Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy

Abstract

Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic ‘cells’ or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.

Key points

  • Recent advances in human stem cell differentiation protocols enable the generation of mature β-cells with dynamic insulin secretion and metabolic properties akin to primary human β-cells.

  • In addition to β-cells, other hormone-expressing islet cell types are generated under current differentiation protocols.

  • The unlimited source provided by stem cell-derived β-cells and islet clusters would address the current scarcity in cadaveric donor tissues for islet transplantation, and sophisticated gene-editing tools could be used to cloak them against immune attack.

  • Transdifferentiation of endogenous non-β-cells to insulin-producing cells could be exploited as an alternative strategy to increase the number of functional β-cell equivalents.

  • Bioreactors are emerging as technologies for enabling diabetes mellitus cell therapies; these platforms allow precise control of critical cultivation factors for optimized large-scale stem cell differentiation towards functional islet cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Advances in the generation of mature β-cells from hPSCs and their application for diabetes mellitus cell therapy.
Fig. 2: Transdifferentiation of closely related endoderm-derived somatic cells to β-like cells.
Fig. 3: Stem cell bioprocessing for pancreatic islet cell manufacturing.

References

  1. 1.

    International Diabetes Federation. IDF Atlas 9th edn (IDF, 2019).

  2. 2.

    American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care 41, 917–928 (2018).

    PubMed Central  Google Scholar 

  3. 3.

    Cryer, P. E. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N. Engl. J. Med. 369, 362–372 (2013).

    PubMed  CAS  Google Scholar 

  4. 4.

    Diabetes Control and Complications Trial Research Group, Nathan, D. M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Google Scholar 

  5. 5.

    The Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes 64, 631–642 (2015).

    Google Scholar 

  6. 6.

    King, P., Peacock, I. & Donnelly, R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol. 48, 643–648 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Tauschmann, M. et al. Closed-loop insulin delivery in suboptimally controlled type 1 diabetes: a multicentre, 12-week randomised trial. Lancet 392, 1321–1329 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Bekiari, E. et al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ 361, k1310 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Foster, N. C. et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 21, 66–72 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Russell, S. J. et al. Day and night glycaemic control with a bionic pancreas versus conventional insulin pump therapy in preadolescent children with type 1 diabetes: a randomised crossover trial. Lancet Diabetes Endocrinol. 4, 233–243 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Brown, S. A. et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 381, 1707–1717 (2019). This report describes results from a multicentre trial evaluating benefits of closed-loop control over sensor-augumented insulin pumps. Closed-loop systems fare better in maintaining the time spent in target glycaemic range (mean ~71%) than sensor-augumented insulin pumps (mean ~59%).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Barton, F. B. et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care 35, 1436–1445 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Blum, B. et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat. Biotech. 30, 261–264 (2012).

    CAS  Google Scholar 

  14. 14.

    van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Henquin, J. C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    PubMed  CAS  Google Scholar 

  16. 16.

    Komatsu, M. et al. Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig. 4, 511–516 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Zhao, S. et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 19, 993–1007 (2014).

    PubMed  CAS  Google Scholar 

  18. 18.

    Ferdaoussi, M. et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Investig. 125, 3847–3860 (2015).

    PubMed  Google Scholar 

  19. 19.

    Gooding, J. R. et al. Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep. 13, 157–167 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Pullen, T. J. et al. Identification of genes selectively disallowed in the pancreatic islet. Islets 2, 89–95 (2010).

    PubMed  Google Scholar 

  21. 21.

    Thorrez, L. et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 21, 95–105 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Lemaire, K., Thorrez, L. & Schuit, F. Disallowed and allowed gene expression: two faces of mature islet beta cells. Annu. Rev. Nutr. 36, 45–71 (2016).

    PubMed  CAS  Google Scholar 

  23. 23.

    Taylor, B. L., Liu, F.-F. & Sander, M. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 4, 1262–1275 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Gu, C. et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 11, 298–310 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Gosmain, Y. et al. Pax6 is crucial for β-cell function, insulin biosynthesis, and glucose-induced insulin secretion. Mol. Endocrinol. 26, 696–709 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Aguayo-Mazzucato, C. et al. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA. Diabetes 62, 1569–1580 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Huang, C. et al. Synaptotagmin 4 regulates pancreatic β cell maturation by modulating the Ca2+ sensitivity of insulin secretion vesicles. Dev. Cell 45, 347–361 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Arda, H. E. et al. Age-dependent pancreatic gene regulation reveals mechanisms governing human β cell function. Cell Metab. 23, 909–920 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Henquin, J.-C. & Nenquin, M. Dynamics and regulation of insulin secretion in pancreatic islets from normal young children. PLoS One 11, e0165961 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hawdon, J. M. et al. The role of pancreatic insulin secretion in neonatal glucoregulation. I. Healthy term and preterm infants. Arch. Dis. Child. 68, 274–279 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Kaye, R. et al. The response of blood glucose, ketones, and plasma nonesterified fatty acids to fasting and epinephrine injection in infants and children. J. Pediatr. 59, 836–847 (1961).

    PubMed  CAS  Google Scholar 

  32. 32.

    Tong, X. et al. Lipid droplet accumulation in human pancreatic islets is dependent on both donor age and health. Diabetes 69, 342 (2020).

    PubMed  CAS  Google Scholar 

  33. 33.

    Johnston, N. R. et al. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24, 389–401 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Bader, E. et al. Identification of proliferative and mature β-cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    PubMed  CAS  Google Scholar 

  35. 35.

    Nasteska, D. & Hodson, D. J. The role of beta cell heterogeneity in islet function and insulin release. J. Mol. Endocrinol. 61, R43–R60 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    PubMed  CAS  Google Scholar 

  37. 37.

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    PubMed  CAS  Google Scholar 

  38. 38.

    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    PubMed  CAS  Google Scholar 

  39. 39.

    Xu, X. et al. Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cell 8, 96–107 (2006).

    CAS  Google Scholar 

  40. 40.

    Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    PubMed  CAS  Google Scholar 

  41. 41.

    D’Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    PubMed  Google Scholar 

  42. 42.

    Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotech. 26, 443–452 (2008).

    CAS  Google Scholar 

  43. 43.

    D’Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    PubMed  Google Scholar 

  44. 44.

    Xu, X., Browning, V. L. & Odorico, J. S. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev. 128, 412–427 (2011).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Riedel, M. et al. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55, 372–381 (2012).

    PubMed  CAS  Google Scholar 

  46. 46.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotech. 32, 1121–1133 (2014).

    CAS  Google Scholar 

  47. 47.

    Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 34, 1759–1772 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Rezania, A. et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61, 2016–2029 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373 (2019). This is an important study that used single-cell RNA sequencing to elucidate generation of several additional cell types including α-like cells, enterochromaffin cells and non-endocrine cells in stem cell differentiation toward β-cells. Furthermore, the authors identified CD49a as a cell surface marker to sort, re-aggregate and enrich for stem cell-derived β-cells.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. 51.

    Krentz, N. A. J. et al. Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Rep. 11, 1551–1564 (2018).

    CAS  Google Scholar 

  52. 52.

    Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019). This study demonstrated for the first time that re-aggregation and clustering of stem cell-derived immature β-cells induces maturation by activating mitochondrial respiration. The resulting β-cells closely resemble adult islet β-cells in transcriptome and exhibit similar functional properties such as dynamic insulin secretion.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

    CAS  Google Scholar 

  54. 54.

    Nomura, M. et al. SMAD2 disruption in mouse pancreatic beta cells leads to islet hyperplasia and impaired insulin secretion due to the attenuation of ATP-sensitive K+ channel activity. Diabetologia 57, 157–166 (2014).

    PubMed  CAS  Google Scholar 

  55. 55.

    Totsuka, Y. et al. Stimulation of insulin secretion by transforming growth factor-β. Biochem. Biophys. Res. Commun. 158, 1060–1065 (1989).

    PubMed  CAS  Google Scholar 

  56. 56.

    Lin, H.-M. et al. Transforming growth factor-β/Smad3 signaling regulates insulin gene transcription and pancreatic islet β-cell function. J. Biol. Chem. 284, 12246–12257 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. 57.

    Saber, N. et al. Sex differences in maturation of human embryonic stem cell-derived β cells in mice. Endocrinology 159, 1827–1841 (2018).

    PubMed  CAS  Google Scholar 

  58. 58.

    Bruin, J. E. et al. Hypothyroidism impairs human stem cell-derived pancreatic progenitor cell maturation in mice. Diabetes 65, 1297–1309 (2016).

    PubMed  CAS  Google Scholar 

  59. 59.

    Motté, E. et al. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am. J. Physiol. Endocrinol. Metab. 307, E838–E846 (2014).

    PubMed  Google Scholar 

  60. 60.

    Henry, R. R. et al. Initial clinical evaluation of VC-01TM combination product — a stem cell–derived islet replacement for type 1 diabetes (T1D) [abstract 138-OR]. Diabetes 67 (Suppl. 1), A37 (2018).

    Google Scholar 

  61. 61.

    Shapiro, A.J. et al. Insulin expression and glucose-responsive circulating C-peptide in type 1 diabetes patients implanted subcutaneously with pluripotent stem cell-derived pancreatic endoderm cells in a macro-device. Preprint at SSRN http://dx.doi.org/10.2139/ssrn.3501034 (2019).

  62. 62.

    Pepper, A. R. et al. Post-transplant characterization of long-term functional hESC-derived pancreatic endoderm grafts. Diabetes 68, 953–962 (2019).

    PubMed  CAS  Google Scholar 

  63. 63.

    Huising, M. O. et al. The difference δ-cells make in glucose control. Physiology 33, 403–411 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. 64.

    Rezania, A. et al. Production of functional glucagon-secreting α-cells from human embryonic stem cells. Diabetes 60, 239–247 (2011).

    PubMed  CAS  Google Scholar 

  65. 65.

    Nair, G. & Hebrok, M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr. Opin. Genet. Dev. 32, 171–180 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. 66.

    Collombat, P. et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J. Clin. Investig. 117, 961–970 (2007).

    PubMed  CAS  Google Scholar 

  67. 67.

    Collombat, P. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 17, 2591–2603 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    Courtney, M. et al. The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet. 9, e1003934 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Chakravarthy, H. et al. Converting adult pancreatic islet α cells into β cells by targeting both Dnmt1 and Arx. Cell Metab. 25, 622–634 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Xiao, X. et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell 22, 78–90 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Furuyama, K. et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature 567, 43–48 (2019). This is the first study to show that α-cells can be reprogrammed to insulin-secreting cells. The authors isolated human islet non-β-cells, such as α-cells and γ-cells, from donors with and without diabetes mellitus and reprogrammed them into insulin-secreting cells with PDX1 and MAFA. These cells were able to reverse diabetes mellitus in mice whilst still retaining certain α-cell features.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. 72.

    Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. 73.

    Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. 74.

    van der Meulen, T. et al. Virgin beta cells persist throughout life at a neogenic niche within pancreatic islets. Cell Metab. 25, 911–926.e6 (2017).

    PubMed  Google Scholar 

  75. 75.

    Lee, Y.-S. et al. Glucagon-like peptide-1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation. Diabetes 67, 2601–2614 (2018).

    PubMed  Google Scholar 

  76. 76.

    Ben-Othman, N. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168, 73–85 (2017).

    PubMed  CAS  Google Scholar 

  77. 77.

    Li, J. et al. Artemisinins target GABA a receptor signaling and impair α cell identity. Cell 168, 86–100 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. 78.

    van der Meulen, T. et al. Artemether does not turn α cells into β cells. Cell Metab. 27, 218–225 (2018).

    PubMed  Google Scholar 

  79. 79.

    Ackermann, A. M., Moss, N. G. & Kaestner, K. H. GABA and artesunate do not induce pancreatic α-to-β cell transdifferentiation in vivo. Cell Metab. 28, 787–792.e3 (2018).

    PubMed  CAS  Google Scholar 

  80. 80.

    Loomans, C. J. M. et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep. 10, 712–724 (2018).

    CAS  Google Scholar 

  81. 81.

    Gomez, D. L. et al. Neurogenin 3 expressing cells in the human exocrine pancreas have the capacity for endocrine cell fate. PLoS One 10, e0133862 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Westphalen, C. B. et al. Dclk1 defines quiescent pancreatic progenitors that promote injury-induced regeneration and tumorigenesis. Cell Stem Cell 18, 441–455 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. 83.

    Sugiyama, T. et al. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc. Natl Acad. Sci. USA 104, 175–180 (2007).

    PubMed  CAS  Google Scholar 

  84. 84.

    Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metab. 27, 57–67 (2018).

    PubMed  CAS  Google Scholar 

  85. 85.

    Zhou, Q. et al. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    PubMed  CAS  Google Scholar 

  86. 86.

    Lima, M. J. et al. Suppression of epithelial-to-mesenchymal transitioning enhances ex vivo reprogramming of human exocrine pancreatic tissue toward functional insulin-producing β-like cells. Diabetes 62, 2821–2833 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. 87.

    Lima, M. J. et al. Generation of functional beta-like cells from human exocrine pancreas. PLoS One 11, e0156204 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Berneman-Zeitouni, D. et al. The temporal and hierarchical control of transcription factors-induced liver to pancreas transdifferentiation. PLoS One 9, e87812 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    PubMed  CAS  Google Scholar 

  90. 90.

    Sapir, T. et al. Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc. Natl Acad. Sci. USA 102, 7964–7969 (2005).

    PubMed  CAS  Google Scholar 

  91. 91.

    Meivar-Levy, I. & Ferber, S. Liver to pancreas transdifferentiation. Curr. Diabetes Rep. 19, 76 (2019).

    Google Scholar 

  92. 92.

    Cerdá-Esteban, N. et al. Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2. Nat. Commun. 8, 14127 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Galivo, F. et al. Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS One 12, e0181812 (2017).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Talchai, C. et al. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat. Genet. 44, 406–412. (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. 95.

    Spadoni, I., Fornasa, G. & Rescigno, M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat. Rev. Immunol. 17, 761–773 (2017).

    PubMed  CAS  Google Scholar 

  96. 96.

    Ariyachet, C. et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell 18, 410–421 (2016). Antral endocrine cells were reprogrammed into insulin + cells that express NKX6.1 and PC2 at a greater efficiency than enteroendocrine cells; bioengineered stomach mini-organs produced renewable insulin + cells in vivo and reversed hyperglycaemia in mice.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. 97.

    Chen, Y.-J. et al. De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep. 6, 1046–1058 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. 98.

    Xie, M. et al. β-cell–mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

    PubMed  CAS  Google Scholar 

  99. 99.

    Ye, H. et al. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    PubMed  CAS  Google Scholar 

  100. 100.

    Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl Med. 9, eaal2298 (2017).

    PubMed  Google Scholar 

  101. 101.

    Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Schulz, T. C. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7, e37004 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. 103.

    Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Marek-Trzonkowska, N. et al. Administration of CD4+CD25highCD127− regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 35, 1817–1820 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Schulz, T. C. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem Cell Transl Med. 4, 927–931 (2015).

    CAS  Google Scholar 

  106. 106.

    Somerville, R. P. et al. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J. Transl Med. 10, 69 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Fraser, H. et al. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol. Ther. Methods Clin. Dev. 8, 198–209 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. 108.

    Krawetz, R. et al. Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng. Part C. Methods 16, 573–582 (2010).

    PubMed  CAS  Google Scholar 

  109. 109.

    Kempf, H. et al. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Rep. 3, 1132–1146 (2014).

    CAS  Google Scholar 

  110. 110.

    Lock, L. T. & Tzanakakis, E. S. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng. Part A 15, 2051–2063 (2009). This is the first report of hESC expansion and directed differentiation to definitive endoderm cells in a microcarrier stirred suspension (spinner flask) culture.

    PubMed  PubMed Central  CAS  Google Scholar 

  111. 111.

    Bardy, J. et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng. Part C. Methods 19, 166–180 (2013).

    PubMed  CAS  Google Scholar 

  112. 112.

    Jing, D., Parikh, A. & Tzanakakis, E. S. Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems. Cell Transpl. 19, 1397–1412 (2010).

    Google Scholar 

  113. 113.

    Meng, G. et al. Optimizing human induced pluripotent stem cell expansion in stirred-suspension culture. Stem Cell Dev. 26, 1804–1817 (2017).

    CAS  Google Scholar 

  114. 114.

    Hunt, M. M. et al. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters. Tissue Eng. Part C. Methods 20, 76–89 (2014). A systematic analysis based on factorial design of experiments was performed to investigate adjustable parameters (for example, agitation rate and cell seeding density) and their interaction on the outcome of hESC cultures in spinner flasks.

    PubMed  Google Scholar 

  115. 115.

    Shapiro, A. M., Pokrywczynska, M. & Ricordi, C. Clinical pancreatic islet transplantation. Nat. Rev. Endocrinol. 13, 268–277 (2017).

    PubMed  CAS  Google Scholar 

  116. 116.

    Pisania, A. et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab. Invest. 90, 1661–1675 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Yan, Y. et al. Derivation of cortical spheroids from human induced pluripotent stem cells in a suspension bioreactor. Tissue Eng. Part A 24, 418–431 (2018).

    PubMed  CAS  Google Scholar 

  118. 118.

    Yabe, S. G. et al. Induction of functional islet-like cells from human iPS cells by suspension culture. Regen. Ther. 10, 69–76 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Mihara, Y. et al. Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J. Tissue Eng. Regen. Med. 11, 3193–3201 (2017).

    PubMed  CAS  Google Scholar 

  120. 120.

    Kropp, C. et al. Impact of feeding strategies on the scalable expansion of human pluripotent stem cells in single-use stirred tank bioreactors. Stem Cell Transl Med. 5, 1289–1301 (2016). In this elegant study, the authors studied the effect of different feeding strategies on hPSCs cultured in automated SSBs and demonstrated a shift in metabolism from glycolysis to OXPHOS without differentiation.

    Google Scholar 

  121. 121.

    Kehoe, D. E. et al. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A 16, 405–421 (2010).

    PubMed  CAS  Google Scholar 

  122. 122.

    Yu, L. X. et al. Understanding pharmaceutical quality by design. AAPS J. 16, 771–783 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. 123.

    Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016).

    PubMed  CAS  Google Scholar 

  124. 124.

    Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. 125.

    Mamidi, A. et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors. Nature 564, 114–118 (2018).

    PubMed  CAS  Google Scholar 

  126. 126.

    Hogrebe, N. J. et al. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470 (2020).

    PubMed  CAS  Google Scholar 

  127. 127.

    Fan, Y., Zhang, F. & Tzanakakis, E. S. Engineering xeno-free microcarriers with recombinant vitronectin, albumin and UV irradiation for human pluripotent stem cell bioprocessing. ACS Biomater. Sci. Eng. 3, 1510–1518 (2017).

    PubMed  CAS  Google Scholar 

  128. 128.

    Wu, J. et al. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9, e102486 (2014).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Heinis, M. et al. Oxygen tension regulates pancreatic β-cell differentiation through hypoxia-inducible factor 1α. Diabetes 59, 662–669 (2010).

    PubMed  CAS  Google Scholar 

  130. 130.

    Hakim, F. et al. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells. J. Biol. Chem. 289, 9623–9638 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. 131.

    Cliff, T. S. & Dalton, S. Metabolic switching and cell fate decisions: implications for pluripotency, reprogramming and development. Curr. Opin. Genet. Dev. 46, 44–49 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. 132.

    Prigione, A. et al. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cell 28, 721–733 (2010).

    CAS  Google Scholar 

  133. 133.

    Saunders, D. C. et al. Ectonucleoside triphosphate diphosphohydrolase-3 antibody targets adult human pancreatic β cells for in vitro and in vivo analysis. Cell Metab. 29, 745–754 (2019). A novel cell surface biomarker NTPDase 3 was found to be enriched in adult human β-cells. NTPDase 3 antibodies were shown to be applicable to live sorting of β-cells from human islets and in vivo imaging of transplanted β-cells.

    PubMed  CAS  Google Scholar 

  134. 134.

    Steffen, A. et al. Functional assessment of automatically sorted pancreatic islets using large particle flow cytometry. Islets 3, 267–270 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Rangel, E. B. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert. Opin. Drug Metab. Toxicol. 8, 1531–1548 (2012).

    PubMed  CAS  Google Scholar 

  136. 136.

    Nakatsuji, N., Nakajima, F. & Tokunaga, K. HLA-haplotype banking and iPS cells. Nat. Biotechnol. 26, 739–740 (2008).

    PubMed  CAS  Google Scholar 

  137. 137.

    Taylor, CraigJ. et al. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11, 147–152 (2012).

    PubMed  CAS  Google Scholar 

  138. 138.

    Gourraud, P.-A. et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 30, 180–186 (2012).

    PubMed  CAS  Google Scholar 

  139. 139.

    Thatava, T. et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol. Ther. 21, 228–239 (2013).

    PubMed  CAS  Google Scholar 

  140. 140.

    Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350 (2017).

    PubMed  CAS  Google Scholar 

  141. 141.

    Tang, Q. & Bluestone, J. A. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb. Perspect. Med. 3, a015552 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Ferreira, L. M. R. et al. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    PubMed  CAS  Google Scholar 

  143. 143.

    Han, X. et al. Generation of hypoimmunogenic human pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 10441–10446 (2019).

    PubMed  CAS  Google Scholar 

  144. 144.

    Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019). In this breakthrough study on the generation of universal ‘off the shelf’ hPSCs, deletion of MHC class I and II genes and overexpression of CD47 rendered both mouse and human iPSCs hypoimmunogenic. The engineered PSCs differentiated to smooth muscle cells, endothelial cells or cardiomyocytes that successfully evaded immune rejection in allogeneic fully MHC-mismatched recipents.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. 145.

    Rosado-Olivieri, E. A. et al. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat. Commun. 10, 1464 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Sharon, N. et al. Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 27, 2281–2291 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. 147.

    Henquin, J.-C. et al. Dynamics of glucose-induced insulin secretion in normal human islets. Am. J. Physiol. Endocrinol. Metab. 309, E640–E650 (2015).

    PubMed  CAS  Google Scholar 

  148. 148.

    Hayes, M. R. et al. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu. Rev. Nutr. 34, 237–260 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. 149.

    Begg, D. P. & Woods, S. C. Interactions between the central nervous system and pancreatic islet secretions: a historical perspective. Adv. Physiol. Educ. 37, 53–60 (2013).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Rutter, G. A. et al. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 466, 203–218 (2015).

    PubMed  CAS  Google Scholar 

  151. 151.

    Yoshihara, E., et al. ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Cell Metab. 23, 622–634 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  152. 152.

    Jitrapakdee, S. et al. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53, 1019–1032 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. 153.

    Vakilian, M., Tahamtani, Y. & Ghaedi, K. A review on insulin trafficking and exocytosis. Gene 706, 52–61 (2019).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Puri and N. Kerper of the M. Hebrok laboratory and E. Jacobson of the E. Tzanakakis laboratory for insightful comments during the preparation of the manuscript. G.G.N. was supported by a JDRF postdoctoral fellowship (3-PDF-2016-195-A-N). Research in the M. Hebrok laboratory is supported by grants from the NSF (NSF CBET-1743407) and NIH (R01DK105831). Research in the E. Tzanakakis laboratory is supported by grants from the NSF (NSF CBET-1743367; CBET-1951104). The figures were originally prepared with the help of Biorender and Adobe Illustrator.

Author information

Affiliations

Authors

Contributions

G.G.N. and E.S.T. researched data for the article. All authors made substantial contributions to the discussion of the content, wrote the article and carried out review/editing of the manuscript before submission.

Corresponding author

Correspondence to Matthias Hebrok.

Ethics declarations

Competing Interests

M.H. is affiliated with Semma Therapeutics (Consultant and SAB member) and Encellin Inc. (SAB member, stock holder). M.H. also holds stocks from Viacyte Inc.. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks H. Lickert, A. Stewart and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Artificial pancreas

A mechanical device devoid of cells that integrates glucose sensors with insulin pumps to dispense insulin as needed with minimal input from the patient.

Macroencapsulation devices

Sealed devices constructed out of a selectively permeable membrane that are filled with cells either free floating or in a matrix, wherein the cells can still exert their therapeutic effect.

TGFβ-induced factor homeobox 2

A transcription factor whose expression separates the pancreatic from the liver lineage early in embryonic development.

Stirred suspension bioreactors

Vessels for cultivation of cells that feature an impeller for mixing, probes for monitoring the culture environment, ports for sampling and exchange of medium, and assemblies for aeration and maintenance of temperature.

Agitation-induced shear

Shear in the liquid phase of bioreactor cultures arising from spatial gradients of velocity due to stirring.

Chimeric antigen receptors

(CARs). Novel receptors designed to bind to specific proteins on cells (for example, cancer cells). T cells are engineered with CARs to provide new targeting ability.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nair, G.G., Tzanakakis, E.S. & Hebrok, M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 16, 506–518 (2020). https://doi.org/10.1038/s41574-020-0375-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing