed  Google Scholar 

  87. Frias, J. P. et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol. 4, 1004–1016 (2016).

    CAS  PubMed  Google Scholar 

  88. Jabbour, S. A. et al. Safety and efficacy of exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy: 52-week results of the DURATION-8 randomized controlled trial. Diabetes Care 41, 2136–2146 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang, H. et al. Sodium-glucose co-transporter 2 inhibitors in addition to insulin therapy for management of type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 19, 142–147 (2017).

    CAS  PubMed  Google Scholar 

  90. Lee, J. Y. et al. Clinical parameters affecting dapagliflozin response in patients with type 2 diabetes. Diabetes Metab. 43, 191–194 (2017).

    CAS  PubMed  Google Scholar 

  91. Bujac, S. et al. Patient characteristics are not associated with clinically important differential response to dapagliflozin: a staged analysis of phase 3 data. Diabetes Ther. 5, 471–482 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    CAS  PubMed  Google Scholar 

  93. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    CAS  PubMed  Google Scholar 

  94. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    CAS  PubMed  Google Scholar 

  95. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    CAS  PubMed  Google Scholar 

  96. Cai, X. et al. No disparity of the efficacy and all-cause mortality between Asian and non-Asian type 2 diabetes patients with sodium-glucose cotransporter 2 inhibitors treatment: A meta-analysis. J. Diabetes Investig. 9, 850–861 (2018).

    CAS  PubMed  Google Scholar 

  97. Fujita, Y. & Inagaki, N. An update on efficacy and safety of SGLT2 inhibitors in Asians and non-Asians. J. Diabetes Investig. 10, 1408–1410 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Scheen, A. J. Pharmacokinetic/pharmacodynamic properties and clinical use of SGLT2 inhibitors in non-Asian and Asian patients with type 2 diabetes and chronic kidney disease. Clin. Pharmacokinet. https://doi.org/10.1007/s40262-020-00885-z (2020).

  99. Lim, L. L., Tan, A. T., Moses, K., Rajadhyaksha, V. & Chan, S. P. Place of sodium-glucose cotransporter-2 inhibitors in East Asian subjects with type 2 diabetes mellitus: Insights into the management of Asian phenotype. J. Diabetes Complications 31, 494–503 (2017).

    PubMed  Google Scholar 

  100. Davidson, J. A. et al. Efficacy and safety of canagliflozin in type 2 diabetes patients of different ethnicity. Ethn. Dis. 26, 221–228 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Ferdinand, K. C. et al. Antihyperglycemic and blood pressure effects of empagliflozin in Black patients with type 2 diabetes mellitus and hypertension. Circulation 139, 2098–2109 (2019).

    CAS  PubMed  Google Scholar 

  102. Cintra, R. et al. Inhibition of the sodium-glucose co-transporter 2 in the elderly: clinical and mechanistic insights into safety and efficacy. Rev. Assoc. Med. Bras. 65, 70–86 (2019).

    PubMed  Google Scholar 

  103. Kambara, T. et al. Use of sodium-glucose cotransporter 2 inhibitors in older patients with type 2 diabetes mellitus. Geriatr. Gerontol. Int. 18, 108–114 (2018).

    PubMed  Google Scholar 

  104. Mikhail, N. Use of sodium-glucose cotransporter type 2 inhibitors in older adults with type 2 diabetes mellitus. South. Med. J. 108, 91–96 (2015).

    CAS  PubMed  Google Scholar 

  105. Kohan, D. E., Fioretto, P., Tang, W. & List, J. F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85, 962–971 (2014).

    CAS  PubMed  Google Scholar 

  106. Delanaye, P. & Scheen, A. J. Preventing and treating kidney disease in patients with type 2 diabetes. Expert Opin. Pharmacother. 20, 277–294 (2019).

    CAS  PubMed  Google Scholar 

  107. Heerspink, H. J. L., Kosiborod, M., Inzucchi, S. E. & Cherney, D. Z. I. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int. 94, 26–39 (2018).

    CAS  PubMed  Google Scholar 

  108. Kelly, M. S., Lewis, J., Huntsberry, A. M., Dea, L. & Portillo, I. Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad. Med. 131, 31–42 (2019).

    PubMed  Google Scholar 

  109. Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).

    CAS  PubMed  Google Scholar 

  110. Davidson, J. A. SGLT2 inhibitors in patients with type 2 diabetes and renal disease: overview of current evidence. Postgrad. Med. 131, 251–260 (2019).

    PubMed  Google Scholar 

  111. Food and Drug Administration: Center for Drug Evaluation and Research. Canagliflozin (Invokana): summary review (Application number: 204042Orig1s000). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000SumR.pdf (2020).

  112. Tang, H. et al. Meta-analysis of effects of sodium-glucose cotransporter 2 inhibitors on cardiovascular outcomes and all-cause mortality among patients with type 2 diabetes mellitus. Am. J. Cardiol. 118, 1774–1780 (2016).

    CAS  PubMed  Google Scholar 

  113. Sonesson, C., Johansson, P. A., Johnsson, E. & Gause-Nilsson, I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc. Diabetol. 15, 37 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Salsali, A., Kim, G., Woerle, H. J., Broedl, U. C. & Hantel, S. Cardiovascular safety of empagliflozin in patients with type 2 diabetes: a meta-analysis of data from randomized placebo-controlled trials. Diabetes Obes. Metab. 18, 1034–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Savarese, G. et al. Effects of dipeptidyl peptidase 4 inhibitors and sodium-glucose linked cotransporter-2 inhibitors on cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis. Int. J. Cardiol. 220, 595–601 (2016).

    PubMed  Google Scholar 

  116. Cefalu, W. T. et al. Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors’ Expert Forum. Diabetes Care 41, 14–31 (2018).

    CAS  PubMed  Google Scholar 

  117. Hupfeld, C. & Mudaliar, S. Navigating the “MACE” in cardiovascular outcomes trials and decoding the relevance of atherosclerotic CVD benefits versus heart failure benefits. Diabetes Obes. Metab. 21, 1780–1789 (2019).

    PubMed  Google Scholar 

  118. Cannon, C. P. et al. Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am. Heart J. 206, 11–23 (2018).

    CAS  PubMed  Google Scholar 

  119. Furtado, R. H. M. et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation 139, 2516–2527 (2019).

    CAS  PubMed  Google Scholar 

  120. Kaul, S. Is the mortality benefit with empagliflozin in type 2 diabetes mellitus too good to be true? Circulation 134, 94–96 (2016).

    PubMed  Google Scholar 

  121. Fitchett, D. et al. Cardiovascular mortality reduction with empagliflozin in patients with type 2 diabetes and cardiovascular disease. J. Am. Coll. Cardiol. 71, 364–367 (2018).

    PubMed  Google Scholar 

  122. Claggett, B. et al. Long-term benefit of empagliflozin on life expectancy in patients with type 2 diabetes mellitus and established cardiovascular disease. Circulation 138, 1599–1601 (2018).

    PubMed  Google Scholar 

  123. Fitchett, D. et al. Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular rRisk in the EMPA-REG OUTCOME trial. Circulation 139, 1384–1395 (2019).

    CAS  PubMed  Google Scholar 

  124. Wanner, C. et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137, 119–129 (2018).

    CAS  PubMed  Google Scholar 

  125. Cosentino, F., Grant, P. J., Aboyans, V. & ESC Scientific Document Group et al. 2019 ESC guidelines on diabetes, prediabetes and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 41, 255–323 (2020).

    PubMed  Google Scholar 

  126. Kato, E. T. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139, 2528–2536 (2019).

    CAS  PubMed  Google Scholar 

  127. Sinha, B. & Ghosal, S. Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) reduce hospitalization for heart failure only and have no effect on atherosclerotic cardiovascular events: a meta-analysis. Diabetes Ther. 10, 891–899 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zinman, B. et al. Empagliflozin and cerebrovascular events in patients with type 2 diabetes mellitus at high cardiovascular risk. Stroke 48, 1218–1225 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou, Z. et al. Canagliflozin and stroke in type 2 diabetes mellitus. Stroke 50, 396–404 (2019).

    CAS  PubMed  Google Scholar 

  130. Guo, M. et al. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes. Metab. 20, 1977–1982 (2018).

    CAS  PubMed  Google Scholar 

  131. Fitchett, D. et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur. Heart J. 37, 1526–1534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Januzzi, J. et al. Empagliflozin reduces the risk of a broad spectrum of heart failure outcomes regardless of heart failure status at baseline. Eur. J. Heart Fail. 21, 386–388 (2019).

    PubMed  Google Scholar 

  133. Fitchett, D. et al. Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial. Eur. Heart J. 39, 363–370 (2018).

    CAS  PubMed  Google Scholar 

  134. Savarese, G. et al. Empagliflozin is associated with a lower risk of post-acute heart failure rehospitalization and mortality. Circulation 139, 1458–1460 (2019).

    PubMed  Google Scholar 

  135. Radholm, K. et al. Canagliflozin and heart failure in type 2 diabetes mellitus. Circulation 138, 458–468 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mahaffey, K. W. et al. Canagliflozin and cardiovascular and renal outcomes in type 2 diabetes and chronic kidney disease in primary and secondary cardiovascular prevention groups. Circulation 140, 739–750 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sattar, N., McLaren, J., Kristensen, S. L., Preiss, D. & McMurray, J. J. SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia 59, 1333–1339 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Martinez, F. A. et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age: insights from DAPA-HF. Circulation 141, 100–111 (2020).

    CAS  PubMed  Google Scholar 

  139. Scheen, A. J. Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes. Diabetes Metab. 45, 110–121 (2019).

    CAS  PubMed  Google Scholar 

  140. Neuen, B. L. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 7, 845–854 (2019).

    CAS  PubMed  Google Scholar 

  141. Seidu, S. et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim. Care Diabetes 12, 265–283 (2018).

    PubMed  Google Scholar 

  142. Toyama, T. et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes. Metab. 21, 1237–1250 (2019).

    CAS  PubMed  Google Scholar 

  143. Giugliano, D., De Nicola, L., Maiorino, M. I., Bellastella, G. & Esposito, K. Type 2 diabetes and the kidney: insights from cardiovascular outcome trials. Diabetes Obes. Metab. 21, 1790–1800 (2019).

    PubMed  Google Scholar 

  144. Wanner, C. et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial. J. Am. Soc. Nephrol. 29, 2755–2769 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cherney, D. Z. I. et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 5, 610–621 (2017).

    CAS  PubMed  Google Scholar 

  146. Mahaffey, K. W. et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation 137, 323–334 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Neuen, B. L. et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation 138, 1537–1550 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Neuen, B. L. et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: data from the CANVAS program. J. Am. Soc. Nephrol. 30, 2229–2242 (2019).

    CAS  PubMed  Google Scholar 

  149. Mosenzon, O. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 7, 606–617 (2019).

    CAS  PubMed  Google Scholar 

  150. Staels, B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am. J. Cardiol. 120, S28–S36 (2017).

    CAS  PubMed  Google Scholar 

  151. Vettor, R., Inzucchi, S. E. & Fioretto, P. The cardiovascular benefits of empagliflozin: SGLT2-dependent and -independent effects. Diabetologia 60, 395–398 (2017).

    CAS  PubMed  Google Scholar 

  152. Chin, K. L. et al. Potential mechanisms underlying the cardiovascular benefits of sodium glucose cotransporter 2 inhibitors: a systematic review of data from preclinical studies. Cardiovasc. Res. 115, 266–276 (2019).

    CAS  PubMed  Google Scholar 

  153. Scheen, A. J. Reduction in cardiovascular and all-cause mortality in the EMPA-REG OUTCOME trial: A critical analysis. Diabetes Metab. 42, 71–76 (2016).

    PubMed  Google Scholar 

  154. Heerspink, H. J., Perkins, B. A., Fitchett, D. H., Husain, M. & Cherney, D. Z. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134, 752–772 (2016).

    CAS  PubMed  Google Scholar 

  155. Inzucchi, S. E. et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation 138, 1904–1907 (2018).

    PubMed  Google Scholar 

  156. Cooper, M. E. et al. Glucose control and the effect of empagliflozin on kidney outcomes in type 2 diabetes: an analysis from the EMPA-REG OUTCOME trial. Am. J. Kidney Dis. 74, 713–715 (2019).

    CAS  PubMed  Google Scholar 

  157. Heerspink, H. J. et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol. 28, 368–375 (2017).

    CAS  PubMed  Google Scholar 

  158. Budoff, M. J. & Wilding, J. P. H. Effects of canagliflozin on cardiovascular risk factors in patients with type 2 diabetes mellitus. Int. J. Clin. Pract. 71, e12948 (2017).

    PubMed Central  Google Scholar 

  159. Deeks, E. D. & Scheen, A. J. Canagliflozin: a review in type 2 diabetes. Drugs 77, 1577–1592 (2017).

    CAS  PubMed  Google Scholar 

  160. Petrykiv, S. et al. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin. J. Am. Soc. Nephrol. 12, 751–759 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41, 356–363 (2018).

    CAS  PubMed  Google Scholar 

  162. Scheen, A. J. Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Res. Clin. Pract. 121, 204–214 (2016).

    CAS  PubMed  Google Scholar 

  163. Scheen, A. J. & Delanaye, P. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Metab. 43, 99–109 (2017).

    CAS  PubMed  Google Scholar 

  164. Yaribeygi, H., Atkin, S. L., Butler, A. E. & Sahebkar, A. Sodium-glucose cotransporter inhibitors and oxidative stress: an update. J. Cell Physiol. 234, 3231–3237 (2019).

    CAS  PubMed  Google Scholar 

  165. Pulakazhi Venu, V. K. et al. Minimizing hyperglycemia-induced vascular endothelial dysfunction by inhibiting endothelial sodium-glucose cotransporter 2 and attenuating oxidative stress: implications for treating individuals with type 2 diabetes. Can. J. Diabetes 43, 510–514 (2019).

    PubMed  Google Scholar 

  166. Ferrannini, E., Mark, M. & Mayoux, E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    PubMed  Google Scholar 

  167. Mudaliar, S., Alloju, S. & Henry, R. R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 39, 1115–1122 (2016).

    CAS  PubMed  Google Scholar 

  168. Qiu, H., Novikov, A. & Vallon, V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes Metab. Res. Rev. https://doi.org/10.1002/dmrr.2886 (2017).

    Article  PubMed  Google Scholar 

  169. Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).

    CAS  PubMed  Google Scholar 

  170. Lytvyn, Y., Bjornstad, P., Udell, J. A., Lovshin, J. A. & Cherney, D. Z. I. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136, 1643–1658 (2017).

    CAS  PubMed  Google Scholar 

  171. Muskiet, M. H., van Raalte, D. H., van Bommel, E., Smits, M. M. & Tonneijck, L. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 3, 928–929 (2015).

    PubMed  Google Scholar 

  172. Fioretto, P., Zambon, A., Rossato, M., Busetto, L. & Vettor, R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care 39, S165–S171 (2016).

    CAS  PubMed  Google Scholar 

  173. Alicic, R. Z., Neumiller, J. J., Johnson, E. J., Dieter, B. & Tuttle, K. R. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes 68, 248–257 (2019).

    CAS  PubMed  Google Scholar 

  174. Yaribeygi, H., Butler, A. E., Atkin, S. L., Katsiki, N. & Sahebkar, A. Sodium-glucose cotransporter 2 inhibitors and inflammation in chronic kidney disease: possible molecular pathways. J. Cell Physiol. 234, 223–230 (2018).

    PubMed  Google Scholar 

  175. Kuriyama, S. A potential mechanism of cardio-renal protection with sodium-glucose cotransporter 2 inhibitors: amelioration of renal congestion. Kidney Blood Press. Res. 44, 449–456 (2019).

    CAS  PubMed  Google Scholar 

  176. Nespoux, J. & Vallon, V. Renal effects of SGLT2 inhibitors: an update. Curr. Opin. Nephrol. Hypertens. 29, 190–198 (2020).

    CAS  PubMed  Google Scholar 

  177. Packer, M., Anker, S. D., Butler, J., Filippatos, G. & Zannad, F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2, 1025–1029 (2017).

    PubMed  Google Scholar 

  178. McCullough, P. A. et al. Inhibition of the sodium-proton antiporter (exchanger) is a plausible mechanism of potential benefit and harm for drugs designed to block sodium glucose co-transporter 2. Rev. Cardiovasc. Med. 19, 51–63 (2018).

    PubMed  Google Scholar 

  179. Qiu, R. et al. Longer-term safety and tolerability of canagliflozin in patients with type 2 diabetes: a pooled analysis. Curr. Med. Res. Opin. 33, 553–562 (2017).

    CAS  PubMed  Google Scholar 

  180. Jabbour, S. et al. Dapagliflozin in patients with type 2 diabetes mellitus: A pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes. Metab. 20, 620–628 (2018).

    CAS  PubMed  Google Scholar 

  181. Kohler, S., Zeller, C., Iliev, H. & Kaspers, S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I-III clinical trials. Adv. Ther. 34, 1707–1726 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, X. L. et al. Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J. Am. Heart Assoc. 7, e007165 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. Fitchett, D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes. Metab. 21, 34–42 (2019).

    CAS  PubMed  Google Scholar 

  184. Scheen, A. J. An update on the safety of SGLT2 inhibitors. Expert Opin. Drug Saf. 18, 295–311 (2019).

    CAS  PubMed  Google Scholar 

  185. Donnan, J. R. et al. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: a systematic review and meta-analysis. BMJ Open 9, e022577 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Scheen, A. J. SGLT2 inhibitors: benefit/risk balance. Curr. Diab. Rep. 16, 92 (2016).

    PubMed  Google Scholar 

  187. Lupsa, B. C. & Inzucchi, S. E. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia 61, 2118–2125 (2018).

    CAS  PubMed  Google Scholar 

  188. Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 66, 255–270 (2015).

    CAS  PubMed  Google Scholar 

  189. Vasilakou, D. et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 262–274 (2013).

    PubMed  Google Scholar 

  190. Puckrin, R. et al. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 55, 503–514 (2018).

    CAS  PubMed  Google Scholar 

  191. Dave, C. V. et al. Sodium-glucose cotransporter-2 inhibitors and the risk for severe urinary tract infections: a population-based cohort study. Ann. Intern. Med. 171, 248–256 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Wu, J. H. et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 4, 411–419 (2016).

    CAS  PubMed  Google Scholar 

  193. Yang, X. P., Lai, D., Zhong, X. Y., Shen, H. P. & Huang, Y. L. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 70, 1149–1158 (2014).

    CAS  PubMed  Google Scholar 

  194. Liakos, A. et al. Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 16, 984–993 (2014).

    CAS  PubMed  Google Scholar 

  195. Sjostrom, C. D., Johansson, P., Ptaszynska, A., List, J. & Johnsson, E. Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diab Vasc. Dis. Res. 12, 352–358 (2015).

    PubMed  Google Scholar 

  196. Peters, A. L. et al. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care 38, 1687–1693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Taylor, S. I., Blau, J. E. & Rother, K. I. SGLT2 inhibitors may predispose to ketoacidosis. J. Clin. Endocrinol. Metab. 100, 2849–2852 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Rosenstock, J. & Ferrannini, E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38, 1638–1642 (2015).

    CAS  PubMed  Google Scholar 

  199. Bonora, B. M., Avogaro, A. & Fadini, G. P. Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis: An updated review of the literature. Diabetes Obes. Metab. 20, 25–33 (2018).

    CAS  PubMed  Google Scholar 

  200. Monami, M., Nreu, B., Zannoni, S., Lualdi, C. & Mannucci, E. Effects of SGLT-2 inhibitors on diabetic ketoacidosis: a meta-analysis of randomised controlled trials. Diabetes Res. Clin. Pract. 130, 53–60 (2017).

    CAS  PubMed  Google Scholar 

  201. Fralick, M., Schneeweiss, S. & Patorno, E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N. Engl. J. Med. 376, 2300–2302 (2017).

    PubMed  Google Scholar 

  202. Wang, L. et al. Diabetic ketoacidosis in patients with type 2 diabetes treated with sodium glucose co-transporter 2 inhibitors versus other antihyperglycemic agents: An observational study of four US administrative claims databases. Pharmacoepidemiol. Drug Saf. 28, 1620–1628 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Fadini, G. P., Bonora, B. M. & Avogaro, A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 60, 1385–1389 (2017).

    CAS  PubMed  Google Scholar 

  204. Blau, J. E., Tella, S. H., Taylor, S. I. & Rother, K. I. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab. Res. Rev. https://doi.org/10.1002/dmrr.2924 (2017).

  205. Ado Moumouni, A. N., Robin, P., Hillaire-Buys, D. & Faillie, J. L. SGLT-2 inhibitors and ketoacidosis: a disproportionality analysis in the World Health Organization’s adverse drug reactions database. Fundam. Clin. Pharmacol. 32, 216–226 (2018).

    CAS  PubMed  Google Scholar 

  206. Taylor, S. I., Blau, J. E. & Rother, K. I. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 3, 8–10 (2015).

    CAS  PubMed  Google Scholar 

  207. de Jong, M. A. et al. Effects of dapagliflozin on circulating markers of phosphate homeostasis. Clin. J. Am. Soc. Nephrol. 14, 66–73 (2019).

    PubMed  Google Scholar 

  208. Blau, J. E. & Taylor, S. I. Adverse effects of SGLT2 inhibitors on bone health. Nat. Rev. Nephrol. 14, 473–474 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Mannucci, E. & Monami, M. Bone fractures with sodium-glucose co-transporter-2 inhibitors: how real is the risk? Drug Saf. 40, 115–119 (2017).

    CAS  PubMed  Google Scholar 

  210. Zhou, Z. et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia 62, 1854–1867 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Patel, S., Gohel, K. & Patel, B. G. A systematic review on effect of canagliflozin in special population. Curr. Diabetes Rev. 12, 211–222 (2016).

    CAS  PubMed  Google Scholar 

  212. Blevins, T. C. & Farooki, A. Bone effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus. Postgrad. Med. 129, 159–168 (2017).

    PubMed  Google Scholar 

  213. Matthews, D. R. et al. Effects of canagliflozin on amputation risk in type 2 diabetes: the CANVAS Program. Diabetologia 62, 926–938 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. U.S. Food and Drug Administration. FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). https://www.fda.gov/downloads/Drugs/DrugSafety/UCM558427.pdf (2017).

  215. Inzucchi, S. E., Iliev, H., Pfarr, E. & Zinman, B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care 41, e4–e5 (2018).

    PubMed  Google Scholar 

  216. Verma, S. et al. Cardiovascular outcomes and safety of empagliflozin in patients with type 2 diabetes mellitus and peripheral artery disease: a subanalysis of EMPA-REG OUTCOME. Circulation 137, 405–407 (2018).

    PubMed  Google Scholar 

  217. Scheen, A. J. Does lower-limb amputation concern all SGLT-2 inhibitors? Nat. Rev. Endocrinol. 14, 326–328 (2018).

    CAS  PubMed  Google Scholar 

  218. Tanaka, A. & Node, K. Increased amputation risk with canagliflozin treatment: behind the large cardiovascular benefit? Cardiovasc. Diabetol. 16, 129 (2017).

    PubMed  PubMed Central  Google Scholar 

  219. Szalat, A. et al. Can SGLT2 inhibitors cause acute renal failure? Plausible role for altered glomerular hemodynamics and medullary hypoxia. Drug Saf. 41, 239–252 (2018).

    PubMed  Google Scholar 

  220. Briasoulis, A., Al Dhaybi, O. & Bakris, G. L. SGLT2 inhibitors and mechanisms of hypertension. Curr. Cardiol. Rep. 20, 1 (2018).

    PubMed  Google Scholar 

  221. Tang, H. et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 19, 1106–1115 (2017).

    CAS  PubMed  Google Scholar 

  222. Gilbert, R. E. & Thorpe, K. E. Acute kidney injury with sodium-glucose co-transporter-2 inhibitors: a meta-analysis of cardiovascular outcome trials. Diabetes Obes. Metab. 21, 1996–2000 (2019).

    CAS  PubMed  Google Scholar 

  223. Ueda, P. et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ 363, k4365 (2018).

    PubMed  PubMed Central  Google Scholar 

  224. Nadkarni, G. N. et al. Acute kidney injury in patients on SGLT2 inhibitors: a propensity-matched analysis. Diabetes Care 40, 1479–1485 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Cahn, A., Melzer-Cohen, C., Pollack, R., Chodick, G. & Shalev, V. Acute renal outcomes with sodium-glucose co-transporter-2 inhibitors: real-world data analysis. Diabetes Obes. Metab. 21, 340–348 (2019).

    CAS  PubMed  Google Scholar 

  226. Chu, C., Lu, Y. P., Yin, L. & Hocher, B. The SGLT2 inhibitor empagliflozin might be a new approach for the prevention of acute kidney injury. Kidney Blood Press. Res. 44, 149–157 (2019).

    CAS  PubMed  Google Scholar 

  227. Food and Drug Administration. FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. https://www.fda.gov/Drugs/DrugSafety/ucm617360.htm (2018).

  228. Bersoff-Matcha, S. J., Chamberlain, C., Cao, C., Kortepeter, C. & Chong, W. H. Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann. Intern. Med. 170, 764–769 (2019).

    PubMed  Google Scholar 

  229. Fadini, G. P., Sarangdhar, M., De Ponti, F., Avogaro, A. & Raschi, E. Pharmacovigilance assessment of the association between Fournier’s gangrene and other severe genital adverse events with SGLT-2 inhibitors. BMJ Open Diabetes Res. Care 7, e000725 (2019).

    PubMed  PubMed Central  Google Scholar 

  230. Ismail-Beigi, F., Moghissi, E., Kosiborod, M. & Inzucchi, S. E. Shifting paradigms in the medical management of type 2 diabetes: reflections on recent cardiovascular outcome trials. J. Gen. Intern. Med. 32, 1044–1051 (2017).

    PubMed  PubMed Central  Google Scholar 

  231. Scheen, A. J. Series: implications of the recent CVOTs in type 2 diabetes: impact on guidelines: the endocrinologist point of view. Diabetes Res. Clin. Pract. 159, 107726 (2020).

    PubMed  Google Scholar 

  232. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    PubMed  PubMed Central  Google Scholar 

  233. Buse, J. B. et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63, 221–228 (2020).

    PubMed  Google Scholar 

  234. Scheen, A. J. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ. Res. 122, 1439–1459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 74, 1376–1414 (2019).

    PubMed  Google Scholar 

  236. Scheen, A. J. Challenging 2019 ESC guidelines for the management of type 2 diabetes. Diabetes Metab. 46, 181–185 (2020).

    CAS  PubMed  Google Scholar 

  237. Zelniker, T. A. et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus. Circulation 139, 2022–2031 (2019).

    CAS  PubMed  Google Scholar 

  238. Kosiborod, M. et al. Lower risk of heart failure and death in patients initiated on Sodium-Glucose Cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 136, 249–259 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Kosiborod, M. et al. Lower cardiovascular risk associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J. Am. Coll. Cardiol. 71, 2628–2639 (2018).

    CAS  PubMed  Google Scholar 

  240. Norhammar, A. et al. Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: A nationwide observational study. Diabetes Obes. Metab. 21, 1136–1145 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Gallwitz, B. The cardiovascular benefits associated with the use of sodium-glucose cotransporter 2 inhibitors - Real-world data. Eur. Endocrinol. 14, 17–23 (2018).

    PubMed  PubMed Central  Google Scholar 

  242. Raschi, E., Poluzzi, E., Fadini, G. P., Marchesini, G. & De Ponti, F. Observational research on sodium glucose co-transporter-2 inhibitors: A real breakthrough? Diabetes Obes. Metab. 20, 2711–2723 (2018).

    PubMed  PubMed Central  Google Scholar 

  243. Suissa, S. Lower risk of death with SGLT2 inhibitors in observational studies: real or bias? Diabetes Care 41, 6–10 (2018).

    PubMed  Google Scholar 

  244. Scheen, A. J. Cardiovascular outcome studies in type 2 diabetes: comparison between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Res. Clin. Pract. 143, 88–100 (2018).

    CAS  PubMed  Google Scholar 

  245. Birkeland, K. I. et al. How representative of a general type 2 diabetes population are patients included in cardiovascular outcome trials with SGLT2 inhibitors? A large European observational study. Diabetes Obes. Metab. 21, 968–974 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Herrington, W. G. et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin. Kidney J. 11, 749–761 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Butler, J. et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors. Eur. J. Heart Fail. 19, 1390–1400 (2017).

    CAS  PubMed  Google Scholar 

  248. Nassif, M. E. & Kosiborod, M. Effects of sodium glucose cotransporter type 2 inhibitors on heart failure. Diabetes Obes. Metab. 21, 19–23 (2019).

    CAS  PubMed  Google Scholar 

  249. Seferovic, P. M. et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 20, 853–872 (2018).

    PubMed  Google Scholar 

  250. Wanner, C. & Marx, N. SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases. Diabetologia 61, 2134–2139 (2018).

    PubMed  Google Scholar 

  251. Scheen, A. J. Why not adding a glucose-lowering agent with proven cardioprotection in high-risk patients with type 2 diabetes at HbA1c target on metformin? Diabetes Res. Clin. Pract. 147, 169–171 (2019).

    PubMed  Google Scholar 

  252. Kuo, S., Ye, W., Duong, J. & Herman, W. H. Are the favorable cardiovascular outcomes of empagliflozin treatment explained by its effects on multiple cardiometabolic risk factors? A simulation of the results of the EMPA-REG OUTCOME trial. Diabetes Res. Clin. Pract. 141, 181–189 (2018).

    CAS  PubMed  Google Scholar 

  253. Cannon, C. P. et al. Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease according to baseline HbA1c, including those with HbA1c <7%: results from the CREDENCE trial. Circulation 141, 407–410 (2020).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Scheen.

Ethics declarations

Competing interests

A.J.S. has received lecturer, scientific advisory and clinical investigator fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, GlaxoSmithKline, Janssen, Merck Sharp & Dohme, Novartis, NovoNordisk, Sanofi and Servier. He worked as a clinical investigator in the EMPA-REG OUTCOME, CANVAS-R and DECLARE-TIMI 58 trials.

Additional information

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheen, A.J. Sodium–glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16, 556–577 (2020). https://doi.org/10.1038/s41574-020-0392-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0392-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing