Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of cellular senescence in ageing and endocrine disease

Abstract

With the ageing of the global population, interest is growing in the ‘geroscience hypothesis’, which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor — namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using ‘senolytic’ drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.

Key points

  • The ‘geroscience hypothesis’ posits that manipulation of fundamental ageing mechanisms will delay the appearance or severity of multiple chronic diseases because these diseases share the same underlying risk factor — namely, ageing.

  • Cellular senescence is a fundamental ageing mechanism that can contribute to or cause age-related phenotypes as well as multiple diseases, including endocrine disease, even in younger individuals (aged <40 years).

  • Some senescent cells, which accumulate with ageing, develop a proinflammatory, tissue-destructive and stem cell-disrupting or progenitor cell-disrupting senescence-associated secretory phenotype (SASP), which can spread senescence to nearby and distant non-senescent cells.

  • Senolytic agents have been discovered that selectively eliminate senescent cells by transiently disabling the survival pathways (senescent cell antiapoptotic pathways) that protect senescent cells against their own SASP.

  • Preclinical studies suggest that senolytics hold promise for delaying, preventing or treating many age-associated disorders.

  • Despite the growing experimental support for targeting cellular senescence to treat multiple age-associated diseases simultaneously, carefully conducted clinical trials in humans are needed to better define the benefits and risks of senolytic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The central role of ageing in chronic diseases.
Fig. 2: Nine fundamental hallmarks of ageing.
Fig. 3: Causes and consequences of cellular senescence.
Fig. 4: The effects of antiresorptive versus senolytic therapies on bone metabolism.

Similar content being viewed by others

References

  1. Kirkland, J. L. & Tchkonia, T. Clinical strategies and animal models for developing senolytic agents. Exp. Gerontol. 68, 19–25 (2015).

    CAS  PubMed  Google Scholar 

  2. Rocca, W. A. et al. Prevalence of multimorbidity in a geographically defined American population: patterns by age, sex, and race/ethnicity. Mayo Clin. Proc. 89, 1336–1349 (2014).

    PubMed  Google Scholar 

  3. Levy, H. B. Polypharmacy reduction strategies: tips on incorporating American Geriatrics Society Beers and Screening Tool of Older People’s Prescriptions criteria. Clin. Geriatr. Med. 33, 177–187 (2017).

    PubMed  Google Scholar 

  4. Khosla, S. & Hofbauer, L. C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5, 898–907 (2017).

    PubMed  PubMed Central  Google Scholar 

  5. Kim, S. C. et al. Impact of the U.S. Food and Drug Administration’s safety-related announcements on the use of bisphosphonates after hip fracture. J. Bone Miner. Res. 31, 1536–1540 (2016).

    CAS  PubMed  Google Scholar 

  6. Khosla, S. et al. Addressing the crisis in the treatment of osteoporosis: a path forward. J. Bone Min. Res. 32, 424–430 (2017).

    Google Scholar 

  7. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014). This is a key review outlining the geroscience hypothesis, which posits that manipulation of fundamental mechanisms of ageing will delay (in parallel) the appearance or severity of multiple chronic diseases because these diseases share the same underlying risk factor — namely, ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldman, D. P. et al. Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. 32, 1698–1705 (2013).

    Google Scholar 

  9. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This is a landmark perspective summarizing nine fundamental hallmarks of ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    CAS  PubMed  Google Scholar 

  11. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stout, M. B., Tchkonia, T. & Kirkland, J. L. Growth hormone in adipose dysfunction and senescence. Oncotarget 6, 10667–10668 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Tchkonia, T. et al. Cellular senescence and inflammation in obesity. Obesity 17, S57 (2009).

    Google Scholar 

  14. Kandhaya-Pillai, R. et al. TNFalpha-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging 9, 2411–2435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. LeBrasseur, N. K., Tchkonia, T. & Kirkland, J. L. Cellular senescence and the biology of aging, disease, and frailty. Nestle Nutr. Inst. Workshop Ser. 83, 11–18 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Nath, K. A. et al. The murine dialysis fistula model exhibits a senescence phenotype: pathobiologic mechanisms and therapeutic potential. Am. J. Physiol. Ren. Physiol. 315, F1493–F1499 (2018).

    CAS  Google Scholar 

  18. Palmer, A. K. et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289–2298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parikh, P. et al. Hyperoxia-induced cellular senescence in fetal airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 61, 51–60 (2018).

    Google Scholar 

  20. Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).

    CAS  PubMed  Google Scholar 

  21. Tran, D. et al. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell 13, 669–678 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, Y., Armstrong, J. L., Tchkonia, T. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Curr. Opin. Clin. Nutr. Metab. Care 17, 324–328 (2014).

    CAS  PubMed  Google Scholar 

  23. Palmer, A. K., Gustafson, B., Kirkland, J. L. & Smith, U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62, 1835–1841 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    PubMed  PubMed Central  Google Scholar 

  25. Escande, C. et al. Deleted in Breast Cancer 1 regulates cellular senescence during obesity. Aging Cell 13, 951–953 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Andriani, G. A. et al. Whole chromosome instability induces senescence and promotes SASP. Sci. Rep. 6, 35218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Baylis, D. et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif. Tissue Int. 95, 54–63 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. d’Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    PubMed  Google Scholar 

  30. von Zglinicki, T., Petrie, J. & Kirkwood, T. B. Telomere-driven replicative senescence is a stress response. Nat. Biotechnol. 21, 229–230 (2003).

    Google Scholar 

  31. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tchkonia, T. & Kirkland, J. L. Aging, cell senescence, and chronic disease: Emerging therapeutic strategies. JAMA 320, 1319–1320 (2018).

    PubMed  Google Scholar 

  33. Coppé, J. P., Kauser, K., Campisi, J. & Beauséjour, C. M. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568–29574 (2006).

    PubMed  Google Scholar 

  34. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018). This study shows that treatment with senolytic agents has the potential to increase both healthspan and lifespan in aged mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, Y. M., Seo, Y. H., Park, C. B., Yoon, S. H. & Yoon, G. Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence. Ann. NY Acad. Sci. 1201, 65–71 (2010).

    CAS  PubMed  Google Scholar 

  36. De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    CAS  PubMed  Google Scholar 

  39. Laberge, R. M. et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11, 569–578 (2012).

    CAS  PubMed  Google Scholar 

  40. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12, 489–498 (2013).

    CAS  PubMed  Google Scholar 

  41. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huffman, D. M. et al. Evaluating health span in preclinical models of aging and disease: guidelines, challenges, and opportunities for geroscience. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1395–1406 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Hall, B. M. et al. Aging of mice is associated with p16Ink4a- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294–1315 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    CAS  PubMed  Google Scholar 

  45. Itahana, K., Campisi, J. & Dimri, G. P. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol. Biol. 371, 21–31 (2007).

    CAS  PubMed  Google Scholar 

  46. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    PubMed  Google Scholar 

  47. Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J. Cell Biol. 203, 929–942 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Davalos, A. R. et al. p53-dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. J. Cell Biol. 201, 613–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hall, B. M. et al. p16Ink4a and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).

    CAS  PubMed  Google Scholar 

  51. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci 72, 780–785 (2016).

    PubMed Central  Google Scholar 

  53. Meuter, A. et al. Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. J. Assist. Reprod. Genet. 31, 1259–1267 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeyapalan, J. C., Ferreira, M., Sedivy, J. M. & Herbig, U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128, 36–44 (2007).

    CAS  PubMed  Google Scholar 

  56. Waaijer, M. E. et al. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell 11, 722–725 (2012).

    CAS  PubMed  Google Scholar 

  57. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019). This is the first direct demonstration that administration of senolytic drugs reduces the number of senescent cells in humans.

    PubMed  PubMed Central  Google Scholar 

  58. Waldera Lupa, D. M. et al. Characterization of skin aging-associated secreted proteins (SAASP) produced by dermal fibroblasts isolated from intrinsically aged human skin. J. Invest. Dermatol. 135, 1954–1968 (2015).

    CAS  PubMed  Google Scholar 

  59. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, 301–310 (2015). Treatment with a JAK inhibitor reduces the SASP in vivo in mice and reduces indices of frailty.

    Google Scholar 

  60. Smith, J. R. et al. Relationship between in vivo age and in vitro aging: assessment of 669 cell cultures derived from members of the Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 57, B239–B246 (2002).

    PubMed  Google Scholar 

  61. Stout, M. B. et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging 6, 575–586 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Menon, R. Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet. Gynecol. Sci. 62, 199–211 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    CAS  PubMed  Google Scholar 

  64. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014). This study demonstrates an important role for acute cellular senescence in the context of skin wound healing.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Singh, M. et al. Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: results of a pilot study. J. Frailty Aging 5, 204–207 (2016).

    CAS  PubMed  Google Scholar 

  66. Herranz, N. et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 17, 1205–1217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Majumder, S. et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11, 326–335 (2012).

    CAS  PubMed  Google Scholar 

  70. Wilkinson, J. E. et al. Rapamycin slows aging in mice. Aging Cell 11, 675–682 (2012).

    CAS  PubMed  Google Scholar 

  71. Zhang, Y. et al. Rapamycin extends life and health in C57BL/6 mice. J. Gerontol. A Biol. Sci. Med. Sci. 69, 119–130 (2014).

    CAS  PubMed  Google Scholar 

  72. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    PubMed  Google Scholar 

  73. Mau, T., O’Brien, M., Ghosh, A. K., Miller, R. A. & Yung, R. Lifespan extension drug interventions affect adipose tissue inflammation in aging. J. Gerontol. A Biol. Sci. Med. Sci. 75, 89–98 (2020).

    PubMed  Google Scholar 

  74. Arriola Apelo, S. I. & Lamming, D. W. Rapamycin: an inhibitor of aging emerges from the soil of Easter Island. J. Gerontol. A Biol. Sci. Med. Sci. 71, 841–849 (2016).

    PubMed  PubMed Central  Google Scholar 

  75. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017). This study demonstrates that eliminating senescent cells or inhibiting their SASP prevents age-related bone loss in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Verstovsek, S. et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363, 1117–1127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bannister, C. A. et al. Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes. Metab. 16, 1165–1173 (2014).

    CAS  PubMed  Google Scholar 

  78. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564 (2018).

    PubMed  Google Scholar 

  80. Larsson, L. et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol. Rev. 99, 427–511 (2019).

    PubMed  Google Scholar 

  81. Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J. & Robbins, P. D. The clinical potential of senolytic drugs. J. Am. Geriatr. Soc. 65, 2297–2301 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015). This study provides the first identification of senolytic drugs, specifically the combination of dasatinib and quercetin.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55, 2284–2292 (1995).

    CAS  PubMed  Google Scholar 

  84. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Yi, J.-S. et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight 1, e90220 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. D’Andrea, G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia 106, 256–271 (2015).

    PubMed  Google Scholar 

  87. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  89. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 955–963 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Tchkonia, T. & Kirkland, J. L. Therapeutic approaches to aging-reply. JAMA 321, 901–902 (2019).

    PubMed  Google Scholar 

  92. Kirkland, J. L. Translating the science of aging into therapeutic interventions. Cold Spring Harb. Perspect. Med. 6, a025908 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Kirkland, J. L., Stout, M. B. & Sierra, F. Resilience in aging mice. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1407–1414 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. St Sauver, J. L. et al. Risk of developing multimorbidity across all ages in an historical cohort study: differences by sex and ethnicity. BMJ Open. 5, e006413 (2015).

    Google Scholar 

  95. Musi, N. et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840 (2018). This study provides evidence that a mouse model of dementia is associated with cellular senescence in the brain.

    PubMed  PubMed Central  Google Scholar 

  96. Zhang, P. et al. Senolytic therapy alleviates A-beta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 22, 719–728 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with Bcl-xL inhibitors ameliorates fibrosis in Mdr2−/− mice. Hepatology 67, 247–259 (2017).

    PubMed  Google Scholar 

  101. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Martyanov, V., Whitfield, M. L. & Varga, J. Senescence signature in skin biopsies from systemic sclerosis patients treated with senolytic therapy: potential predictor of clinical response? Arthritis Rheumatol. 71, 1766–1767 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03675724 (2020).

  105. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02652052 (2016).

  106. Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Min. Res. 31, 1920–1929 (2016).

    CAS  Google Scholar 

  107. Wiley, C. D. et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043–1050 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    CAS  PubMed  Google Scholar 

  109. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Piemontese, M. et al. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2, 93771 (2017).

    PubMed  Google Scholar 

  111. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009).

    CAS  PubMed  Google Scholar 

  112. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012). This study provides in vivo evidence that postmitotic cells can develop a senescent-like phenotype.

    CAS  PubMed  Google Scholar 

  113. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delay aging-associated disorders. Nature 479, 232–236 (2011). This is a key article showing that clearance of senescent cells using a genetic approach delays ageing in a mouse model of premature ageing.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Khosla, S., Farr, J. N. & Kirkland, J. L. Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J. Clin. Endocrinol. Metab. 103, 1282–1290 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Farr, J. N. & Almeida, M. The spectrum of fundamental basic science discoveries contributing to organismal aging. J. Bone Min. Res. 33, 1568–1584 (2018).

    Google Scholar 

  118. Farr, J. N. & Khosla, S. Cellular senescence in bone. Bone 121, 121–133 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Khosla, S. Odanacatib: location and timing are everything. J. Bone Min. Res. 27, 506–508 (2012).

    CAS  Google Scholar 

  120. Schafer, M. J., Miller, J. D. & LeBrasseur, N. K. Cellular senescence: implications for metabolic disease. Mol. Cell Endocrinol. 455, 93–102 (2017).

    CAS  PubMed  Google Scholar 

  121. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019). Clearance of senescent cells improves metabolic function in obese mice.

    PubMed  PubMed Central  Google Scholar 

  122. Palmer, A. K. & Kirkland, J. L. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp. Gerontol. 86, 97–105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kirkland, J. L., Hollenberg, C. H. & Gillon, W. S. Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am. J. Physiol. 258, C206–C210 (1990).

    CAS  PubMed  Google Scholar 

  124. Gustafson, B., Nerstedt, A. & Smith, U. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun. 10, 2757 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Hannou, S. A., Wouters, K., Paumelle, R. & Staels, B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol. Metab. 26, 176–184 (2015).

    CAS  PubMed  Google Scholar 

  126. Krstic, J., Reinisch, I., Schupp, M., Schulz, T. J. & Prokesch, A. p53 Functions in adipose tissue metabolism and homeostasis. Int. J. Mol. Sci. 19, E2622 (2018).

    PubMed  Google Scholar 

  127. Vergoni, B. et al. DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes 65, 3062–3074 (2016).

    CAS  PubMed  Google Scholar 

  128. Zaragosi, L. E. et al. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59, 2513–2521 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuki, S. et al. Hyperglycemia accelerated endothelial progenitor cell senescence via the activation of p38 mitogen-activated protein kinase. Circ. J. 70, 1076–1081 (2006).

    CAS  PubMed  Google Scholar 

  130. Helman, A. et al. p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 22, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl. Res. 213, 112–123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Velarde, M. C. & Menon, R. Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. J. Endocrinol. 230, R59–R76 (2016).

    CAS  PubMed  Google Scholar 

  135. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    CAS  PubMed  Google Scholar 

  136. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013). This study identifies cellular senescence as a physiological mechanism during embryonic growth.

    CAS  PubMed  Google Scholar 

  137. Suvakov, S. et al. Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biol. Sex. Differ. 10, 49 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Fernandez, A., Karavitaki, N. & Wass, J. A. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. 72, 377–382 (2010).

    Google Scholar 

  139. Scheithauer, B. W. et al. Pathobiology of pituitary adenomas and carcinomas. Neurosurgery 59, 341–353 (2006).

    PubMed  Google Scholar 

  140. Melmed, S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 7, 257–266 (2011).

    CAS  PubMed  Google Scholar 

  141. Manojlovic-Gacic, E. et al. Oncogene-induced senescence in pituitary adenomas–an immunohistochemical study. Endocr. Pathol. 27, 1–11 (2016).

    CAS  PubMed  Google Scholar 

  142. Alexandraki, K. I. et al. Oncogene-induced senescence in pituitary adenomas and carcinomas. Hormones 11, 297–307 (2012).

    PubMed  Google Scholar 

  143. Justice, J. N. et al. Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 73, 939–945 (2017).

    PubMed Central  Google Scholar 

  144. Ashapkin, V. V., Kutueva, L. I., Kurchashova, S. Y. & Kireev, I. I. Are there common mechanisms between the Hutchinson-Gilford progeria syndrome and natural aging? Front. Genet. 10, 455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun, S. et al. HMGB1 and caveolin-1 related to RPE cell senescence in age-related macular degeneration. Aging 11, 4323–4337 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, A. S. & Dreesen, O. Biomarkers of cellular senescence and skin aging. Front. Genet. 9, 247 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Birch, J., Barnes, P. J. & Passos, J. F. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol. Ther. 183, 34–49 (2018).

    CAS  PubMed  Google Scholar 

  148. McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F. & Smith, M. A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol. 150, 1933–1939 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Chinta, S. J. et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 22, 930–940 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. He, Y. et al. Cellular senescence and radiation-induced pulmonary fibrosis. Transl. Res. 209, 14–21 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Alam, P. et al. Inhibition of senescence-associated genes Rb1 and Meis2 in adult cardiomyocytes results in cell cycle reentry and cardiac repair post-myocardial infarction. J. Am. Heart Assoc. 8, e012089 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    CAS  PubMed  Google Scholar 

  153. Papatheodoridi, A. M., Chrysavgis, L., Koutsilieris, M. & Chatzigeorgiou, A. The role of senescence in the development of non-alcoholic fatty liver disease and progression to non-alcoholic steatohepatitis. Hepatology 71, 363–374 (2019).

    PubMed  Google Scholar 

  154. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    CAS  PubMed  Google Scholar 

  155. Hou, A. et al. Cellular senescence in osteoarthritis and anti-aging strategies. Mech. Ageing Dev. 175, 83–87 (2018).

    CAS  PubMed  Google Scholar 

  156. Patil, P. et al. Systemic clearance of p16INK4a-positive senescent cells mitigates age-associated intervertebral disc degeneration. Aging Cell 18, e12927 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. Miao, D. et al. Severe growth retardation and early lethality in mice lacking the nuclear localization sequence and C-terminus of PTH-related protein. Proc. Natl Acad. Sci. USA 105, 20309–20314 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu, M. et al. The p27 pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone-related peptide. J. Bone Min. Res. 30, 1969–1979 (2015).

    CAS  Google Scholar 

  159. Zhang, Y. et al. DNA damage checkpoint pathway modulates the regulation of skeletal growth and osteoblastic bone formation by parathyroid hormone-related peptide. Int. J. Biol. Sci. 14, 508–517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, C. et al. Programmed cell senescence in skeleton during late puberty. Nat. Commun. 8, 1312 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Karimian, E., Chagin, A. S. & Savendahl, L. Genetic regulation of the growth plate. Front. Endocrinol. 2, 113 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the US National Institutes of Health through grants AG062413 (project 1, J.L.K.; project 2, S.K., J.N.F.), AG004875 (S.K.), AR027065 (S.K.), AR070241 (J.N.F.) and AG013925 (J.L.K.), the Translational Geroscience Network (AG061456; J.L.K.), Robert and Arlene Kogod, the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.) the Ted Nash Long Life Foundation (J.L.K.) and the Noaber Foundation (J.L.K.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sundeep Khosla or James L. Kirkland.

Ethics declarations

Competing interests

T.T. and J.L.K. have a financial interest related to this research. Patents on senolytic drugs are held by Mayo Clinic. Mayo Clinic has licensed patents on dasatinib and quercetin as senolytics to Unity Biotechnology. This research was reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic conflict of interest policies. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks L. Hofbauer, D. Towler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Damage-associated molecular patterns

Extracellular nucleotides, other cellular debris or proteins that are released by damaged cells (for example, HMGB1).

Pathogen-associated molecular patterns

Factors released by viral, fungal or bacterial pathogens.

Warburg shift

The preferential utilization of glycolysis rather than oxidative phosphorylation by a cell.

Lipofuscin

Lipid-containing pigment granules found in cells and associated with ageing.

Senescence-associated distension of satellites

(SADS). The distention of satellite DNA found in senescent cells.

Myeloproliferative syndrome

Disorders of bone marrow and blood associated with the clonal proliferation of cells that may progress to leukaemia.

Koch’s postulates

A set of criteria used to establish the cause of a disease.

Hypertrophic obesity

Refers to enlarged adipocytes, typically found in abdominal obesity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosla, S., Farr, J.N., Tchkonia, T. et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 16, 263–275 (2020). https://doi.org/10.1038/s41574-020-0335-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0335-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing