Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

11-Oxygenated androgens in health and disease

Abstract

The adrenal gland is a source of sex steroid precursors, and its activity is particularly relevant during fetal development and adrenarche. Following puberty, the synthesis of androgens by the adrenal gland has been considered of little physiologic importance. Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the major adrenal androgen precursors, but they are biologically inactive. The second most abundant unconjugated androgen produced by the human adrenals is 11β-hydroxyandrostenedione (11OHA4). 11-Ketotestosterone, a downstream metabolite of 11OHA4 (which is mostly produced in peripheral tissues), and its 5α-reduced product, 11-ketodihydrotestosterone, are bioactive androgens, with potencies equivalent to those of testosterone and dihydrotestosterone. These adrenal-derived androgens all share an oxygen atom on carbon 11, so we have collectively termed them 11-oxyandrogens. Over the past decade, these androgens have emerged as major components of several disorders of androgen excess, such as congenital adrenal hyperplasia, premature adrenarche and polycystic ovary syndrome, as well as in androgen-dependent tumours, such as castration-resistant prostate cancer. Moreover, in contrast to the more extensively studied, traditional androgens, circulating concentrations of 11-oxyandrogens do not demonstrate an age-dependent decline. This Review focuses on the rapidly expanding knowledge regarding the implications of 11-oxyandrogens in human physiology and disease.

Key points

  • Dehydroepiandrosterone (DHEA) and its sulfate, DHEAS, are the most abundant adrenal androgen precursors, but they are biologically inactive as androgens.

  • The adrenal gland is the primary source of a set of 11-oxygenated 19-carbon steroids, also termed 11-oxyandrogens, which have several roles in human physiology and disease.

  • 11-Ketotestosterone is a bioactive 11-oxyandrogen, with a potency similar to that of testosterone, and its concentrations exceed those of testosterone in prepubertal children and in postmenopausal women.

  • Concentrations of 11-oxyandrogens are elevated in several disorders of androgen excess, including premature adrenarche, congenital adrenal hyperplasia and polycystic ovary syndrome, and they can contribute to the progression of castration-resistant prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adrenal androgen synthesis.
Fig. 2: Synthesis, circulation and metabolism of 11-oxyandrogens.
Fig. 3: Distribution of key C19 steroids across the human female lifespan.

Similar content being viewed by others

References

  1. White, P. C. & Speiser, P. W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21, 245–291 (2000).

    CAS  PubMed  Google Scholar 

  2. Doberne, Y., Levine, L. S. & New, M. I. Elevated urinary testosterone and androstanediol in precocious adrenarche. Pediatric Res. 9, 794–797 (1975).

    CAS  Google Scholar 

  3. Korth-Schutz, S., Levine, L. S. & New, M. I. Evidence for the adrenal source of androgens in precocious adrenarche. Acta Endocrinol. 82, 342–352 (1976).

    CAS  PubMed  Google Scholar 

  4. Azziz, R., Black, V., Hines, G. A., Fox, L. M. & Boots, L. R. Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic–pituitary–adrenal axis. J. Clin. Endocrinol. Metab. 83, 2317–2323 (1998).

    CAS  PubMed  Google Scholar 

  5. Else, T. et al. Adrenocortical carcinoma. Endocr. Rev. 35, 282–326 (2014).

    CAS  PubMed  Google Scholar 

  6. Sharifi, N. Minireview: androgen metabolism in castration-resistant prostate cancer. Mol. Endocrinol. 27, 708–714 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rege, J. et al. Liquid chromatography–tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J. Clin. Endocrinol. Metab. 98, 1182–1188 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Turcu, A. F. et al. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur. J. Endocrinol. 174, 601–609 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    CAS  PubMed  Google Scholar 

  10. Clark, B. J., Wells, J., King, S. R. & Stocco, D. M. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J. Biol. Chem. 269, 28314–28322 (1994).

    CAS  PubMed  Google Scholar 

  11. Stocco, D. M. & Clark, B. J. Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244 (1996).

    CAS  PubMed  Google Scholar 

  12. Sugawara, T. et al. Human steroidogenic acute regulatory protein: functional activity in COS-1 cells, tissue-specific expression, and mapping of the structural gene to 8p11.2 and a pseudogene to chromosome 13. Proc. Natl Acad. Sci. USA 92, 4778–4782 (1995).

    CAS  PubMed  Google Scholar 

  13. Granot, Z. et al. Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins. Mol. Endocrinol. 17, 2461–2476 (2003).

    CAS  PubMed  Google Scholar 

  14. Artemenko, I. P., Zhao, D., Hales, D. B., Hales, K. H. & Jefcoate, C. R. Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (StAR), but not total StAR, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 276, 46583–46596 (2001).

    CAS  PubMed  Google Scholar 

  15. Tsujishita, Y. & Hurley, J. H. Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol. 7, 408–414 (2000).

    CAS  PubMed  Google Scholar 

  16. Anuka, E., Gal, M., Stocco, D. M. & Orly, J. Expression and roles of steroidogenic acute regulatory (StAR) protein in ‘non-classical’, extra-adrenal and extra-gonadal cells and tissues. Mol. Cell. Endocrinol. 371, 47–61 (2013).

    CAS  PubMed  Google Scholar 

  17. Koritz, S. B. & Kumar, A. M. On the mechanism of action of the adrenocorticotrophic hormone. The stimulation of the activity of enzymes involved in pregnenolone synthesis. J. Biol. Chem. 245, 152–159 (1970).

    CAS  PubMed  Google Scholar 

  18. Shikita, M. & Hall, P. F. The stoichiometry of the conversion of cholesterol and hydroxycholesterols to pregnenolone (3β-hydroxypregn-5-en-20-one) catalysed by adrenal cytochrome P-450. Proc. Natl Acad. Sci. USA 71, 1441–1445 (1974).

    CAS  PubMed  Google Scholar 

  19. Shimizu, K., Hayano, M., Gut, M. & Dorfman, R. I. The transformation of 20α-hydroxcholesterol to isocaproic acid and C21 steroids. J. Biol. Chem. 236, 695–699 (1961).

    CAS  Google Scholar 

  20. John, M. E., John, M. C., Boggaram, V., Simpson, E. R. & Waterman, M. R. Transcriptional regulation of steroid hydroxylase genes by corticotropin. Proc. Natl Acad. Sci. USA 83, 4715–4719 (1986).

    CAS  PubMed  Google Scholar 

  21. Reiter, E. O., Fuldauer, V. G. & Root, A. W. Secretion of the adrenal androgen, dehydroepiandrosterone sulfate, during normal infancy, childhood, and adolescence, in sick infants, and in children with endocrinologic abnormalities. J. Pediatr. 90, 766–770 (1977).

    CAS  PubMed  Google Scholar 

  22. Zuber, M. X., Simpson, E. R. & Waterman, M. R. Expression of bovine 17α-hydroxylase cytochrome P450 cDNA in non-steroidogenic (COS-1) cells. Science 234, 1258–1261 (1986).

    CAS  PubMed  Google Scholar 

  23. Chung, B. C. et al. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc. Natl Acad. Sci. USA 84, 407–411 (1987).

    CAS  PubMed  Google Scholar 

  24. Kagimoto, M., Winter, J. S., Kagimoto, K., Simpson, E. R. & Waterman, M. R. Structural characterization of normal and mutant human steroid 17α-hydroxylase genes: molecular basis of one example of combined 17α-hydroxylase/17,20 lyase deficiency. Mol. Endocrinol. 2, 564–570 (1988).

    CAS  PubMed  Google Scholar 

  25. Yasukochi, Y. & Masters, B. S. Some properties of a detergent-solubilized NADPH-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography. J. Biol. Chem. 251, 5337–5344 (1976).

    CAS  PubMed  Google Scholar 

  26. Flück, C. E., Miller, W. L. & Auchus, R. J. The 17,20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway. J. Clin. Endocrinol. Metab. 88, 3762–3766 (2003).

    PubMed  Google Scholar 

  27. Imai, T., Globerman, H., Gertner, J. M., Kagawa, N. & Waterman, M. R. Expression and purification of functional human 17α-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17α-hydroxylase/17,20-lyase deficiency. J. Biol. Chem. 268, 19681–19689 (1993).

    CAS  PubMed  Google Scholar 

  28. Onoda, M. & Hall, P. F. Cytochrome b 5 stimulates purified testicular microsomal cytochrome P450 (C21 side-chain cleavage). Biochem. Biophys. Res. Commun. 108, 454–460 (1982).

    CAS  PubMed  Google Scholar 

  29. Auchus, R. J., Lee, T. C. & Miller, W. L. Cytochrome b 5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J. Biol. Chem. 273, 3158–3165 (1998).

    CAS  PubMed  Google Scholar 

  30. Katagiri, M., Kagawa, N. & Waterman, M. R. The role of cytochrome b 5 in the biosynthesis of androgens by human P450c17. Arch. Biochem. Biophys. 317, 343–347 (1995).

    CAS  PubMed  Google Scholar 

  31. Lee-Robichaud, P., Wright, J. N., Akhtar, M. E. & Akhtar, M. Modulation of the activity of human 17α-hydroxylase-17,20-lyase (CYP17) by cytochrome b 5: endocrinological and mechanistic implications. Biochem. J. 308, 901–908 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng, H. M. et al. Cytochrome b5 activates the 17,20-lyase activity of human cytochrome P450 17A1 by increasing the coupling of NADPH consumption to androgen production. Biochemistry 55, 4356–4365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Simpson, E. R. et al. Regulation of the biosynthesis of steroidogenic enzymes. J. Steroid Biochem. 27, 801–805 (1987).

    CAS  PubMed  Google Scholar 

  34. Zuber, M. X., John, M. E., Okamura, T., Simpson, E. R. & Waterman, M. R. Bovine adrenocortical cytochrome P-450(17α). Regulation of gene expression by ACTH and elucidation of primary sequence. J. Biol. Chem. 261, 2475–2482 (1986).

    CAS  PubMed  Google Scholar 

  35. Kristiansen, S. B., Endoh, A., Casson, P. R., Buster, J. E. & Hornsby, P. J. Induction of steroidogenic enzyme genes by insulin and IGF-I in cultured adult human adrenocortical cells. Steroids 62, 258–265 (1997).

    CAS  PubMed  Google Scholar 

  36. Lebrethon, M. C., Jaillard, C., Naville, D., Begeot, M. & Saez, J. M. Effects of transforming growth factor-β1 on human adrenocortical fasciculata–reticularis cell differentiated functions. J. Clin. Endocrinol. Metab. 79, 1033–1039 (1994).

    CAS  PubMed  Google Scholar 

  37. Penhoat, A., Rainey, W. E., Viard, I. & Saez, J. M. Regulation of adrenal cell-differentiated functions by growth factors. Hormone Res. 42, 39–43 (1994).

    CAS  PubMed  Google Scholar 

  38. Mapes, S., Corbin, C. J., Tarantal, A. & Conley, A. The primate adrenal zona reticularis is defined by expression of cytochrome b 5, 17α-hydroxylase/17,20-lyase cytochrome P450 (P450c17) and NADPH-cytochrome P450 reductase (reductase) but not 3β-hydroxysteroid dehydrogenase/Δ5–4 isomerase (3β-HSD). J. Clin. Endocrinol. Metab. 84, 3382–3385 (1999).

    CAS  PubMed  Google Scholar 

  39. Suzuki, T. et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin. Endocrinol. 53, 739–747 (2000).

    CAS  Google Scholar 

  40. Rege, J. et al. Age-dependent increases in adrenal cytochrome b 5 and serum 5-androstenediol-3-sulfate. J. Clin. Endocrinol. Metab. 101, 4585–4593 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Otterness, D. M. et al. Human dehydroepiandrosterone sulfotransferase gene: molecular cloning and structural characterization. DNA Cell Biol. 14, 331–341 (1995).

    CAS  PubMed  Google Scholar 

  42. Rainey, W. E., Rehman, K. S. & Carr, B. R. The human fetal adrenal: making adrenal androgens for placental estrogens. Semin. Reprod. Med. 22, 327–336 (2004).

    CAS  PubMed  Google Scholar 

  43. Nakamura, Y., Gang, H. X., Suzuki, T., Sasano, H. & Rainey, W. E. Adrenal changes associated with adrenarche. Rev. Endocr. Metab. Disord. 10, 19–26 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Noordam, C. et al. Inactivating PAPSS2 mutations in a patient with premature pubarche. N. Engl. J. Med. 360, 2310–2318 (2009).

    CAS  PubMed  Google Scholar 

  45. Weinshilboum, R. M. et al. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J. 11, 3–14 (1997).

    CAS  PubMed  Google Scholar 

  46. Strott, C. A. Sulfonation and molecular action. Endocr. Rev. 23, 703–732 (2002).

    CAS  PubMed  Google Scholar 

  47. Rege, J. et al. Adrenocorticotropin acutely regulates pregnenolone sulfate production by the human adrenal in vivo and in vitro. J. Clin. Endocrinol. Metab. 103, 320–327 (2018).

    PubMed  Google Scholar 

  48. Rege, J. et al. Transcriptome profiling reveals differentially expressed transcripts between the human adrenal zona fasciculata and zona reticularis. J. Clin. Endocrinol. Metab. 99, E518–E527 (2014).

    CAS  PubMed  Google Scholar 

  49. Endoh, A., Kristiansen, S. B., Casson, P. R., Buster, J. E. & Hornsby, P. J. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3β-hydroxysteroid dehydrogenase. J. Clin. Endocrinol. Metab. 81, 3558–3565 (1996).

    CAS  PubMed  Google Scholar 

  50. Baulieu, E. E. Dehydroepiandrosterone (DHEA): a fountain of youth? J. Clin. Endocrinol. Metab. 81, 3147–3151 (1996).

    CAS  PubMed  Google Scholar 

  51. Buster, J. E., Abraham, G. E., Kyle, F. W. & Marshall, J. R. Serum steroid levels following a large intravenous dose of a steroid sulfate precursor during the second trimester of human pregnancy. II. Pregnenolone sulfate. J. Clin. Endocrinol. Metab. 38, 1038–1045 (1974).

    CAS  PubMed  Google Scholar 

  52. Longcope, C. Dehydroepiandrosterone metabolism. J. Endocrinol. 150, S125–S127 (1996).

    CAS  PubMed  Google Scholar 

  53. Fischli, S. et al. Dehydroepiandrosterone sulfate in the assessment of the hypothalamic–pituitary–adrenal axis. J. Clin. Endocrinol. Metab. 93, 539–542 (2008).

    CAS  PubMed  Google Scholar 

  54. Nasrallah, M. P. & Arafah, B. M. The value of dehydroepiandrosterone sulfate measurements in the assessment of adrenal function. J. Clin. Endocrinol. Metab. 88, 5293–5298 (2003).

    CAS  PubMed  Google Scholar 

  55. Sayyed Kassem, L., El Sibai, K., Chaiban, J., Abdelmannan, D. & Arafah, B. M. Measurements of serum DHEA and DHEA sulphate levels improve the accuracy of the low-dose cosyntropin test in the diagnosis of central adrenal insufficiency. J. Clin. Endocrinol. Metab. 97, 3655–3662 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Dennedy, M. C. et al. Low DHEAS: a sensitive and specific test for detection of subclinical hypercortisolism in adrenal incidentalomas. J. Clin. Endocrinol. Metab. 102, 786–792 (2017).

    PubMed  Google Scholar 

  57. Yener, S., Yilmaz, H., Demir, T., Secil, M. & Comlekci, A. DHEAS for the prediction of subclinical Cushing’s syndrome: perplexing or advantageous? Endocrine 48, 669–676 (2015).

    CAS  PubMed  Google Scholar 

  58. Vaiani, E. et al. Central adrenal insufficiency could not be confirmed by measurement of basal serum DHEAS levels in pubertal children. Horm. Res. Paediatr. 82, 332–337 (2014).

    CAS  PubMed  Google Scholar 

  59. Bencsik, Z. et al. Low dehydroepiandrosterone sulfate (DHEA-S) level is not a good predictor of hormonal activity in nonselected patients with incidentally detected adrenal tumors. J. Clin. Endocrinol. Metab. 81, 1726–1729 (1996).

    CAS  PubMed  Google Scholar 

  60. Thomas, J. L., Myers, R. P. & Strickler, R. C. Human placental 3β-hydroxy-5-ene-steroid dehydrogenase and steroid 5–4-ene-isomerase: purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes. J. Steroid Biochem. 33, 209–217 (1989).

    CAS  PubMed  Google Scholar 

  61. Lachance, Y. et al. Characterization of human 3β-hydroxysteroid dehydrogenase/Δ5–Δ4-isomerase gene and its expression in mammalian cells. J. Biol. Chem. 265, 20469–20475 (1990).

    CAS  PubMed  Google Scholar 

  62. Lorence, M. C., Murry, B. A., Trant, J. M. & Mason, J. I. Human 3β-hydroxysteroid dehydrogenase/Δ5–4 isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126, 2493–2498 (1990).

    CAS  PubMed  Google Scholar 

  63. Thomas, J. L., Myers, R. P. & Strickler, R. C. Human placental 3β-hydroxy-5-ene-steroid dehydrogenase and steroid 5/4-ene-isomerase: purification from mitochondria and kinetic profiles, biophysical characterization of the purified mitochondrial and microsomal enzymes. J. Steroid Biochem. 33, 209–217 (1989).

    CAS  PubMed  Google Scholar 

  64. Lee, T. C., Miller, W. L. & Auchus, R. J. Medroxyprogesterone acetate and dexamethasone are competitive inhibitors of different human steroidogenic enzymes. J. Clin. Endocrinol. Metab. 84, 2104–2110 (1999).

    CAS  PubMed  Google Scholar 

  65. Labrie, F., Simard, J., Luu-The, V., Belanger, A. & Pelletier, G. Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues. J. Steroid Biochem. Mol. Biol. 43, 805–826 (1992).

    CAS  PubMed  Google Scholar 

  66. Lachance, Y. et al. Structure of the human type II 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD) gene: adrenal and gonadal specificity. DNA Cell Biol. 10, 701–711 (1991).

    CAS  PubMed  Google Scholar 

  67. Luu The, V. et al. Full length cDNA structure and deduced amino acid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. Mol. Endocrinol. 3, 1310–1312 (1989).

    CAS  PubMed  Google Scholar 

  68. Nakamura, Y. et al. 3βHSD and CYB5A double positive adrenocortical cells during adrenal development/aging. Endocr. Res. 40, 8–13 (2015).

    CAS  PubMed  Google Scholar 

  69. Geissler, W. M. et al. Male pseudohermaphroditism caused by mutations of testicular 17β-hydroxysteroid dehydrogenase 3. Nat. Genet. 7, 34–39 (1994).

    CAS  PubMed  Google Scholar 

  70. Nakamura, Y. et al. Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 94, 2192–2198 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Dufort, I., Rheault, P., Huang, X. F., Soucy, P. & Luu-The, V. Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. Endocrinology 140, 568–574 (1999).

    CAS  PubMed  Google Scholar 

  72. Deyashiki, Y. et al. Molecular cloning of two human liver 3α-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem. J. 299, 545–552 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, H. K. et al. Expression and characterization of recombinant type 2 3α-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3α/17β-HSD activity and cellular distribution. Mol. Endocrinol. 11, 1971–1984 (1997).

    CAS  PubMed  Google Scholar 

  74. Qin, K., Ehrmann, D. A., Cox, N., Refetoff, S. & Rosenfield, R. L. Identification of a functional polymorphism of the human type 5 17β-hydroxysteroid dehydrogenase gene associated with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 270–276 (2006).

    CAS  PubMed  Google Scholar 

  75. Mornet, E., Dupont, J., Vitek, A. & White, P. C. Characterization of two genes encoding human steroid 11β-hydroxylase (P-450(11)β). J. Biol. Chem. 264, 20961–20967 (1989).

    CAS  PubMed  Google Scholar 

  76. Imamichi, Y. et al. 11-Ketotestosterone is a major androgen produced in human gonads. J. Clin. Endocrinol. Metab. 101, 3582–3591 (2016).

    CAS  PubMed  Google Scholar 

  77. Axelrod, L. R., Kraemer, D. C., Burdett, J. Jr. & Goldzieher, J. W. Biosynthesis of 11-hydroxyandrostenedione by human and baboon adrenals. Acta Endocrinol. 72, 545–550 (1973).

    CAS  PubMed  Google Scholar 

  78. Penning, T. M., Wangtrakuldee, P. & Auchus, R. J. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr. Rev. 40, 447–475 (2019).

    PubMed  Google Scholar 

  79. Barnard, M. et al. 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): implications for castration resistant prostate cancer. J. Steroid Biochem. Mol. Biol. 183, 192–201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Storbeck, K. H. et al. 11β-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: a putative role in castration resistant prostate cancer? Mol. Cell. Endocrinol. 377, 135–146 (2013).

    CAS  PubMed  Google Scholar 

  81. Andersson, S. & Russell, D. W. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proc. Natl Acad. Sci. USA 87, 3640–3644 (1990).

    CAS  PubMed  Google Scholar 

  82. Rosemberg, E. & Dorfman, R. I. Biological activity of 9α-fluoro-11β-hydroxy-Δ4-androstene-3,17-dione. Proc. Soc. Exp. Biol. Med. 99, 336–338 (1958).

    CAS  PubMed  Google Scholar 

  83. Dorfman, R. I., Rooks, W. H. II, Jones, J. B. & Leman, J. D. Androgenic activity of highly purified 5α-androstane and 5α-androstan-17β-ol. J. Med. Chem. 9, 930–931 (1966).

    CAS  PubMed  Google Scholar 

  84. Campana, C. et al. Development of a novel cell based androgen screening model. J. Steroid Biochem. Mol. Biol. 156, 17–22 (2016).

    CAS  PubMed  Google Scholar 

  85. Rege, J. et al. 11-Ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J. Clin. Endocrinol. Metab. 103, 4589–4598 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Pretorius, E. et al. 11-Ketotestosterone and 11-ketodihydrotestosterone in castration resistant prostate cancer: potent androgens which can no longer be ignored. PLoS One 11, e0159867 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Rainey, W. E., Carr, B. R., Sasano, H., Suzuki, T. & Mason, J. I. Dissecting human adrenal androgen production. Trends Endocrinol. Metab. 13, 234–239 (2002).

    CAS  PubMed  Google Scholar 

  88. Cutler, G. B. Jr. & Loriaux, D. L. Andrenarche and its relationship to the onset of puberty. Fed. Proc. 39, 2384–2390 (1980).

    CAS  PubMed  Google Scholar 

  89. Havelock, J. C., Auchus, R. J. & Rainey, W. E. The rise in adrenal androgen biosynthesis: adrenarche. Semin. Reprod. Med. 22, 337–347 (2004).

    CAS  PubMed  Google Scholar 

  90. Hui, X. G. et al. Development of the human adrenal zona reticularis: morphometric and immunohistochemical studies from birth to adolescence. J. Endocrinol. 203, 241–252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Remer, T., Boye, K. R., Hartmann, M. F. & Wudy, S. A. Urinary markers of adrenarche: reference values in healthy subjects, aged 3–18 years. J. Clin. Endocrinol. Metab. 90, 2015–2021 (2005).

    CAS  PubMed  Google Scholar 

  92. Korth-Schutz, S., Levine, L. S. & New, M. I. Dehydroepiandrosterone sulfate (DS) levels, a rapid test for abnormal adrenal androgen secretion. J. Clin. Endocrinol. Metab. 42, 1005–1013 (1976).

    CAS  PubMed  Google Scholar 

  93. Korth-Schutz, S., Levine, L. S. & New, M. I. Serum androgens in normal prepubertal and pubertal children and in children with precocious adrenarche. J. Clin. Endocrinol. Metab. 42, 117–124 (1976).

    CAS  PubMed  Google Scholar 

  94. Guran, T. et al. Reference values for serum dehydroepiandrosterone-sulphate in healthy children and adolescents with emphasis on the age of adrenarche and pubarche. Clin. Endocrinol. 82, 712–718 (2015).

    CAS  Google Scholar 

  95. Rosenfield, R. L. & Lucky, A. W. Acne, hirsutism, and alopecia in adolescent girls. Clinical expressions of androgen excess. Endocrinol. Metab. Clin. North Am. 22, 507–532 (1993).

    CAS  PubMed  Google Scholar 

  96. Arlt, W. et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N. Engl. J. Med. 341, 1013–1020 (1999).

    CAS  PubMed  Google Scholar 

  97. Arlt, W. et al. Oral dehydroepiandrosterone for adrenal androgen replacement: pharmacokinetics and peripheral conversion to androgens and estrogens in young healthy females after dexamethasone suppression. J. Clin. Endocrinol. Metab. 83, 1928–1934 (1998).

    CAS  PubMed  Google Scholar 

  98. Ke, Y. et al. Serum levels of sex steroids and metabolites following 12 weeks of intravaginal 0.50% DHEA administration. J. Steroid Biochem. Mol. Biol. 154, 186–196 (2015).

    CAS  PubMed  Google Scholar 

  99. Labrie, F. et al. Effect of intravaginal DHEA on serum DHEA and eleven of its metabolites in postmenopausal women. J. Steroid Biochem. Mol. Biol. 111, 178–194 (2008).

    CAS  PubMed  Google Scholar 

  100. O’Reilly, M. W. et al. AKR1C3-mediated adipose androgen generation drives lipotoxicity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 3327–3339 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Swart, A. C. & Storbeck, K. H. 11β-Hydroxyandrostenedione: downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Mol. Cell. Endocrinol. 408, 114–123 (2015).

    CAS  PubMed  Google Scholar 

  102. Kroboth, P. D., Salek, F. S., Pittenger, A. L., Fabian, T. J. & Frye, R. F. DHEA and DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348 (1999).

    CAS  PubMed  Google Scholar 

  103. Kirschner, M. A. & Bardin, C. W. Androgen production and metabolism in normal and virilized women. Metabolism 21, 667–688 (1972).

    CAS  PubMed  Google Scholar 

  104. Abraham, G. E. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J. Clin. Endocrinol. Metab. 39, 340–346 (1974).

    CAS  PubMed  Google Scholar 

  105. Longcope, C. Adrenal and gonadal androgen secretion in normal females. Clin. Endocrinol. Metab. 15, 213–228 (1986).

    CAS  PubMed  Google Scholar 

  106. Eisenhofer, G. et al. Reference intervals for plasma concentrations of adrenal steroids measured by LC-MS/MS: impact of gender, age, oral contraceptives, body mass index and blood pressure status. Clin. Chim. Acta 470, 115–124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Elmlinger, M. W., Kuhnel, W., Wormstall, H. & Doller, P. C. Reference intervals for testosterone, androstenedione and SHBG levels in healthy females and males from birth until old age. Clin. Lab. 51, 625–632 (2005).

    CAS  PubMed  Google Scholar 

  108. Rothman, M. S. et al. Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography–tandem mass spectrometry. Steroids 76, 177–182 (2011).

    CAS  PubMed  Google Scholar 

  109. Davison, S. L., Bell, R., Donath, S., Montalto, J. G. & Davis, S. R. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J. Clin. Endocrinol. Metab. 90, 3847–3853 (2005).

    CAS  PubMed  Google Scholar 

  110. Haring, R. et al. Age-specific reference ranges for serum testosterone and androstenedione concentrations in women measured by liquid chromatography–tandem mass spectrometry. J. Clin. Endocrinol. Metab. 97, 408–415 (2012).

    CAS  PubMed  Google Scholar 

  111. Wu, F. C. et al. Hypothalamic–pituitary–testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European male aging study. J. Clin. Endocrinol. Metab. 93, 2737–2745 (2008).

    CAS  PubMed  Google Scholar 

  112. Handelsman, D. J. et al. Age-specific population centiles for androgen status in men. Eur. J. Endocrinol. 173, 809–817 (2015).

    CAS  PubMed  Google Scholar 

  113. Nanba, A. T. et al. 11-Oxygenated C19 steroids do not decline with age in women. J. Clin. Endocrinol. Metab. 104, 2615–2622 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Parker, C. R. Jr. Dehydroepiandrosterone and dehydroepiandrosterone sulfate production in the human adrenal during development and aging. Steroids 64, 640–647 (1999).

    CAS  PubMed  Google Scholar 

  115. Parker, C. R. Jr. et al. Effects of aging on adrenal function in the human: responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. J. Clin. Endocrinol. Metab. 85, 48–54 (2000).

    CAS  PubMed  Google Scholar 

  116. Xing, Y. et al. The effects of ACTH on steroid metabolomic profiles in human adrenal cells. J. Endocrinol. 209, 327–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kindler, P. M., Philipp, D. P., Gross, M. R. & Bahr, J. M. Serum 11-ketotestosterone and testosterone concentrations associated with reproduction in male bluegill (Lepomis macrochirus: centrarchidae). Gen. Comp. Endocrinol. 75, 446–453 (1989).

    CAS  PubMed  Google Scholar 

  118. Feist, G., Schreck, C. B., Fitzpatrick, M. S. & Redding, J. M. Sex steroid profiles of coho salmon (Oncorhynchus kisutch) during early development and sexual differentiation. Gen. Comp. Endocrinol. 80, 299–313 (1990).

    CAS  PubMed  Google Scholar 

  119. Kobayashi, M. & Nakanishi, T. 11-Ketotestosterone induces male-type sexual behavior and gonadotropin secretion in gynogenetic crucian carp, Carassius auratus langsdorfii. Gen. Comp. Endocrinol. 115, 178–187 (1999).

    CAS  PubMed  Google Scholar 

  120. Nagahama, Y., Miura, T. & Kobayashi, T. The onset of spermatogenesis in fish. Ciba Found. Symp. 182, 255–267 (1994).

    CAS  PubMed  Google Scholar 

  121. Miura, T., Yamauchi, K., Takahashi, H. & Nagahama, Y. The role of hormones in the acquisition of sperm motility in salmonid fish. J. Exp. Zool. 261, 359–363 (1992).

    CAS  PubMed  Google Scholar 

  122. Rege, J. et al. Circulating 11-oxygenated androgens across species. J. Steroid Biochem. Mol. Biol. 190, 242–249 (2019).

    CAS  PubMed  Google Scholar 

  123. Polson, D. W., Reed, M. J., Franks, S., Scanlon, M. J. & James, V. H. Serum 11β-hydroxyandrostenedione as an indicator of the source of excess androgen production in women with polycystic ovaries. J. Clin. Endocrinol. Metab. 66, 946–950 (1988).

    CAS  PubMed  Google Scholar 

  124. Ibrahim, F. et al. Plasma 11β-hydroxy-4-androstene-3,17-dione: comparison of a time-resolved fluoroimmunoassay using a biotinylated tracer with a radioimmunoassay using a tritiated tracer. J. Steroid Biochem. Mol. Biol. 84, 563–568 (2003).

    CAS  PubMed  Google Scholar 

  125. Therrell, B. L. Newborn screening for congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North. Am. 30, 15–30 (2001).

    CAS  PubMed  Google Scholar 

  126. Speiser, P. W. et al. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am. J. Hum. Genet. 37, 650–667 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Turcu, A. F. & Auchus, R. J. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North. Am. 44, 275–296 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Fluck, C. E., Miller, W. L. & Auchus, R. J. The 17,20-lyase activity of cytochrome p450c17 from human fetal testis favors the Δ5 steroidogenic pathway. J. Clin. Endocrinol. Metab. 88, 3762–3766 (2003).

    PubMed  Google Scholar 

  129. Speiser, P. W. et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Invest. 90, 584–595 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Krone, N., Braun, A., Roscher, A. A., Knorr, D. & Schwarz, H. P. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85, 1059–1065 (2000).

    CAS  PubMed  Google Scholar 

  131. Charmandari, E., Matthews, D. R., Johnston, A., Brook, C. G. & Hindmarsh, P. C. Serum cortisol and 17-hydroxyprogesterone interrelation in classic 21-hydroxylase deficiency: is current replacement therapy satisfactory? J. Clin. Endocrinol. Metab. 86, 4679–4685 (2001).

    CAS  PubMed  Google Scholar 

  132. Rezvani, I., Garibaldi, L. R., Digeorge, A. M. & Artman, H. G. Disproportionate suppression of dehydroepiandrosterone sulfate (DHEAS) in treated patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatr. Res. 17, 131–134 (1983).

    CAS  PubMed  Google Scholar 

  133. Carmina, E., Stanczyk, F. Z., Chang, L., Miles, R. A. & Lobo, R. A. The ratio of androstenedione:11β-hydroxyandrostenedione is an important marker of adrenal androgen excess in women. Fertil. Steril. 58, 148–152 (1992).

    CAS  PubMed  Google Scholar 

  134. Huerta, R. et al. 11β-Hydroxyandrostenedione and Δ5-androstenediol as markers of adrenal androgen production in patients with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil. Steril. 72, 996–1000 (1999).

    CAS  PubMed  Google Scholar 

  135. Kamrath, C., Wettstaedt, L., Boettcher, C., Hartmann, M. F. & Wudy, S. A. Androgen excess is due to elevated 11-oxygenated androgens in treated children with congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 178, 221–228 (2018).

    CAS  PubMed  Google Scholar 

  136. Turcu, A. F. et al. 11-Oxygenated androgens are biomarkers of adrenal volume and testicular adrenal rest tumors in 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 102, 2701–2710 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Claahsen-van der Grinten, H. L., Sweep, F. C., Blickman, J. G., Hermus, A. R. & Otten, B. J. Prevalence of testicular adrenal rest tumours in male children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur. J. Endocrinol. 157, 339–344 (2007).

    CAS  PubMed  Google Scholar 

  138. Albright, F., Smith, P. H. & Fraser, R. A syndrome characterized by primary ovarian insufficiency and decreased stature: report of 11 cases with a digression on hormonal control of axillary and pubic hair. Am. J. Med. Sci. 2014, 625–648 (1942).

    Google Scholar 

  139. Ibanez, L. et al. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 76, 1599–1603 (1993).

    CAS  PubMed  Google Scholar 

  140. Idkowiak, J. et al. Premature adrenarche: novel lessons from early onset androgen excess. Eur. J. Endocrinol. 165, 189–207 (2011).

    CAS  PubMed  Google Scholar 

  141. Talbot, N. B., Butler, A. M., Berman, R. A., Rodriguez, P. M. & Maclachlan, E. A. Excretion of 17-keto steroids by normal and abnormal children. Am. J. Dis. Child. 65, 364–375 (1943).

    CAS  Google Scholar 

  142. Voutilainen, R. & Jaaskelainen, J. Premature adrenarche: etiology, clinical findings, and consequences. J. Steroid Biochem. Mol. Biol. 145, 226–236 (2015).

    CAS  PubMed  Google Scholar 

  143. Herman-Giddens, M. E. et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the pediatric research in office settings network. Pediatrics 99, 505–512 (1997).

    CAS  PubMed  Google Scholar 

  144. Voutilainen, R., Perheentupa, J. & Apter, D. Benign premature adrenarche: clinical features and serum steroid levels. Acta Paediatr. Scand. 72, 707–711 (1983).

    CAS  PubMed  Google Scholar 

  145. Sopher, A. B. et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obesity 19, 1259–1264 (2011).

    CAS  PubMed  Google Scholar 

  146. Kaplowitz, P. & Soldin, S. J. Steroid profiles in serum by liquid chromatography–tandem mass spectrometry in infants with genital hair. J. Pediatr. Endocrinol. Metab. 20, 597–605 (2007).

    CAS  PubMed  Google Scholar 

  147. Novello, L. & Speiser, P. W. Premature adrenarche. Pediatr. Ann. 47, e7–e11 (2018).

    PubMed  Google Scholar 

  148. Saenger, P. & Dimartino-Nardi, J. Premature adrenarche. J. Endocrinol. Invest. 24, 724–733 (2001).

    CAS  PubMed  Google Scholar 

  149. Celik, N. et al. The association between premature adrenarche and cardiovascular risk may be greater than expected. Horm. Res. Paediatr. 87, 7–14 (2017).

    CAS  PubMed  Google Scholar 

  150. Ibanez, L. et al. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche. J. Clin. Endocrinol. Metab. 82, 2283–2288 (1997).

    CAS  PubMed  Google Scholar 

  151. Ibanez, L., Potau, N., Chacon, P., Pascual, C. & Carrascosa, A. Hyperinsulinaemia, dyslipaemia and cardiovascular risk in girls with a history of premature pubarche. Diabetologia 41, 1057–1063 (1998).

    CAS  PubMed  Google Scholar 

  152. Mathew, R. P. et al. Evidence of metabolic syndrome in lean children with premature pubarche at diagnosis. Metabolism 57, 733–740 (2008).

    CAS  PubMed  Google Scholar 

  153. Kaya, G., Yavas Abali, Z., Bas, F., Poyrazoglu, S. & Darendeliler, F. Body mass index at the presentation of premature adrenarche is associated with components of metabolic syndrome at puberty. Eur. J. Pediatr. 177, 1593–1601 (2018).

    CAS  PubMed  Google Scholar 

  154. Ibanez, L., Potau, N. & Carrascosa, A. Insulin resistance, premature adrenarche, and a risk of the polycystic ovary syndrome (PCOS). Trends Endocrinol. Metab. 9, 72–77 (1998).

    CAS  PubMed  Google Scholar 

  155. Kousta, E. Premature adrenarche leads to polycystic ovary syndrome? Long-term consequences. Ann. N. Y. Acad. Sci. 1092, 148–157 (2006).

    CAS  PubMed  Google Scholar 

  156. Legro, R. S. Detection of insulin resistance and its treatment in adolescents with polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 15, 1367–1378 (2002).

    CAS  PubMed  Google Scholar 

  157. Rosenfield, R. L. Clinical review: Identifying children at risk for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92, 787–796 (2007).

    CAS  PubMed  Google Scholar 

  158. Siklar, Z., Ocal, G., Adiyaman, P., Ergur, A. & Berberoglu, M. Functional ovarian hyperandrogenism and polycystic ovary syndrome in prepubertal girls with obesity and/or premature pubarche. J. Pediatr. Endocrinol. Metab. 20, 475–481 (2007).

    PubMed  Google Scholar 

  159. Ibanez, L. et al. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J. Clin. Endocrinol. Metab. 81, 1237–1243 (1996).

    CAS  PubMed  Google Scholar 

  160. Ollila, M. M. et al. Weight gain and dyslipidemia in early adulthood associate with polycystic ovary syndrome: prospective cohort study. J. Clin. Endocrinol. Metab. 101, 739–747 (2016).

    CAS  PubMed  Google Scholar 

  161. West, S. et al. Irregular menstruation and hyperandrogenaemia in adolescence are associated with polycystic ovary syndrome and infertility in later life: Northern Finland Birth Cohort 1986 study. Hum. Reprod. 29, 2339–2351 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Banerjee, S. et al. Hormonal findings in African-American and Caribbean Hispanic girls with premature adrenarche: implications for polycystic ovarian syndrome. Pediatrics 102, E36 (1998).

    CAS  PubMed  Google Scholar 

  163. Toscano, V. et al. Changes in steroid pattern following acute and chronic adrenocorticotropin administration in premature adrenarche. J. Steroid Biochem. 32, 321–326 (1989).

    CAS  PubMed  Google Scholar 

  164. Kim, S. H., Moon, J. Y., Sasano, H., Choi, M. H. & Park, M. J. Body fat mass is associated with ratio of steroid metabolites reflecting 17,20-lyase activity in prepubertal girls. J. Clin. Endocrinol. Metab. 101, 4653–4660 (2016).

    CAS  PubMed  Google Scholar 

  165. Vuguin, P., Linder, B., Rosenfeld, R. G., Saenger, P. & DiMartino-Nardi, J. The roles of insulin sensitivity, insulin-like growth factor I (IGF-I), and IGF-binding protein-1 and -3 in the hyperandrogenism of African-American and Caribbean Hispanic girls with premature adrenarche. J. Clin. Endocrinol. Metab. 84, 2037–2042 (1999).

    CAS  PubMed  Google Scholar 

  166. Paterson, W. F. et al. Exaggerated adrenarche in a cohort of Scottish children: clinical features and biochemistry. Clin. Endocrinol. 72, 496–501 (2010).

    CAS  Google Scholar 

  167. Jamieson, A. et al. Apparent cortisone reductase deficiency: a functional defect in 11β-hydroxysteroid dehydrogenase type 1. J. Clin. Endocrinol. Metab. 84, 3570–3574 (1999).

    CAS  PubMed  Google Scholar 

  168. Malunowicz, E. M., Romer, T. E., Urban, M. & Bossowski, A. 11β-Hydroxysteroid dehydrogenase type 1 deficiency (‘apparent cortisone reductase deficiency’) in a 6-year-old boy. Horm. Res. 59, 205–210 (2003).

    CAS  PubMed  Google Scholar 

  169. Charmandari, E., Kino, T. & Chrousos, G. P. Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr. Dev. 24, 67–85 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lappalainen, S., Utriainen, P., Kuulasmaa, T., Voutilainen, R. & Jaaskelainen, J. Androgen receptor gene CAG repeat polymorphism and X-chromosome inactivation in children with premature adrenarche. J. Clin. Endocrinol. Metab. 93, 1304–1309 (2008).

    CAS  PubMed  Google Scholar 

  171. Likitmaskul, S. et al. ‘Exaggerated adrenarche’ in children presenting with premature adrenarche. Clin. Endocrinol. 42, 265–272 (1995).

    CAS  Google Scholar 

  172. Utriainen, P., Laakso, S., Liimatta, J., Jaaskelainen, J. & Voutilainen, R. Premature adrenarche — a common condition with variable presentation. Horm. Res. Paediatr. 83, 221–231 (2015).

    CAS  PubMed  Google Scholar 

  173. Kaufman, F. R. et al. Dehydroepiandrosterone and dehydroepiandrosterone sulfate metabolism in human genital skin. Fertil. Steril. 54, 251–254 (1990).

    CAS  PubMed  Google Scholar 

  174. Pelletier, G. Expression of steroidogenic enzymes and sex-steroid receptors in human prostate. Best. Pract. Res. Clin. Endocrinol. Metab. 22, 223–228 (2008).

    CAS  PubMed  Google Scholar 

  175. Rosenfield, R. L. Hirsutism and the variable response of the pilosebaceous unit to androgen. J. Investig. Dermatol. Symp. Proc. 10, 205–208 (2005).

    CAS  PubMed  Google Scholar 

  176. Liimatta, J. et al. Serum androgen bioactivity is low in children with premature adrenarche. Pediatr. Res. 75, 645–650 (2014).

    CAS  PubMed  Google Scholar 

  177. Azziz, R. et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004).

    CAS  PubMed  Google Scholar 

  178. Fauser, B. C. et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-sponsored 3rd PCOS Consensus Workshop Group. Fertil. Steril. 97, 28–38 (2012).

    PubMed  Google Scholar 

  179. Lauritsen, M. P. et al. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone. Hum. Reprod. 29, 791–801 (2014).

    CAS  PubMed  Google Scholar 

  180. Goodman, N. F. et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome — part 1. Endocr. Pract. 21, 1291–1300 (2015).

    PubMed  Google Scholar 

  181. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004).

    Google Scholar 

  182. Azziz, R. et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009).

    PubMed  Google Scholar 

  183. Randeva, H. S. et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr. Rev. 33, 812–841 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Legro, R. S. Polycystic ovary syndrome and cardiovascular disease: a premature association? Endocr. Rev. 24, 302–312 (2003).

    PubMed  Google Scholar 

  185. Wild, R. A. Long-term health consequences of PCOS. Hum. Reprod. Update 8, 231–241 (2002).

    PubMed  Google Scholar 

  186. Han, T. S., Walker, B. R., Arlt, W. & Ross, R. J. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 10, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  187. Stahl, N. L., Teeslink, C. R., Beauchamps, G. & Greenblatt, R. B. Serum testosterone levels in hirsute women: a comparison of adrenal, ovarian and peripheral vein values. Obstet. Gynecol. 41, 650–654 (1973).

    CAS  PubMed  Google Scholar 

  188. Stahl, N. L., Teeslink, C. R. & Greenblatt, R. B. Ovarian, adrenal, and peripheral testosterone levels in the polycystic ovary syndrome. Am. J. Obstet. Gynecol. 117, 194–200 (1973).

    CAS  PubMed  Google Scholar 

  189. Barnes, R. B., Rosenfield, R. L., Burstein, S. & Ehrmann, D. A. Pituitary–ovarian responses to nafarelin testing in the polycystic ovary syndrome. N. Engl. J. Med. 320, 559–565 (1989).

    CAS  PubMed  Google Scholar 

  190. Ehrmann, D. A., Rosenfield, R. L., Barnes, R. B., Brigell, D. F. & Sheikh, Z. Detection of functional ovarian hyperandrogenism in women with androgen excess. N. Engl. J. Med. 327, 157–162 (1992).

    CAS  PubMed  Google Scholar 

  191. Lachelin, G. C. et al. Long term effects of nightly dexamethasone administration in patients with polycystic ovarian disease. J. Clin. Endocrinol. Metab. 55, 768–773 (1982).

    CAS  PubMed  Google Scholar 

  192. O’Reilly, M. W. et al. Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione. J. Clin. Endocrinol. Metab. 99, 1027–1036 (2014).

    PubMed  PubMed Central  Google Scholar 

  193. Conway, G. et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur. J. Endocrinol. 171, 1–29 (2014).

    Google Scholar 

  194. Pasquali, R. et al. Defining hyperandrogenism in women with polycystic ovary syndrome: a challenging perspective. J. Clin. Endocrinol. Metab. 101, 2013–2022 (2016).

    CAS  PubMed  Google Scholar 

  195. Hoffman, D. I., Klove, K. & Lobo, R. A. The prevalence and significance of elevated dehydroepiandrosterone sulfate levels in anovulatory women. Fertil. Steril. 42, 76–81 (1984).

    CAS  PubMed  Google Scholar 

  196. Lucky, A. W., Rosenfield, R. L., McGuire, J., Rudy, S. & Helke, J. Adrenal androgen hyperresponsiveness to adrenocorticotropin in women with acne and/or hirsutism: adrenal enzyme defects and exaggerated adrenarche. J. Clin. Endocrinol. Metab. 62, 840–848 (1986).

    CAS  PubMed  Google Scholar 

  197. Azziz, R., Boots, L. R., Parker, C. R. Jr., Bradley, E. Jr. & Zacur, H. A. 11β-Hydroxylase deficiency in hyperandrogenism. Fertil. Steril. 55, 733–741 (1991).

    CAS  PubMed  Google Scholar 

  198. Stanczyk, F. Z., Chang, L., Carmina, E., Putz, Z. & Lobo, R. A. Is 11β-hydroxyandrostenedione a better marker of adrenal androgen excess than dehydroepiandrosterone sulfate? Am. J. Obstet. Gynecol. 165, 1837–1842 (1991).

    CAS  PubMed  Google Scholar 

  199. O’Reilly, M. W. et al. 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 840–848 (2017).

    PubMed  Google Scholar 

  200. Heidenreich, A. et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Urol. 65, 467–479 (2014).

    CAS  PubMed  Google Scholar 

  201. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    CAS  PubMed  Google Scholar 

  203. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    PubMed  PubMed Central  Google Scholar 

  204. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  205. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  206. Pfeiffer, M. J., Smit, F. P., Sedelaar, J. P. & Schalken, J. A. Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol. Med. 17, 657–664 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Hamid, A. R. et al. Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol. Med. 18, 1449–1455 (2013).

    PubMed  Google Scholar 

  208. Chang, K. H. et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell 154, 1074–1084 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Mitsiades, N. et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 72, 6142–6152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Titus, M. A. et al. Steroid 5α-reductase isozymes I and II in recurrent prostate cancer. Clin. Cancer Res. 11, 4365–4371 (2005).

    CAS  PubMed  Google Scholar 

  211. Chang, K. H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    CAS  PubMed  Google Scholar 

  212. Gent, R., du Toit, T., Bloem, L. M. & Swart, A. C. The 11β-hydroxysteroid dehydrogenase isoforms: pivotal catalytic activities yield potent C11-oxy C19 steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 11-ketoprogesterone biosynthesis. J. Steroid Biochem. Mol. Biol. 189, 116–126 (2019).

    CAS  PubMed  Google Scholar 

  213. Dovio, A. et al. Differential expression of determinants of glucocorticoid sensitivity in androgen-dependent and androgen-independent human prostate cancer cell lines. J. Steroid Biochem. Mol. Biol. 116, 29–36 (2009).

    CAS  PubMed  Google Scholar 

  214. Page, N., Warriar, N. & Govindan, M. V. 11β-Hydroxysteroid dehydrogenase and tissue specificity of androgen action in human prostate cancer cell LNCaP. J. Steroid Biochem. Mol. Biol. 49, 173–181 (1994).

    CAS  PubMed  Google Scholar 

  215. Gao, X. et al. Functional silencing of HSD17B2 in prostate cancer promotes disease progression. Clin. Cancer Res. 25, 1291–1301 (2019).

    PubMed  Google Scholar 

  216. du Toit, T. et al. Profiling adrenal 11β-hydroxyandrostenedione metabolites in prostate cancer cells, tissue and plasma: UPC2-MS/MS quantification of 11β-hydroxytestosterone, 11keto-testosterone and 11keto-dihydrotestosterone. J. Steroid Biochem. Mol. Biol. 166, 54–67 (2017).

    PubMed  Google Scholar 

  217. du Toit, T. & Swart, A. C. Inefficient UGT-conjugation of adrenal 11β-hydroxyandrostenedione metabolites highlights C11-oxy C19 steroids as the predominant androgens in prostate cancer. Mol. Cell. Endocrinol. 461, 265–276 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of grants from the NIH (1K08DK109116 to A.F.T., R01DK069950 and R01DK43140 to W.E.R., R01GM086596 to R.J.A.) and the University of Michigan (MCubed U064177 to A.F.T. and W.E.R.).

Author information

Authors and Affiliations

Authors

Contributions

A.F.T. researched data for the article, contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. J.R. contributed to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. R.J.A. and W.E.R. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Adina F. Turcu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks V. Papadopoulos, S. Wudy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adrenarche

An early stage in sexual maturation specific to humans and other primates that is caused by androgen synthesis from the adrenal glands and is associated with the development of pubic hair, body odour, skin oiliness and acne.

Steroidogenesis

The process of steroid synthesis.

Tropic

Related to hormones that stimulate the growth and activity of target glands.

Second messengers

Small intracellular molecules that mediate the effects of first messengers, that is, neurotransmitters and hormones.

Pubarche

The first appearance of pubic hair at puberty.

Sulfonation

The transfer of a sulfonate group (SO3−1) from the universal sulfonate donor 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to an appropriate acceptor molecule.

Glucuronidation

A process of steroid metabolism that consists of transfer of the glucuronic acid component of uridine diphosphate glucuronic acid to a substrate by any of several types of UDP-glucuronosyltransferase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turcu, A.F., Rege, J., Auchus, R.J. et al. 11-Oxygenated androgens in health and disease. Nat Rev Endocrinol 16, 284–296 (2020). https://doi.org/10.1038/s41574-020-0336-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0336-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing