Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of the functionally elusive TAM receptor family

Abstract

The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial–mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TAM receptors and their interacting ligands.
Fig. 2: TAM receptor signalling maintains physiological homeostasis.
Fig. 3: The role of TAM receptor signalling in cancer and the action of specific inhibitors.
Fig. 4: GAS6-mediated TAM receptor signalling promotes fibrosis in response to tissue injury.

Similar content being viewed by others

References

  1. Lai, C. & Lemke, G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6, 691–704 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Burstyn-Cohen, T. TAM receptor signaling in development. Int. J. Dev. Biol. 61, 215–224 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Lu, Q. et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398, 723–728 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Angelillo-Scherrer, A. et al. Role of Gas6 in erythropoiesis and anemia in mice. J. Clin. Invest. 118, 583–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Angelillo-Scherrer, A. et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J. Clin. Invest. 115, 237–246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morizono, K. et al. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Challier, C., Uphoff, C. C., Janssen, J. W. & Drexler, H. G. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines. Leukemia 10, 781–787 (1996).

    CAS  PubMed  Google Scholar 

  9. Graham, D. K. et al. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 12, 2662–2669 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. De Vos, J. et al. Identifying intercellular signaling genes expressed in malignant plasma cells by using complementary DNA arrays. Blood 98, 771–780 (2001).

    Article  PubMed  Google Scholar 

  11. Rankin, E. B. et al. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res. 70, 7570–7579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janssen, J. W. et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 6, 2113–2120 (1991).

    CAS  PubMed  Google Scholar 

  13. O’Bryan, J. P. et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell Biol. 11, 5016–5031 (1991).

    PubMed  PubMed Central  Google Scholar 

  14. Graham, D. K., Dawson, T. L., Mullaney, D. L., Snodgrass, H. R. & Earp, H. S. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ. 5, 647–657 (1994).

    CAS  PubMed  Google Scholar 

  15. Fujimoto, J. & Yamamoto, T. brt, a mouse gene encoding a novel receptor-type protein-tyrosine kinase, is preferentially expressed in the brain. Oncogene 9, 693–698 (1994).

    CAS  PubMed  Google Scholar 

  16. Biesecker, L. G., Gottschalk, L. R. & Emerson, S. G. Identification of four murine cDNAs encoding putative protein kinases from primitive embryonic stem cells differentiated in vitro. Proc. Natl Acad. Sci. USA 90, 7044–7048 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biscardi, J. S. et al. Rek, a gene expressed in retina and brain, encodes a receptor tyrosine kinase of the Axl/Tyro3 family. J. Biol. Chem. 271, 29049–29059 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Ling, L., Templeton, D. & Kung, H. J. Identification of the major autophosphorylation sites of Nyk/Mer, an NCAM-related receptor tyrosine kinase. J. Biol. Chem. 271, 18355–18362 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Lee-Sherick, A. B. et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene 32, 5359–5368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sasaki, T. et al. Structural basis for Gas6–Axl signalling. EMBO J. 25, 80–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Yamagata, M., Sanes, J. R. & Weiner, J. A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Stitt, T. N. et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80, 661–670 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Varnum, B. C. et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373, 623–626 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Chen, J., Carey, K. & Godowski, P. J. Identification of Gas6 as a ligand for Mer, a neural cell adhesion molecule related receptor tyrosine kinase implicated in cellular transformation. Oncogene 14, 2033–2039 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Godowski, P. J. et al. Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 82, 355–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Nagata, K. et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem. 271, 30022–30027 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki, T. et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains. J. Biol. Chem. 277, 44164–44170 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fisher, P. W. et al. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody. Biochem. J. 387, 727–735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mark, M. R., Chen, J., Hammonds, R. G., Sadick, M. & Godowsk, P. J. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl. J. Biol. Chem. 271, 9785–9789 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Heiring, C., Dahlback, B. & Muller, Y. A. Ligand recognition and homophilic interactions in Tyro3: structural insights into the Axl/Tyro3 receptor tyrosine kinase family. J. Biol. Chem. 279, 6952–6958 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, X. et al. Structural insights into the inhibited states of the Mer receptor tyrosine kinase. J. Struct. Biol. 165, 88–96 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dahlback, B. & Villoutreix, B. O. Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure–function relationships and molecular recognition. Arterioscler. Thromb. Vasc. Biol. 25, 1311–1320 (2005).

    Article  PubMed  Google Scholar 

  33. Calianese, D. C. & Birge, R. B. Biology of phosphatidylserine (PS): basic physiology and implications in immunology, infectious disease, and cancer. Cell Commun. Signal. 18, 41 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhattacharyya, S. et al. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14, 136–147 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dayoub, A. S. & Brekken, R. A. TIMs, TAMs, and PS-antibody targeting: implications for cancer immunotherapy. Cell Commun. Signal. 18, 29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kariolis, M. S. et al. An engineered Axl ‘decoy receptor’ effectively silences the Gas6–Axl signaling axis. Nat. Chem. Biol. 10, 977–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perera, L., Li, L., Darden, T., Monroe, D. M. & Pedersen, L. G. Prediction of solution structures of the Ca2+-bound γ-carboxyglutamic acid domains of protein S and homolog growth arrest specific protein 6: use of the particle mesh Ewald method. Biophys. J. 73, 1847–1856 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pintao, M. C. et al. Protein S levels and the risk of venous thrombosis: results from the MEGA case–control study. Blood 122, 3210–3219 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Nonagase, Y. et al. Tumor tissue and plasma levels of AXL and GAS6 before and after tyrosine kinase inhibitor treatment in EGFR-mutated non-small cell lung cancer. Thorac. Cancer 10, 1928–1935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Balogh, I., Hafizi, S., Stenhoff, J., Hansson, K. & Dahlback, B. Analysis of Gas6 in human platelets and plasma. Arterioscler. Thromb. Vasc. Biol. 25, 1280–1286 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Griffin, J. H., Gruber, A. & Fernandez, J. A. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood 79, 3203–3211 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Hackeng, T. M., Sere, K. M., Tans, G. & Rosing, J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc. Natl Acad. Sci. USA 103, 3106–3111 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heeb, M. J., Mesters, R. M., Tans, G., Rosing, J. & Griffin, J. H. Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J. Biol. Chem. 268, 2872–2877 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Heeb, M. J. et al. Protein S binds to and inhibits factor Xa. Proc. Natl Acad. Sci. USA 91, 2728–2732 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rezende, S. M., Simmonds, R. E. & Lane, D. A. Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S–C4b binding protein complex. Blood 103, 1192–1201 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Caberoy, N. B. Synergistic interaction of tubby and tubby-like protein 1 (Tulp1). Adv. Exp. Med. Biol. 801, 503–509 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Caberoy, N. B., Alvarado, G., Bigcas, J. L. & Li, W. Galectin-3 is a new MerTK-specific eat-me signal. J. Cell Physiol. 227, 401–407 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsou, W. I. et al. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 289, 25750–25763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lew, E. D. et al. Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities. eLife 3, e03385 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Geng, K. et al. Requirement of γ-carboxyglutamic acid modification and phosphatidylserine binding for the activation of Tyro3, Axl, and mertk receptors by growth arrest-specific 6. Front. Immunol. 8, 1521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Elkabets, M. et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 27, 533–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bellosta, P., Costa, M., Lin, D. A. & Basilico, C. The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol. Cell Biol. 15, 614–625 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Taylor, I. C., Roy, S. & Varmus, H. E. Overexpression of the Sky receptor tyrosine kinase at the cell surface or in the cytoplasm results in ligand-independent activation. Oncogene 11, 2619–2626 (1995).

    CAS  PubMed  Google Scholar 

  54. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Anderson, H. A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat. Immunol. 4, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Allen, M. P. et al. Growth arrest-specific gene 6 (Gas6)/adhesion related kinase (Ark) signaling promotes gonadotropin-releasing hormone neuronal survival via extracellular signal-regulated kinase (ERK) and Akt. Mol. Endocrinol. 13, 191–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat. Immunol. 7, 747–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zong, C., Yan, R., August, A., Darnell, J. E. Jr. & Hanafusa, H. Unique signal transduction of Eyk: constitutive stimulation of the JAK–STAT pathway by an oncogenic receptor-type tyrosine kinase. EMBO J. 15, 4515–4525 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carrera Silva, E. A. et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39, 160–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26, 270–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Nandrot, E. et al. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol. Dis. 7, 586–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. D’Cruz, P. M. et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9, 645–651 (2000).

    Article  PubMed  Google Scholar 

  66. Akalu, Y. T. et al. Tissue-specific modifier alleles determine Mertk loss-of-function traits. eLife 11, e80530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Melaragno, M. G. et al. Increased expression of Axl tyrosine kinase after vascular injury and regulation by G protein-coupled receptor agonists in rats. Circ. Res. 83, 697–704 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Melaragno, M. G. et al. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J. Mol. Cell Cardiol. 37, 881–887 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Murao, K. et al. A product of growth arrest-specific gene 6 modulates scavenger receptor expression in human vascular smooth muscle cells. FEBS Lett. 459, 363–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Calzavarini, S. et al. Platelet protein S limits venous but not arterial thrombosis propensity by controlling coagulation in the thrombus. Blood 135, 1969–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Saller, F. et al. Generation and phenotypic analysis of protein S-deficient mice. Blood 114, 2307–2314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burstyn-Cohen, T., Heeb, M. J. & Lemke, G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J. Clin. Invest. 119, 2942–2953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Salian-Mehta, S. et al. Loss of growth arrest specific gene 6 (Gas6) results in altered GnRH neuron migration, delayed vaginal opening and sexual maturation in mice. Mol. Cell Endocrinol. 393, 164–170 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cosemans, J. M. et al. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J. Thromb. Haemost. 8, 1797–1808 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Graham, D. K., DeRyckere, D., Davies, K. D. & Earp, H. S. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 14, 769–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Burchert, A., Attar, E. C., McCloskey, P., Fridell, Y. W. & Liu, E. T. Determinants for transformation induced by the Axl receptor tyrosine kinase. Oncogene 16, 3177–3187 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. McCloskey, P. et al. GAS6 mediates adhesion of cells expressing the receptor tyrosine kinase Axl. J. Biol. Chem. 272, 23285–23291 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Rankin, E. B. et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc. Natl Acad. Sci. USA 111, 13373–13378 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rankin, E. B. & Giaccia, A. J. The receptor tyrosine kinase AXL in cancer progression. Cancers 8, 103 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Badarni, M. et al. Repression of AXL expression by AP-1/JNK blockage overcomes resistance to PI3Ka therapy. JCI Insight 5, e125341 (2019).

    Article  PubMed  Google Scholar 

  81. Miller, M. A., Sullivan, R. J. & Lauffenburger, D. A. Molecular pathways: receptor ectodomain shedding in treatment, resistance, and monitoring of cancer. Clin. Cancer Res. 23, 623–629 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Aguilera, T. A. et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat. Commun. 7, 13898 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, I. K. et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia 29, 2382–2389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McDaniel, N. K. et al. AXL mediates cetuximab and radiation resistance through tyrosine 821 and the c-ABL kinase pathway in head and neck cancer. Clin. Cancer Res. 26, 4349–4359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kariolis, M. S. et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J. Clin. Invest. 127, 183–198 (2017).

    Article  PubMed  Google Scholar 

  86. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 44, 852–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zuo, Q. et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene 37, 3275–3289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clara, J. A., Monge, C., Yang, Y. & Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — wa clinical update. Nat. Rev. Clin. Oncol. 17, 204–232 (2020).

    Article  PubMed  Google Scholar 

  89. Cichon, M. A. et al. The receptor tyrosine kinase Axl regulates cell–cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene 33, 4185–4192 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Asiedu, M. K. et al. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 33, 1316–1324 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Sadahiro, H. et al. Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma. Cancer Res. 78, 3002–3013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiao, Y. et al. S100A10 is a critical mediator of GAS6/AXL-induced angiogenesis in renal cell carcinoma. Cancer Res. 79, 5758–5768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Linger, R. M. et al. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia. Blood 122, 1599–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cummings, C. T. et al. Mer590, a novel monoclonal antibody targeting MER receptor tyrosine kinase, decreases colony formation and increases chemosensitivity in non-small cell lung cancer. Oncotarget 5, 10434–10445 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Su, Y. T. et al. MerTK inhibition decreases immune suppressive glioblastoma-associated macrophages and neoangiogenesis in glioblastoma microenvironment. Neurooncol. Adv. 2, vdaa065 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Sinik, L. et al. Inhibition of MERTK promotes suppression of tumor growth in BRAF mutant and BRAF wild-type melanoma. Mol. Cancer Ther. 18, 278–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Lee-Sherick, A. B. et al. MERTK inhibition alters the PD-1 axis and promotes anti-leukemia immunity. JCI Insight 3, e97941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Koda, Y., Itoh, M. & Tohda, S. Effects of MERTK inhibitors UNC569 and UNC1062 on the growth of acute myeloid leukaemia cells. Anticancer. Res. 38, 199–204 (2018).

    CAS  PubMed  Google Scholar 

  99. Nishi, C., Yanagihashi, Y., Segawa, K. & Nagata, S. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. J. Biol. Chem. 294, 7221–7230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ekyalongo, R. C. et al. TYRO3 as a potential therapeutic target in breast cancer. Anticancer. Res. 34, 3337–3345 (2014).

    CAS  PubMed  Google Scholar 

  101. Ammoun, S. et al. Axl/Gas6/NFκB signalling in schwannoma pathological proliferation, adhesion and survival. Oncogene 33, 336–346 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Dantas-Barbosa, C. et al. Expression and role of TYRO3 and AXL as potential therapeutical targets in leiomyosarcoma. Br. J. Cancer 117, 1787–1797 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hsu, P. L., Jou, J. & Tsai, S. J. TYRO3: a potential therapeutic target in cancer. Exp. Biol. Med. 244, 83–99 (2019).

    Article  CAS  Google Scholar 

  104. Chien, C. W. et al. Targeting TYRO3 inhibits epithelial–mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene 35, 5872–5881 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Jiang, Z. et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J. Clin. Invest. 131, e139434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ruiz-Heiland, G. et al. Deletion of the receptor tyrosine kinase Tyro3 inhibits synovial hyperplasia and bone damage in arthritis. Ann. Rheum. Dis. 73, 771–779 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Korshunov, V. A., Mohan, A. M., Georger, M. A. & Berk, B. C. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ. Res. 98, 1446–1452 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Shimojima, M. et al. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80, 10109–10116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216–C225 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Bellan, M. et al. Gas6/TAM system: a key modulator of the interplay between inflammation and fibrosis. Int. J. Mol. Sci. 20, 5070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, H. J., Jeng, Y. M., Chen, Y. L., Chung, L. & Yuan, R. H. Gas6/Axl pathway promotes tumor invasion through the transcriptional activation of Slug in hepatocellular carcinoma. Carcinogenesis 35, 769–775 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Reichl, P. et al. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology 61, 930–941 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Fourcot, A. et al. Gas6 deficiency prevents liver inflammation, steatohepatitis, and fibrosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1043–G1053 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Nathan, S. D. et al. Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium. Chest 140, 221–229 (2011).

    Article  PubMed  Google Scholar 

  115. Espindola, M. S. et al. Targeting of TAM receptors ameliorates fibrotic mechanisms in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 197, 1443–1456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Burstyn-Cohen, T. et al. Genetic dissection of TAM receptor–ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 76, 1123–1132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ballantine, L. et al. Increased soluble phagocytic receptors sMer, sTyro3 and sAxl and reduced phagocytosis in juvenile-onset systemic lupus erythematosus. Pediatr. Rheumatol. Online J. 13, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shen, K. et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 34, 108835 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Healy, L. M. et al. MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS. Neurol. Neuroimmunol. Neuroinflamm 4, e402 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bellan, M., Pirisi, M. & Sainaghi, P. P. The Gas6/TAM system and multiple sclerosis. Int. J. Mol. Sci. 17, 1807 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Helenius, A. Virus entry: looking back and moving forward. J. Mol. Biol. 430, 1853–1862 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jemielity, S. et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog. 9, e1003232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zwernik, S. D. et al. AXL receptor is required for Zika virus strain MR-766 infection in human glioblastoma cell lines. Mol. Ther. Oncolytics 23, 447–457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Moller-Tank, S. & Maury, W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470, 565–580 (2014).

    Article  PubMed  Google Scholar 

  126. Chen, J. et al. AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nat. Microbiol. 3, 302–309 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Hunt, C. L., Kolokoltsov, A. A., Davey, R. A. & Maury, W. The Tyro3 receptor kinase Axl enhances macropinocytosis of Zaire ebolavirus. J. Virol. 85, 334–347 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Bohan, D. et al. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog. 17, e1009743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zammarchi, F. et al. Preclinical development of ADCT-601, a novel pyrrolobenzodiazepine dimer-based antibody–drug conjugate targeting AXL-expressing cancers. Mol. Cancer Ther. 21, 582–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Quirico, L. et al. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int. J. Biol. Sci. 16, 1238–1251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Boshuizen, J. et al. Cooperative targeting of immunotherapy-resistant melanoma and lung cancer by an AXL-targeting antibody–drug conjugate and immune checkpoint blockade. Cancer Res. 81, 1775–1787 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Boshuizen, J. et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody–drug conjugate and BRAF/MEK inhibitors. Nat. Med. 24, 203–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Quinn, J. M. et al. Therapeutic inhibition of the receptor tyrosine kinase AXL improves sensitivity to platinum and taxane in ovarian cancer. Mol. Cancer Ther. 18, 389–398 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Ludwig, K. F. et al. Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer. Cancer Res. 78, 246–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Yokoyama, Y. et al. Immuno-oncological efficacy of RXDX-106, a novel TAM (TYRO3, AXL, MER) family small-molecule kinase inhibitor. Cancer Res. 79, 1996–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Minson, K. A. et al. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight 1, e85630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Yan, D., Earp, H. S., DeRyckere, D. & Graham, D. K. Targeting MERTK and AXL in EGFR mutant non-small cell lung cancer. Cancers 13, 5639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yang, Y. et al. Modulating the function of ABCB1: in vitro and in vivo characterization of sitravatinib, a tyrosine kinase inhibitor. Cancer Commun. 40, 285–300 (2020).

    Article  Google Scholar 

  139. Wu, C. P. et al. Sitravatinib sensitizes ABCB1- and ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Cancers 12, 195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Okura, N. et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin. Cancer Res. 26, 2244–2256 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Post, S. M. et al. AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica 107, 1311–1322 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Shin, J. S. et al. NPS-1034, a novel MET inhibitor, inhibits the activated MET receptor and its constitutively active mutants. Invest. N. Drugs 32, 389–399 (2014).

    Article  CAS  Google Scholar 

  143. Zdzalik-Bielecka, D. et al. Bemcentinib and gilteritinib inhibit cell growth and impair the endo-lysosomal and autophagy systems in an AXL-independent manner. Mol. Cancer Res. 20, 446–455 (2021).

    Article  Google Scholar 

  144. Byers, L. A. et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Fuh, K. C. et al. Phase 1b study of AVB-500 in combination with paclitaxel or pegylated liposomal doxorubicin platinum-resistant recurrent ovarian cancer. Gynecol. Oncol. 163, 254–261 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Koopman, L. A. et al. Enapotamab vedotin, an AXL-specific antibody–drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight 4, e128199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ye, X. et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29, 5254–5264 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Cerchia, L. et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol. Ther. 20, 2291–2303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, G. et al. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol. Cancer 17, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Linger, R. M., Keating, A. K., Earp, H. S. & Graham, D. K. TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer Res. 100, 35–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mullen, M. M. et al. GAS6/AXL inhibition enhances ovarian cancer sensitivity to chemotherapy and PARP inhibition through increased DNA damage and enhanced replication stress. Mol. Cancer Res. 20, 265–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Toboni, M. D. et al. Inhibition of AXL and VEGF-A has improved therapeutic efficacy in uterine serous cancer. Cancers 13, 5877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ben-Batalla, I. et al. Axl blockade by BGB324 inhibits BCR-ABL tyrosine kinase inhibitor-sensitive and -resistant chronic myeloid leukemia. Clin. Cancer Res. 23, 2289–2300 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Yang, Z. et al. Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: a meta-analysis. Int. J. Cancer 140, 2805–2819 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Puzanov, I., Burnett, P. & Flaherty, K. T. Biological challenges of BRAF inhibitor therapy. Mol. Oncol. 5, 116–123 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Alexander, P. B. & Wang, X. F. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies. Front. Med. 9, 134–138 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu, L. et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 69, 6871–6878 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. McDaniel, N. K. et al. MERTK mediates intrinsic and adaptive resistance to AXL-targeting agents. Mol. Cancer Ther. 17, 2297–2308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tsukita, Y. et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol. Cancer 18, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mohd Idrus, F. N. et al. Differential polarization and the expression of efferocytosis receptor MerTK on M1 and M2 macrophages isolated from coronary artery disease patients. BMC Immunol. 22, 21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zizzo, G. & Cohen, P. L. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. J. Inflamm. 12, 36 (2015).

    Article  Google Scholar 

  164. Sather, S. et al. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109, 1026–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Slade, D. PARP and PARG inhibitors in cancer treatment. Genes. Dev. 34, 360–394 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Goldstein, M. & Kastan, M. B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66, 129–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Weaver, B. A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677–2681 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Carvalho, C. et al. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem. 16, 3267–3285 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Baskar, R., Lee, K. A., Yeo, R. & Yeoh, K. W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kim, B. M. et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci. 16, 26880–26913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Balaji, K. et al. AXL inhibition suppresses the DNA damage response and sensitizes cells to PARP inhibition in multiple cancers. Mol. Cancer Res. 15, 45–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Lindsay, R. S. et al. MERTK on mononuclear phagocytes regulates T cell antigen recognition at autoimmune and tumor sites. J. Exp. Med. 218, e20200464 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Barcena, C. et al. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J. Hepatol. 63, 670–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, J., Qiao, L., Hou, Z. & Luo, G. TIM-1 promotes hepatitis C virus cell attachment and infection. J. Virol. 91, e01583–e01616 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tutusaus, A. et al. A functional role of GAS6/TAM in nonalcoholic steatohepatitis progression implicates AXL as therapeutic target. Cell Mol. Gastroenterol. Hepatol. 9, 349–368 (2020).

    Article  PubMed  Google Scholar 

  177. Nagai, K. et al. Dual involvement of growth arrest-specific gene 6 in the early phase of human IgA nephropathy. PLoS ONE 8, e66759 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bernsmeier, C. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 148, 603–615 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Meertens, L. et al. Axl mediates Zika virus entry in human glial cells and modulates innate immune responses. Cell Rep. 18, 324–333 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. van den Brand, B. T. et al. Therapeutic efficacy of Tyro3, Axl, and Mer tyrosine kinase agonists in collagen-induced arthritis. Arthritis Rheum. 65, 671–680 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zagorska, A., Traves, P. G., Lew, E. D., Dransfield, I. & Lemke, G. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15, 920–928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Logan, T. F. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr. Oncol. Rep. 15, 83–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  184. Avanzi, G. C. et al. GAS6, the ligand of Axl and Rse receptors, is expressed in hematopoietic tissue but lacks mitogenic activity. Exp. Hematol. 25, 1219–1226 (1997).

    CAS  PubMed  Google Scholar 

  185. Gallicchio, M. et al. Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 105, 1970–1976 (2005).

    Article  CAS  PubMed  Google Scholar 

  186. Giroud, P. et al. Expression of TAM-R in human immune cells and unique regulatory function of MerTK in IL-10 production by tolerogenic DC. Front. Immunol. 11, 564133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gilchrist, S. E., Pennelli, G. M. & Hafizi, S. Gas6/TAM signalling negatively regulates inflammatory induction of GM-CSF in mouse brain microglia. Cells 10, 3281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5, a009076 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gely-Pernot, A. et al. An endogenous vitamin K-dependent mechanism regulates cell proliferation in the brain subventricular stem cell niche. Stem Cell 30, 719–731 (2012).

    Article  CAS  Google Scholar 

  190. Burstyn-Cohen, T. & Hochberg, A. TAM signaling in the nervous system. Brain Plast. 7, 33–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. ten Kate, M. K. & van der Meer, J. Protein S deficiency: a clinical perspective. Haemophilia 14, 1222–1228 (2008).

    Article  PubMed  Google Scholar 

  192. Maimon, A. et al. Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10. J. Clin. Invest. 131, e126089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ubil, E. et al. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Invest. 128, 2356–2369 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Bosurgi, L. et al. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl Acad. Sci. USA 110, 13091–13096 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Peeters, M. J. W. et al. MERTK acts as a costimulatory receptor on human CD8+ T cells. Cancer Immunol. Res. 7, 1472–1484 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Kasikara, C. et al. Phosphatidylserine sensing by TAM receptors regulates AKT-dependent chemoresistance and PD-L1 expression. Mol. Cancer Res. 15, 753–764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by P01CA257907 (to A.J.G. and E.B.R.) and R01CA272432-01 (to E.B.R.) from the National Cancer Institute (NCI).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Amato J. Giaccia.

Ethics declarations

Competing interests

A.J.G. and Y.R.M. received stock from Aravive Biologics Inc. E.B.R. declares no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Tal Burstyn-Cohen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y.R., Rankin, E.B. & Giaccia, A.J. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 23, 201–217 (2024). https://doi.org/10.1038/s41573-023-00846-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00846-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer