Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


New horizons for osteoanabolic treatment?

Novel osteoanabolic strategies are highly desired to treat osteoporotic bone loss or augment fracture repair in patients at risk of healing complications, including individuals with osteoporosis or inflammatory disorders. Whereas current osteoanabolics address osteoblast function, research by Ren Xu and colleagues highlights the skeletal endothelium as a promising target to promote bone formation.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Wright, N. C. et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 29, 2520–2526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baron, R. & Hesse, E. Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J. Clin. Endocrinol. Metab. 97, 311–325 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Oryan, A., Alidadi, S., Moshiri, A. & Bigham-Sadegh, A. Bone morphogenetic proteins: a powerful osteoinductive compound with non-negligible side effects and limitations. Biofactors 40, 459–481 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ramasamy, S. K., Kusumbe, A. P., Wang, L. & Adams, R. H. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507, 376–380 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Xu, R. et al. Targeting skeletal endothelium to ameliorate bone loss. Nat. Med. 24, 823–833 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Shim, J. H. et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J. Clin. Invest. 123, 4010–4022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references


A.I. and J.T. receive funding from the German Research Foundation (Collaborative Research Center CRC1149, A.I.: INST 40/491-1, J.T.: INST 40/492-1).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Anita Ignatius or Jan Tuckermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ignatius, A., Tuckermann, J. New horizons for osteoanabolic treatment?. Nat Rev Endocrinol 14, 508–509 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing