Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TAM family kinases as therapeutic targets at the interface of cancer and immunity

Abstract

Novel treatment approaches are needed to overcome innate and acquired mechanisms of resistance to current anticancer therapies in cancer cells and the tumour immune microenvironment. The TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) are potential therapeutic targets in a wide range of cancers. In cancer cells, TAM RTKs activate signalling pathways that promote cell survival, metastasis and resistance to a variety of chemotherapeutic agents and targeted therapies. TAM RTKs also function in innate immune cells, contributing to various mechanisms that suppress antitumour immunity and promote resistance to immune-checkpoint inhibitors. Therefore, TAM antagonists provide an unprecedented opportunity for both direct and immune-mediated therapeutic activity provided by inhibition of a single target, and are likely to be particularly effective when used in combination with other cancer therapies. To exploit this potential, a variety of agents have been designed to selectively target TAM RTKs, many of which have now entered clinical testing. This Review provides an essential guide to the TAM RTKs for clinicians, including an overview of the rationale for therapeutic targeting of TAM RTKs in cancer cells and the tumour immune microenvironment, a description of the current preclinical and clinical experience with TAM inhibitors, and a perspective on strategies for continued development of TAM-targeted agents for oncology applications.

Key points

  • Preclinical studies in cell culture and animal models implicate the TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) as promising new therapeutic targets in both cancer cells and the tumour immune microenvironment.

  • TAM RTKs are aberrantly or ectopically expressed in a wide variety of cancers and promote cancer cell survival, metastasis and resistance to both chemotherapy and molecularly targeted agents, and have been associated with poor prognosis.

  • TAM RTKs are also expressed in immune cells in the tumour microenvironment, where they promote expression of anti-inflammatory cytokines, reduce antigen presentation, recruit and/or activate immunosuppressive regulatory T cells and myeloid-derived suppresser cells, interface with immune-checkpoint pathways and, therefore, have a central role in suppression of antitumour immunity.

  • TAM RTKs promote expression of the immune-checkpoint ligands PD-L1 and PD-L2 and have been associated with resistance to immune-checkpoint inhibitors in numerous cancers.

  • The first selective TAM inhibitors have been well-tolerated, with evidence of therapeutic efficacy in early phase clinical trials, and are being tested in combination with a variety of other agents, including chemotherapies, EGFR inhibitors, BCL-2 inhibitors and immune-checkpoint inhibitors.

  • The relevance of individual TAM RTKs as therapeutic targets (particularly in the tumour microenvironment) is probably dependent on several factors, including tumour phenotype and the patient’s immune status, and development of biomarkers to predict and/or monitor therapeutic response will be essential to optimize the application of TAM-targeted agents in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TAM structure and activation mechanisms.
Fig. 2: TAM signalling in immune cells.
Fig. 3: Functions of TAM RTKs in the TME.
Fig. 4: TAM RTK signalling and functions in cancer cells.
Fig. 5: TAM-targeted agents in preclinical and clinical development.
Fig. 6: Potential adverse effects of TAM-targeted therapies.

Similar content being viewed by others

References

  1. Graham, D. K., DeRyckere, D., Davies, K. D. & Earp, H. S. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 14, 769–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Lew, E. D. et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife https://doi.org/10.7554/eLife.03385 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Behrens, E. M. et al. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur. J. Immunol. 33, 2160–2167 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Rothlin, C. V., Carrera-Silva, E. A., Bosurgi, L. & Ghosh, S. TAM receptor signaling in immune homeostasis. Annu. Rev. Immunol. 33, 355–391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Mao, Y. & Finnemann, S. C. Regulation of phagocytosis by Rho GTPases. Small GTPases 6, 89–99 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heit, B., Tasnim, T. & Le Lam, A. MER tyrosine kinase mediates efferocytosis through a novel β2 integrin-activating signalling pathway. J. Immunol. 206, 97.04 (2021).

    Article  Google Scholar 

  9. Wu, Y., Singh, S., Georgescu, M. M. & Birge, R. B. A role for Mer tyrosine kinase in αvβ5 integrin-mediated phagocytosis of apoptotic cells. J. Cell Sci. 118, 539–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Nishi, C., Toda, S., Segawa, K. & Nagata, S. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol. Cell Biol. 34, 1512–1520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Subramanian, M. et al. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124, 1296–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Alciato, F., Sainaghi, P. P., Sola, D., Castello, L. & Avanzi, G. C. TNF-alpha, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J. Leukoc. Biol. 87, 869–875 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, T., Zhang, Y., Chen, Q., Yan, K. & Han, D. Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages. Immunology 135, 40–50 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 189, 3508–3520 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Ubil, E. et al. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J. Clin. Invest. 128, 2356–2369 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lin, J. et al. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 11, 2024941 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fujimori, T. et al. The Axl receptor tyrosine kinase is a discriminator of macrophage function in the inflamed lung. Mucosal Immunol. 8, 1021–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sharif, M. N. et al. Twist mediates suppression of inflammation by type I IFNs and Axl. J. Exp. Med. 203, 1891–1901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yi, Z. et al. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 114, 3191–3198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carrera Silva, E. A. et al. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39, 160–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan, P. Y. et al. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 352, 99–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat. Immunol. 7, 747–754 (2006).

    Article  CAS  Google Scholar 

  26. Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507, 508–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smiley, S. T., Boyer, S. N., Heeb, M. J., Griffin, J. H. & Grusby, M. J. Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity. Proc. Natl Acad. Sci. USA 94, 11484–11489 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peeters, M. J. W. et al. MERTK acts as a costimulatory receptor on human CD8+ T cells. Cancer Immunol. Res. 7, 1472–1484 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Lindsay, R. S. et al. MERTK on mononuclear phagocytes regulates T cell antigen recognition at autoimmune and tumor sites. J. Exp. Med. https://doi.org/10.1084/jem.20200464 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nguyen, K. Q. et al. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity. J. Biol. Chem. 289, 25737–25749 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kasikara, C. et al. Phosphatidylserine sensing by TAM receptors regulates AKT-dependent chemoresistance and PD-L1 expression. Mol. Cancer Res. 15, 753–764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Skinner, H. D. et al. Integrative analysis identifies a novel AXL-PI3 kinase-PD-L1 signaling axis associated with radiation resistance in head and neck cancer. Clin. Cancer Res. 23, 2713–2722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du, W. et al. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ. 28, 1284–1300 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, G. J. et al. Growth arrest-specific 6 enhances the suppressive function of CD4+CD25+ regulatory T cells mainly through Axl receptor. Mediators Inflamm. 2017, 6848430 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shao, W. H., Eisenberg, R. A. & Cohen, P. L. The Mer receptor tyrosine kinase is required for the loss of B cell tolerance in the chronic graft-versus-host disease model of systemic lupus erythematosus. J. Immunol. 180, 7728–7735 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cabezon, R. et al. MERTK as negative regulator of human T cell activation. J. Leukoc. Biol. 97, 751–760 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giroud, P. et al. Expression of TAM-R in human immune cells and unique regulatory function of MerTK in IL-10 production by tolerogenic DC. Front. Immunol. 11, 564133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Powell, R. M. et al. Small molecule inhibitors of MERTK and FLT3 induce cell cycle arrest in human CD8+ T cells. Vaccines https://doi.org/10.3390/vaccines9111294 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shao, W. H., Zhen, Y., Finkelman, F. D. & Cohen, P. L. The Mertk receptor tyrosine kinase promotes T-B interaction stimulated by IgD B-cell receptor cross-linking. J. Autoimmun. 53, 78–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196, 135–140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wallet, M. A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waterborg, C. E. J., Koenders, M. I., van Lent, P., van der Kraan, P. M. & van de Loo, F. A. J. Tyro3/Axl/Mertk-deficient mice develop bone marrow edema which is an early pathological marker in rheumatoid arthritis. PLoS ONE 13, e0205902 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hoehn, H. J. et al. Axl−/− mice have delayed recovery and prolonged axonal damage following cuprizone toxicity. Brain Res. 1240, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Huelse, J. M. et al. MERTK inhibition induces an anti-leukemia dendritic cell - T cell axis while TYRO3 inhibition protects through a separate mechanism [abstract]. Cancer Res. 82 (Suppl. 12), 240 (2022).

    Article  Google Scholar 

  46. Akalu, Y. T. et al. Tissue-specific modifier alleles determine Mertk loss-of-function traits. eLife https://doi.org/10.7554/eLife.80530 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bagger, F. O., Kinalis, S. & Rapin, N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 47, D881–D885 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Tirado-Gonzalez, I. et al. AXL inhibition in macrophages stimulates host-versus-leukemia immunity and eradicates naïve and treatment-resistant leukemia. Cancer Discov. https://doi.org/10.1158/2159-8290.Cd-20-1378 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Loges, S. et al. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115, 2264–2273 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Ran, S., Downes, A. & Thorpe, P. E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140 (2002).

    CAS  PubMed  Google Scholar 

  51. Sharma, R., Huang, X., Brekken, R. A. & Schroit, A. J. Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. Br. J. Cancer 117, 545–552 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cook, R. S. et al. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J. Clin. Invest. 123, 3231–3242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davra, V. et al. Axl and Mertk receptors cooperate to promote breast cancer progression by combined oncogenic signaling and evasion of host antitumor immunity. Cancer Res. 81, 698–712 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Lee-Sherick, A. B. et al. MERTK inhibition alters the PD-1 axis and promotes anti-leukemia immunity. JCI Insight https://doi.org/10.1172/jci.insight.97941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Novitskiy, S. V. et al. Gas6/MerTK signaling is negatively regulated by NF-κB and supports lung carcinogenesis. Oncotarget 10, 7031–7042 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Du, W. et al. AXL is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Mol. Cancer Res. 19, 1412–1421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holtzhausen, A. et al. TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.Cir-19-0008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo, Z., Li, Y., Zhang, D. & Ma, J. Axl inhibition induces the antitumor immune response which can be further potentiated by PD-1 blockade in the mouse cancer models. Oncotarget 8, 89761–89774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yokoyama, Y. et al. Immuno-oncological efficacy of RXDX-106, a novel TAM (TYRO3, AXL, MER) family small-molecule kinase inhibitor. Cancer Res. 79, 1996–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Rios-Doria, J. et al. A potent and selective dual inhibitor of AXL and MERTK possesses both immunomodulatory and tumor-targeted activity. Front. Oncol. 10, 598477 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Synn, C. B. et al. SKI-G-801, an AXL kinase inhibitor, blocks metastasis through inducing anti-tumor immune responses and potentiates anti-PD-1 therapy in mouse cancer models. Clin. Transl. Immunol. 11, e1364 (2022).

    Article  CAS  Google Scholar 

  62. Zhou, Y. et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52, 357–373.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Freimark, B. D. et al. Antibody-mediated phosphatidylserine blockade enhances the antitumor responses to CTLA-4 and PD-1 antibodies in melanoma. Cancer Immunol. Res. 4, 531–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gray, M. J. et al. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res. 18, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kasikara, C. et al. Pan-TAM tyrosine kinase inhibitor BMS-777607 enhances anti-PD-1 mAb efficacy in a murine model of triple-negative breast cancer. Cancer Res. https://doi.org/10.1158/0008-5472.Can-18-2614 (2019).

    Article  PubMed  Google Scholar 

  66. Stanford, J. C. et al. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J. Clin. Invest. 124, 4737–4752 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cendrowicz, E., Sas, Z., Bremer, E. & Rygiel, T. P. The role of macrophages in cancer development and therapy. Cancers https://doi.org/10.3390/cancers13081946 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aguilera, T. A. et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat. Commun. 7, 13898 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jeon, Y. et al. A novel selective Axl/Mer/CSF1R kinase inhibitor as a cancer immunotherapeutic agent targeting both immune and tumor cells in the tumor microenvironment. Cancers https://doi.org/10.3390/cancers14194821 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ludwig, K. F. et al. Small-molecule inhibition of Axl targets tumor immune suppression and enhances chemotherapy in pancreatic cancer. Cancer Res. 78, 246–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yang, Y., Li, C., Liu, T., Dai, X. & Bazhin, A. V. Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front. Immunol. 11, 1371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaudhary, B. & Elkord, E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines https://doi.org/10.3390/vaccines4030028 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Terry, S. et al. Association of AXL and PD-L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD-1 blockade. Clin. Cancer Res. 27, 6749–6760 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Tsukita, Y. et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol. Cancer 18, 24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jiang, Z. et al. TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J. Clin. Invest. https://doi.org/10.1172/jci139434 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ben-Batalla, I. et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 122, 2443–2452 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Lee-Sherick, A. B. et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene 32, 5359–5368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whitman, S. P. et al. GAS6 expression identifies high-risk adult AML patients: potential implications for therapy. Leukemia 28, 1252–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Linger, R. M. et al. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia. Blood 122, 1599–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brandao, L. N. et al. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia. Blood Cancer J. 3, e101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Waizenegger, J. S. et al. Role of growth arrest-specific gene 6-Mer axis in multiple myeloma. Leukemia 29, 696–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Cheng, P. et al. Kinome-wide shRNA screen identifies the receptor tyrosine kinase AXL as a key regulator for mesenchymal glioblastoma stem-like cells. Stem Cell Rep. 4, 899–913 (2015).

    Article  CAS  Google Scholar 

  84. Shi, C. et al. The proto-oncogene Mer tyrosine kinase is a novel therapeutic target in mantle cell lymphoma. J. Hematol. Oncol. 11, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wong, J. P. et al. Kinome profiling of non-Hodgkin lymphoma identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proc. Natl Acad. Sci. USA 116, 16541–16550 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sato, K. et al. Clinical, pathological, and molecular features of lung adenocarcinomas with AXL expression. PLoS ONE 11, e0154186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Qu, X. H., Liu, J. L., Zhong, X. W., Li, X. I. & Zhang, Q. G. Insights into the roles of hnRNP A2/B1 and AXL in non-small cell lung cancer. Oncol. Lett. 10, 1677–1685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Divine, L. M. et al. AXL modulates extracellular matrix protein expression and is essential for invasion and metastasis in endometrial cancer. Oncotarget 7, 77291–77305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mullen, M. M. et al. GAS6/AXL inhibition enhances ovarian cancer sensitivity to chemotherapy and PARP inhibition through increased DNA damage and enhanced replication stress. Mol. Cancer Res. https://doi.org/10.1158/1541-7786.Mcr-21-0302 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bruce, S. F. et al. GAS6-AXL inhibition by AVB-500 overcomes resistance to paclitaxel in endometrial cancer by decreasing tumor cell glycolysis. Mol. Cancer Ther. https://doi.org/10.1158/1535-7163.Mct-21-0704 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ibrahim, A. M. et al. Gas6 expression is reduced in advanced breast cancers. NPJ Precis. Oncol. 4, 9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morimoto, M. et al. Oncogenic role of TYRO3 receptor tyrosine kinase in the progression of pancreatic cancer. Cancer Lett. 470, 149–160 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Song, X. et al. Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer 117, 734–743 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Melchionna, R. et al. The actin modulator hMENA regulates GAS6-AXL axis and pro-tumor cancer/stromal cell cooperation. EMBO Rep. 21, e50078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hakozaki, K. et al. Landscape of prognostic signatures and immunogenomics of the AXL/GAS6 axis in renal cell carcinoma. Br. J. Cancer 125, 1533–1543 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y., Tian, Y., Liu, S., Wang, Z. & Xing, Q. Prognostic value and immunological role of AXL gene in clear cell renal cell carcinoma associated with identifying LncRNA/RBP/AXL mRNA networks. Cancer Cell Int. 21, 625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schlegel, J. et al. MERTK receptor tyrosine kinase is a therapeutic target in melanoma. J. Clin. Invest. 123, 2257–2267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Keating, A. K. et al. Inhibition of Mer and Axl receptor tyrosine kinases in astrocytoma cells leads to increased apoptosis and improved chemosensitivity. Mol. Cancer Ther. 9, 1298–1307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Song, W. et al. AXL inactivation inhibits mesothelioma growth and migration via regulation of p53 expression. Cancers https://doi.org/10.3390/cancers12102757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Migdall-Wilson, J. et al. Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS ONE 7, e31635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y. et al. N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol. 54, 102366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Merilahti, J. A. M., Ojala, V. K., Knittle, A. M., Pulliainen, A. T. & Elenius, K. Genome-wide screen of gamma-secretase-mediated intramembrane cleavage of receptor tyrosine kinases. Mol. Biol. Cell 28, 3123–3131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu, Y. et al. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB J. 31, 1382–1397 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Zhu, S. et al. A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc. Natl Acad. Sci. USA 106, 17025–17030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dufour, F. et al. TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer. Br. J. Cancer 120, 555–564 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Park, M. et al. Circulating small extracellular vesicles activate TYRO3 to drive cancer metastasis and chemoresistance. Cancer Res. 81, 3539–3553 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Avilla, E. et al. Activation of TYRO3/AXL tyrosine kinase receptors in thyroid cancer. Cancer Res. 71, 1792–1804 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Chien, C. W. et al. Targeting TYRO3 inhibits epithelial-mesenchymal transition and increases drug sensitivity in colon cancer. Oncogene 35, 5872–5881 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Janssen, J. W. et al. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 6, 2113–2120 (1991).

    CAS  PubMed  Google Scholar 

  111. Georgescu, M. M., Kirsch, K. H., Shishido, T., Zong, C. & Hanafusa, H. Biological effects of c-Mer receptor tyrosine kinase in hematopoietic cells depend on the Grb2 binding site in the receptor and activation of NF-κB. Mol. Cell Biol. 19, 1171–1181 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Keating, A. K. et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 25, 6092–6100 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Guttridge, K. L. et al. Mer receptor tyrosine kinase signaling: prevention of apoptosis and alteration of cytoskeletal architecture without stimulation or proliferation. J. Biol. Chem. 277, 24057–24066 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Linger, R. M. et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32, 3420–3431 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Papadakis, E. S. et al. Axl promotes cutaneous squamous cell carcinoma survival through negative regulation of pro-apoptotic Bcl-2 family members. J. Invest. Dermatol. 131, 509–517 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Sabarwal, A. et al. A combination therapy using mTOR inhibitor and Honokiol effectively induces autophagy through the modulation of AXL and Rubicon in renal cancer cells, and restricts renal tumor growth following an organ transplantation. Carcinogenesis https://doi.org/10.1093/carcin/bgab126 (2021).

    Article  PubMed Central  Google Scholar 

  117. Nyakas, M. et al. AXL inhibition improves BRAF-targeted treatment in melanoma. Sci. Rep. 12, 5076 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Najafov, A. et al. BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biol. 16, e2005756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Milanovic, M., Yu, Y. & Schmitt, C. A. The senescence–stemness alliance – a cancer-hijacked regeneration principle. Trends Cell Biol. 28, 1049–1061 (2018).

    Article  PubMed  Google Scholar 

  121. Duan, Y. et al. Overexpression of Tyro3 and its implications on hepatocellular carcinoma progression. Int. J. Oncol. 48, 358–366 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Sufit, A. et al. MERTK inhibition induces polyploidy and promotes cell death and cellular senescence in glioblastoma multiforme. PLoS ONE 11, e0165107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Clarke, M. F. Clinical and therapeutic implications of cancer stem cells. N. Engl. J. Med. 380, 2237–2245 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Tsai, C. L. et al. Functional genomics identifies hepatitis-induced STAT3–TYRO3–STAT3 signaling as a potential therapeutic target of hepatoma. Clin. Cancer Res. 26, 1185–1197 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Meel, M. H. et al. Combined therapy of AXL and HDAC inhibition reverses mesenchymal transition in diffuse intrinsic pontine glioma. Clin. Cancer Res. 26, 3319–3332 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Jin, Y. et al. Gas6/AXL signaling regulates self-renewal of chronic myelogenous leukemia stem cells by stabilizing β-catenin. Clin. Cancer Res. 23, 2842–2855 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Niu, X. et al. Targeting AXL kinase sensitizes leukemic stem and progenitor cells to venetoclax treatment in acute myeloid leukemia. Blood 137, 3641–3655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jung, Y. et al. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7, 25698–25711 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Cichoń, M. A. et al. The receptor tyrosine kinase Axl regulates cell–cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene 33, 4185–4192 (2014).

    Article  PubMed  Google Scholar 

  130. Ahmed, L. et al. Increased tumor cell expression of Axl is a marker of aggressive features in breast cancer among African women. Acta Pathol. Microbiol. Immunol. Scand. 123, 688–696 (2015).

    Article  CAS  Google Scholar 

  131. Hoque, M. et al. MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochem. Pharmacol. 186, 114437 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Cackowski, F. C. et al. Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. J. Cell Biochem. 118, 891–902 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Mahajan, N. P., Whang, Y. E., Mohler, J. L. & Earp, H. S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 65, 10514–10523 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Jiang, Y. et al. MERTK mediated novel site Akt phosphorylation alleviates SAV1 suppression. Nat. Commun. 10, 1515 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Colhado Rodrigues, B. L., Lallo, M. A. & Perez, E. C. The controversial role of autophagy in tumor development: a systematic review. Immunol. Invest. 49, 386–396 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Lotsberg, M. L. et al. AXL targeting abrogates autophagic flux and induces immunogenic cell death in drug-resistant cancer cells. J. Thorac. Oncol. 15, 973–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vega-Rubín-de-Celis, S. The role of beclin 1-dependent autophagy in cancer. Biology https://doi.org/10.3390/biology9010004 (2020).

    Article  Google Scholar 

  138. Melaragno, M. G., Fridell, Y. W. & Berk, B. C. The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc. Med. 9, 250–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Holland, S. J. et al. Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res. 65, 9294–9303 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Burstyn-Cohen, T., Heeb, M. J. & Lemke, G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J. Clin. Invest. 119, 2942–2953 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ruan, G. X. & Kazlauskas, A. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31, 1692–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Toboni, M. D. et al. Inhibition of AXL and VEGF-A has improved therapeutic efficacy in uterine serous cancer. Cancers https://doi.org/10.3390/cancers13235877 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lim, D. et al. MicroRNA 34a-AXL axis regulates vasculogenic mimicry formation in breast cancer cells. Genes https://doi.org/10.3390/genes12010009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Tanaka, M. & Siemann, D. W. Axl signaling is an important mediator of tumor angiogenesis. Oncotarget 10, 2887–2898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chai, Z. T. et al. AXL Overexpression in tumor-derived endothelial cells promotes vessel metastasis in patients with hepatocellular carcinoma. Front. Oncol. 11, 650963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fraineau, S. et al. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and SHP2-dependent manner. Blood 120, 5073–5083 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Wu, Y. M., Robinson, D. R. & Kung, H. J. Signal pathways in up-regulation of chemokines by tyrosine kinase MER/NYK in prostate cancer cells. Cancer Res. 64, 7311–7320 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Ishikawa, M. et al. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann. Surg. Oncol. 20, 467–476 (2013).

    Article  Google Scholar 

  149. Wu, Z. et al. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas. Hum. Pathol. 46, 1935–1944 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Shinh, Y.-S. et al. Expression of Axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia 7, 1058–1064 (2005).

    Article  Google Scholar 

  151. Gjerdrum, C. et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc. Natl Acad. Sci. USA 107, 1124–1129 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Goyette, M. A. et al. The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep. 23, 1476–1490 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Rankin, E. B. et al. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res. 70, 7570–7579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Koorstra, J. B. et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol. Ther. 8, 618–626 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Ryan, D., Koziol, J. & ElShamy, W. M. Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci. Rep. 9, 19150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sami, E., Bogan, D., Molinolo, A., Koziol, J. & ElShamy, W. M. The molecular underpinning of geminin-overexpressing triple-negative breast cancer cells homing specifically to lungs. Cancer Gene Ther. https://doi.org/10.1038/s41417-021-00311-x (2021).

    Article  PubMed  Google Scholar 

  157. Chen, D., Liu, Q., Cao, G. & Zhang, W. TYRO3 facilitates cell growth and metastasis via activation of the Wnt/β-catenin signaling pathway in human gastric cancer cells. Aging 12, 2261–2274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sawabu, T. et al. Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol. Carcinog. 46, 155–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Han, L. et al. Low expression of long noncoding RNA GAS6-AS1 predicts a poor prognosis in patients with NSCLC. Med. Oncol. 30, 694 (2013).

    Article  PubMed  Google Scholar 

  160. Safaric Tepes, P. et al. An epigenetic switch regulates the ontogeny of AXL-positive/EGFR-TKi-resistant cells by modulating miR-335 expression. eLife https://doi.org/10.7554/eLife.66109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ciardiello, D. et al. Dual inhibition of TGFβ and AXL as a novel therapy for human colorectal adenocarcinoma with mesenchymal phenotype. Med. Oncol. 38, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Du, J. et al. circRAE1 promotes colorectal cancer cell migration and invasion by modulating miR-338-3p/TYRO3 axis. Cancer Cell Int. 20, 430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Taichman, R. S. et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8, e61873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kim, M. S. et al. Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics. Mol. Cell Proteom. 13, 2803–2811 (2014).

    Article  CAS  Google Scholar 

  165. Li, Y., Wang, X., Bi, S., Zhao, K. & Yu, C. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochem. Biophys. Res. Commun. 457, 461–466 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Tworkoski, K. A. et al. MERTK controls melanoma cell migration and survival and differentially regulates cell behavior relative to AXL. Pigment. Cell Melanoma Res. 26, 527–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sinha, S. et al. Upregulation of AXL and β-catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance. Blood Cancer J. 11, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chen, Y. C. et al. Obesity-associated leptin promotes chemoresistance in colorectal cancer through YAP-dependent AXL upregulation. Am. J. Cancer Res. 11, 4220–4240 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Dumas, P. Y. et al. Dual inhibition of FLT3 and AXL by gilteritinib overcomes hematopoietic niche-driven resistance mechanisms in FLT3-ITD acute myeloid leukemia. Clin. Cancer Res. 27, 6012–6025 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Hong, C. C. et al. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 268, 314–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Liu, Y. et al. Novel AXL-targeted agents overcome FLT3 inhibitor resistance in FLT3-ITD+ acute myeloid leukemia cells. Oncol. Lett. 21, 397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, N. Y., Lee, H. Y. & Lee, C. Metformin targets Axl and Tyro3 receptor tyrosine kinases to inhibit cell proliferation and overcome chemoresistance in ovarian cancer cells. Int. J. Oncol. 47, 353–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Macleod, K. et al. Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res. 65, 6789–6800 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Quinn, J. M. et al. Therapeutic inhibition of the receptor tyrosine kinase AXL improves sensitivity to platinum and taxane in ovarian cancer. Mol. Cancer Ther. 18, 389–398 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Tang, Y. et al. A 10-gene signature identified by machine learning for predicting the response to transarterial chemoembolization in patients with hepatocellular carcinoma. J. Oncol. 2022, 3822773 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lin, J. Z. et al. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget 8, 41064–41077 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lay, J.-D. et al. Sulfasalazine suppresses drug resistance and invasiveness of lung adenocarcinoma cells expressing AXL. Cancer Res. 67, 3878–3887 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Brand, T. M. et al. AXL is a logical molecular target in head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 2601–2612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, Y. et al. Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme. Oncogene 32, 872–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. McDaniel, N. K. et al. AXL mediates cetuximab and radiation resistance through tyrosine 821 and the c-ABL kinase pathway in head and neck cancer. Clin. Cancer Res. 26, 4349–4359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yan, D., Earp, H. S., DeRyckere, D. & Graham, D. K. Targeting MERTK and AXL in EGFR mutant non-small cell lung cancer. Cancers https://doi.org/10.3390/cancers13225639 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Xue, G. et al. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget 8, 69204–69218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sinik, L. et al. Inhibition of MERTK promotes suppression of tumor growth in BRAF mutant and BRAF wild-type melanoma. Mol. Cancer Ther. 18, 278–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Kabir, T. D. et al. A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma. Hepatology 67, 216–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 44, 852–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Okura, N. et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small lung cancer. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-19-2321 (2020).

    Article  PubMed  Google Scholar 

  187. Byers, L. A. et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  188. Yan, D. et al. MERTK activation drives osimertinib resistance in EGFR-mutant non-small cell lung cancer. J. Clin. Invest. https://doi.org/10.1172/jci150517 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Meyer, A. S., Miller, M. A., Gertler, F. B. & Lauffenburger, D. A. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci. Signal. 6, ra66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Liu, L. et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 69, 6871–6878 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Giles, K. M. et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther. 12, 2541–2558 (2013).

    Article  CAS  PubMed  Google Scholar 

  192. Brand, T. M. et al. AXL mediates resistance to cetuximab therapy. Cancer Res. 74, 5152–5164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Iida, M. et al. AXL regulates neuregulin1 expression leading to cetuximab resistance in head and neck cancer. BMC Cancer 22, 447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Alexander, P. B. et al. Distinct receptor tyrosine kinase subsets mediate anti-HER2 drug resistance in breast cancer. J. Biol. Chem. 292, 748–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Adam-Artigues, A. et al. Targeting HER2-AXL heterodimerization to overcome resistance to HER2 blockade in breast cancer. Sci. Adv. 8, eabk2746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Debruyne, D. N. et al. ALK inhibitor resistance in ALKF1174L-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene 35, 3681–3691 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Ye, X. et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29, 5254–5264 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Kim, H. R. et al. Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation. Mol. Oncol. 7, 1093–1102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Boshuizen, J. et al. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med. 24, 203–212 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Miller, M. A. et al. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 6, 382–399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zuo, Q. et al. AXL/AKT axis mediated-resistance to BRAF inhibitor depends on PTEN status in melanoma. Oncogene 37, 3275–3289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mahadevan, D. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26, 3909–3919 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Dufies, M. et al. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget 2, 874–885 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Gioia, R. et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood 118, 2211–2221 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Lu, L. et al. Modelling ponatinib resistance in tyrosine kinase inhibitor-naïve and dasatinib resistant BCR-ABL1+ cell lines. Oncotarget 9, 34735–34747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Eide, C. A. et al. Characterization of the genomic landscape of BCR-ABL1 kinase-independent mechanisms of resistance to ABL1 tyrosine kinase inhibitors in chronic myeloid leukemia. Blood 128, 1119 (2016).

    Article  Google Scholar 

  207. Umemura, S., Sowa, Y., Iizumi, Y., Kitawaki, J. & Sakai, T. Synergistic effect of the inhibitors of RAF/MEK and AXL on KRAS-mutated ovarian cancer cells with high AXL expression. Cancer Sci. 111, 2052–2061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Elkabets, M. et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 27, 533–546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Ruicci, K. M. et al. TAM family receptors in conjunction with MAPK signalling are involved in acquired resistance to PI3Kα inhibition in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 39, 217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Solanes-Casado, S. et al. Overcoming PLK1 inhibitor resistance by targeting mevalonate pathway to impair AXL-TWIST axis in colorectal cancer. Biomed. Pharmacother. 144, 112347 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Sen, T. et al. Targeting AXL and mTOR pathway overcomes primary and acquired resistance to WEE1 inhibition in small-cell lung cancer. Clin. Cancer Res. 23, 6239–6253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ramkumar, K. et al. AXL inhibition induces DNA damage and replication stress in non-small cell lung cancer cells and promotes sensitivity to ATR inhibitors. Mol. Cancer Res. 19, 485–497 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Post, S. M. et al. AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica https://doi.org/10.3324/haematol.2021.278369 (2021).

    Article  PubMed Central  Google Scholar 

  214. Yang, M. et al. A unique role of p53 haploinsufficiency or loss in the development of acute myeloid leukemia with FLT3-ITD mutation. Leukemia https://doi.org/10.1038/s41375-021-01452-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Vagapova, E. et al. Selective inhibition of HDAC class I sensitizes leukemia and neuroblastoma cells to anticancer drugs. Biomedicines https://doi.org/10.3390/biomedicines9121846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lee, C. Overexpression of Tyro3 receptor tyrosine kinase leads to the acquisition of taxol resistance in ovarian cancer cells. Mol. Med. Rep. 12, 1485–1492 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Huang, F. et al. Differential mechanisms of acquired resistance to insulin-like growth factor-I receptor antibody therapy or to a small-molecule inhibitor, BMS-754807, in a human rhabdomyosarcoma model. Cancer Res. 70, 7221–7231 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Bouhaddou, M. et al. Caveolin-1 and Sox-2 are predictive biomarkers of cetuximab response in head and neck cancer. JCI insight https://doi.org/10.1172/jci.insight.151982 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Keysar, S. B. et al. A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol. Oncol. 7, 776–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Boshuizen, J. et al. Cooperative targeting of immunotherapy-resistant melanoma and lung cancer by an AXL-targeting antibody-drug conjugate and immune checkpoint blockade. Cancer Res. 81, 1775–1787 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Lee, W. et al. Incorporation of SKI-G-801, a novel AXL inhibitor, with anti-PD-1 plus chemotherapy improves anti-tumor activity and survival by enhancing T cell immunity. Front. Oncol. 12, 821391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Li, H. et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep. Med. 3, 100554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Fu, J. et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 12, 21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Caetano, M. S. et al. Triple therapy with MerTK and PD1 inhibition plus radiotherapy promotes abscopal antitumor immune responses. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-19-0795 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zucca, L. E. et al. Expression of tyrosine kinase receptor AXL is associated with worse outcome of metastatic renal cell carcinomas treated with sunitinib. Urol. Oncol. 36, e13–11.e21 (2018).

    Article  Google Scholar 

  226. Powles, T. et al. Outcomes based on plasma biomarkers in METEOR, a randomized phase 3 trial of cabozantinib vs everolimus in advanced renal cell carcinoma. BMC Cancer 21, 904 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Holland, S. J. et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 70, 1544–1554 (2010).

    Article  CAS  PubMed  Google Scholar 

  228. Loges, S. et al. Final analysis of the dose escalation, expansion and biomarker correlations in the Ph I/II trial BGBC003 with the selective oral AXL inhibitor bemcentinib (BGB324) in relapsed/refractory AML and MDS [abstract]. Blood 132 (Suppl. 1), 2672 (2018).

    Article  Google Scholar 

  229. Kubasch, A. S. et al. Efficacy and safety of bemcentinib in patients with myelodysplastic syndromes or acute myeloid leukemia failing hypomethylating agents [abstract]. Blood 136, 37–38 (2020).

    Article  Google Scholar 

  230. Byers, L. A. et al. Ph I/II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with erlotinib in patients with advanced EGFRm NSCLC: end of trial update [abstract]. J. Clin. Oncol. 39 (Suppl. 15), 9110 (2021).

    Article  Google Scholar 

  231. Jimbo, T. et al. DS-1205b, a novel selective inhibitor of AXL kinase, blocks resistance to EGFR-tyrosine kinase inhibitors in a non-small cell lung cancer xenograft model. Oncotarget 10, 5152–5167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Nishio, M. et al. A first-in-human phase I study of the AXL inhibitor DS-1205c in combination with gefitinib in subjects with EGFR-mutant NSCLC [abstract 570P]. Ann. Oncol. 31 (Suppl. 4), S488 (2020).

    Article  Google Scholar 

  233. Yang, J. C. et al. Evaluation of combination treatment with DS-1205c, an AXL kinase inhibitor, and osimertinib in metastatic or unresectable EGFR-mutant non-small cell lung cancer: results from a multicenter, open-label phase 1 study. Invest. N. Drugs 41, 306–316 (2023).

    Article  CAS  Google Scholar 

  234. Lai, S. et al. Activity of the TAM kinase-targeting compound, SLC-391, is mediated by the engagement of the immune system in CT-26 syngeneic mouse model [abstract]. Mol. Cancer Ther. 17 (Suppl. 1), B148 (2018).

    Article  Google Scholar 

  235. Zhang, W. et al. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J. Med. Chem. 57, 7031–7041 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Minson, K. A. et al. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight 1, e85630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Ruvolo, P. P. et al. Anexelekto/MER tyrosine kinase inhibitor ONO-7475 arrests growth and kills FMS-like tyrosine kinase 3-internal tandem duplication mutant acute myeloid leukemia cells by diverse mechanisms. Haematologica 102, 2048–2057 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Subbiah, V. et al. Trials in progress: a phase 1, open-label, dose-escalation, pharmacokinetic, safety and tolerability study of the selective TAM kinase inhibitor PF-07265807 in patients with advanced or metastatic solid tumors [abstract]. J. Clin. Oncol. 39 (Suppl. 15), TPS2671 (2021).

    Article  Google Scholar 

  239. Ameratunga, M. et al. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl antibody-drug conjugate (ADC) enapotamab vedotin (EnaV) in solid tumors [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 2525 (2019).

    Article  Google Scholar 

  240. Ramalingam, S. et al. First-in-human phase 1/2 trial of anti-AXL antibody–drug conjugate (ADC) enapotamab vedotin (EnaV) in advanced NSCLC [abstract OA02.05]. J. Thorac. Oncol. 14 (Suppl. 10), S209 (2019).

    Article  Google Scholar 

  241. Genmab. Genmab announces enapotamab vedotin update. Genmab https://ir.genmab.com/news-releases/news-release-details/genmab-announces-enapotamab-vedotin-update (2020).

  242. Chang, H. W. et al. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2020606118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Chang, C., Frey, G., Boyle, W. J., Sharp, L. L. & Short, J. M. Novel conditionally active biologic anti-Axl antibody-drug conjugate demonstrates anti-tumor efficacy and improved safety profile [abstract]. Cancer Res. 76 (Suppl. 14), 3836 (2016).

    Article  Google Scholar 

  244. Sharp, L. L. et al. Anti-tumor efficacy of BA3011, a novel conditionally active biologic (CAB) anti-AXL-ADC [abstract]. Cancer Res. 78 (Suppl. 13), 827 (2018).

    Article  Google Scholar 

  245. Wilky, B. A. et al. Interim safety and efficacy results from a phase 1/2 study of BA3011, a CAB-AXL-ADC, in patients with advanced sarcoma or other solid tumors (Poster no. P154). Presented at the Connective Tissue Oncology Society 2021 Annual Meeting (Virtual).

  246. Zammarchi, F. et al. Preclinical development of ADCT-601, a novel pyrrolobenzodiazepine dimer-based antibody–drug conjugate targeting AXL-expressing cancers. Mol. Cancer Ther. 21, 582–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tolcher, A. W. et al. A phase I, open-label, dose-escalation study to evaluate the safety, tolerability, pharmacokinetics, and antitumor activity of ADCT-601 in patients with advanced solid tumours [abstract 468P]. Ann. Oncol. 30 (Suppl. 5), v176–v177 (2019).

    Article  Google Scholar 

  248. Kariolis, M. S. et al. An engineered Axl ‘decoy receptor’ effectively silences the Gas6-Axl signaling axis. Nat. Chem. Biol. 10, 977–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Fuh, K. C. et al. Phase 1b study of AVB-500 in combination with paclitaxel or pegylated liposomal doxorubicin platinum-resistant recurrent ovarian cancer. Gynecol. Oncol. 163, 254–261 (2021).

    Article  CAS  PubMed  Google Scholar 

  250. Shah, N. J. et al. A phase 1b/2 study of batiraxcept (AVB-S6-500) in combination with cabozantinib in patients with advanced or metastatic clear cell renal cell (ccRCC) carcinoma who have received front-line treatment (NCT04300140) [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 4511 (2022).

    Article  Google Scholar 

  251. Tsou, W. I. et al. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 289, 25750–25763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chen, T. J. et al. AXL targeting by a specific small molecule or monoclonal antibody inhibits renal cell carcinoma progression in an orthotopic mice model. Physiol. Rep. 9, e15140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Alvarado, D. et al. Monoclonal antibodies targeting the TAM family of receptor tyrosine kinases [abstract 1555]. Cancer Res. 79 (Suppl. 13), 1555 (2019).

    Article  Google Scholar 

  254. Moody, G. et al. Antibody-mediated neutralization of autocrine Gas6 inhibits the growth of pancreatic ductal adenocarcinoma tumors in vivo. Int. J. Cancer 139, 1340–1349 (2016).

    Article  CAS  PubMed  Google Scholar 

  255. Carrara, S. C. et al. Targeted phagocytosis induction for cancer immunotherapy via bispecific MerTK-engaging antibodies. Int. J. Mol. Sci. https://doi.org/10.3390/ijms232415673 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. He, R. et al. Discovery of AXL degraders with improved potencies in triple-negative breast cancer (TNBC) cells. J. Med. Chem. 66, 1873–1891 (2023).

    Article  CAS  PubMed  Google Scholar 

  257. Shi, W. et al. Structure-based discovery of receptor tyrosine kinase AXL degraders with excellent anti-tumor activity by selectively degrading AXL and inducing methuosis. Eur. J. Med. Chem. 234, 114253 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Geng, K. et al. Requirement of gamma-carboxyglutamic acid modification and phosphatidylserine binding for the activation of Tyro3, Axl, and Mertk receptors by growth arrest-specific 6. Front. Immunol. 8, 1521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Bellido-Martín, L. & de Frutos, P. G. Vitamin K-dependent actions of Gas6. Vitam. Horm. 78, 185–209 (2008).

    Article  PubMed  Google Scholar 

  260. Hwang, J. A. et al. Efficacy of newly discovered DNA aptamers targeting AXL in a lung cancer cell with acquired resistance to erlotinib. Transl. Cancer Res. 10, 1025–1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Amero, P. et al. Conversion of RNA aptamer into modified DNA aptamers provides for prolonged stability and enhanced antitumor activity. J. Am. Chem. Soc. 143, 7655–7670 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Mills, K. A. et al. p5RHH nanoparticle-mediated delivery of AXL siRNA inhibits metastasis of ovarian and uterine cancer cells in mouse xenografts. Sci. Rep. 9, 4762 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Bhalla, S. et al. Phase 1 dose escalation and expansion study of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced NSCLC [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 9081 (2022).

    Article  Google Scholar 

  264. Bhalla, S. et al. Phase 1 trial of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced non-small cell lung cancer. Lung Cancer 182, 107291 (2023).

    Article  CAS  PubMed  Google Scholar 

  265. Beg, M. S. et al. A randomized clinical trial of chemotherapy with gemcitabine/cisplatin/nabpaclitaxel with or without the AXL inhibitor bemcentinib (BGB324) for patients with advanced pancreatic cancer [abstract]. J. Clin. Oncol. 37 (Suppl. 4), TPS473 (2019).

    Article  Google Scholar 

  266. Yan, S. B. et al. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest. N. Drugs 31, 833–844 (2013).

    Article  CAS  Google Scholar 

  267. Valle, J. W. et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: a randomised, double-blind, multicentre, phase 2 study. Lancet Oncol. 22, 1468–1482 (2021).

    Article  CAS  PubMed  Google Scholar 

  268. Loges, S. et al. First-in class selective AXL inhibitor bemcentinib (BGB324) in combination with LDAC or decitabine exerts anti-leukaemic activity in AML patients unfit for intensive chemotherapy: phase II open-label study [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 7043 (2019).

    Article  Google Scholar 

  269. Loges, S. et al. The combination of AXL inhibitor bemcentinib and low dose cytarabine is well tolerated and efficacious in elderly relapsed AML patients: update from the ongoing BGBC003 phase II trial (NCT02488408) [abstract]. Blood 136 (Suppl. 1), 14 (2020).

    Article  Google Scholar 

  270. Loges, S. et al. Bemcentinib (oral AXL inhibitor) in combination with low-dose cytarabine is well tolerated and efficacious in older relapsed AML patients.updates from the ongoing phase II trial (NCT02488408) and preliminary translational results indicating bemcentinib elicits anti-AML immune responses [abstract]. Blood 138 (Suppl. 1), 3410 (2021).

    Article  Google Scholar 

  271. Loges, S. et al. Bemcentinib combined with low-dose cytarabine is efficacious and well tolerated in relapsed aml patients unfit for intensive chemotherapy. updates from the ongoing phase II trial (NCT02488408) [abstract P548]. HemaSphere 6, 447–448 (2022).

    Article  Google Scholar 

  272. Sarkozy, C. et al. Outcome of older patients with acute myeloid leukemia in first relapse. Am. J. Hematol. 88, 758–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  273. Stone, A., Zukerman, T., Flaishon, L., Yakar, R. B. & Rowe, J. M. Efficacy outcomes in the treatment of older or medically unfit patients with acute myeloid leukaemia: a systematic review and meta-analysis. Leuk. Res. 82, 36–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  274. Wei, A. H. et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood 135, 2137–2145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Daver, N. et al. Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia. J. Clin. Oncol. https://doi.org/10.1200/jco.22.00602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Zhang, L. S. et al. Rapid and efficient response to gilteritinib and venetoclax-based therapy in two AML patients with FLT3-ITD mutation unresponsive to venetoclax plus azacitidine. Onco Targets Ther. 15, 159–164 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Yang, J. C. et al. Phase 1 study of the AXL inhibitor DS-1205 in combination with osimertinib in subjects with metastatic or unresectable EGFR-mutant NSCLC [abstract P86.01]. J. Thorac. Oncol. 16 (Suppl. 3), S672 (2021).

    Google Scholar 

  278. Park, K. et al. Phase I results of S49076 plus gefitinib in patients with EGFR TKI-resistant non-small cell lung cancer harbouring MET/AXL dysregulation. Lung Cancer 155, 127–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  279. Yan, D. et al. MERTK promotes resistance to irreversible EGFR tyrosine kinase inhibitors in non-small cell lung cancers expressing wild-type EGFR family members. Clin. Cancer Res. 24, 6523–6535 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Schuster, C., Gausdal, G., Gjertsen, B. T., Lorens, J. & Straume, O. Update on the randomised phase Ib/II study of the selective small molecule AXL inhibitor bemcentinib (BGB324) in combination with either dabrafenib/trametinib or pembrolizumab in patients with metastatic melanoma [abstract 1266P]. Ann. Oncol. 29 (Suppl. 8), viii452 (2018).

    Article  Google Scholar 

  281. Straume, O., Lorens, J. B., Gausdal, G., Gjertsen, B. T. & Schuster, C. Trial update: a randomized phase Ib/II study of the selective small molecule Axl inhibitor bemcentinib (BGB324) in combination with either dabrafenib/trametinib (D/T) or pembrolizumab in patients with metastatic melanoma [abstract 2131]. Ann. Oncol. 30 (Suppl. 5), v533–v563 (2019).

    Google Scholar 

  282. Hoang-Xuan, K. et al. Phase I/II study of S49076, a multi-target inhibitor of c-MET, AXL, FGFR in combination with bevacizumab in patients with recurrent glioblastoma [abstract]. J. Clin. Oncol. 34 (Suppl. 15), 2033 (2016).

    Article  Google Scholar 

  283. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT03184558?view=results (2021).

  284. Krebs, M. et al. A phase II study of selective AXL inhibitor bemcentinib and pembrolizumab in patients with NSCLC refractory to anti-PD(L)1 [abstract P1.01-72]. J. Thorac. Oncol. 14 (Suppl. 10), S388 (2019).

    Article  Google Scholar 

  285. Krebs, M. G. et al. A phase II study of the oral selective AXL inhibitor bemcentinib with pembrolizumab in patients with advanced NSCLC [abstract OA01.07]. J. Thorac. Oncol. 16 (Suppl. 3), S103 (2021).

    Article  Google Scholar 

  286. Spicer, J. et al. A PhII study of bemcentinib, a first-in-class selective AXL kinase inhibitor, in combination with pembrolizumab in pts with previously-treated advanced NSCLC: updated clinical & translational analysis [abstract 362]. J. Immunother. Cancer 8 (Suppl. 3), A221 (2020).

    Google Scholar 

  287. Felip, E. et al. A phase II study of bemcentinib (BGB324), a first-in-class highly selective AXL inhibitor, with pembrolizumab in pts with advanced NSCLC: OS for stage I and preliminary stage II efficacy [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 9098 (2019).

    Article  Google Scholar 

  288. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  289. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  290. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Choueiri, T. K. et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 384, 829–841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Leal, T. A. et al. MRTX-500: Phase II trial of sitravatinib (sitra) + nivolumab (nivo) in patients (pts) with non-squamous (NSQ) non-small cell lung cancer (NSCLC) progressing on or after prior checkpoint inhibitor (CPI) therapy [abstract 43P]. Ann. Oncol. 33 (Suppl. 1), S19–S20 (2022).

    Article  Google Scholar 

  293. Altman, J. K. et al. Gilteritinib can be safely combined with atezolizumab for the treatment of relapsed or refractory FLT3-mutated AML: results of a phase 1 study [abstract]. Blood 138 (Suppl. 1), 2343 (2021).

    Article  Google Scholar 

  294. DeBerge, M. et al. Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. J. Clin. Invest. https://doi.org/10.1172/jci139576 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Triantafyllou, E. et al. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut 67, 333–347 (2018).

    Article  CAS  PubMed  Google Scholar 

  296. Wu, H. et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J. Neuroinflammation 18, 2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bellan, M. et al. Gas6/TAM system: a key modulator of the interplay between inflammation and fibrosis. Int. J. Mol. Sci. 20, 5070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Bosurgi, L. et al. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proc. Natl Acad. Sci. USA 110, 13091–13096 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Duncan, J. L. et al. An RCS-like retinal dystrophy phenotype in mer knockout mice. Investig. Ophthalmol. Vis. Sci. 44, 826–838 (2003).

    Article  Google Scholar 

  300. Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26, 270–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  301. Huang, Y. et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 22, 586–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Burstyn-Cohen, T. & Hochberg, A. TAM signaling in the nervous system. Brain Plast. 7, 33–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Wang, H. et al. The role of Tyro 3 subfamily receptors in the regulation of hemostasis and megakaryocytopoiesis. Haematologica 92, 643–650 (2007).

    Article  CAS  PubMed  Google Scholar 

  304. Bumm, C. V., Folwaczny, M. & Wölfle, U. C. Necrotizing periodontitis or medication-related osteonecrosis of the jaw (MRONJ) in a patient receiving bemcentinib – a case report. Oral. Maxillofac. Surg. 24, 353–358 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Holt, B., Micklem, D., Brown, A., Yule, M. & Lorens, J. Predictive and pharmacodynamic biomarkers associated with phase II, selective and orally bioavailable AXL inhibitor bemcentinib across multiple clinical trials [abstract 63PD]. Ann. Oncol. 29 (Suppl. 8), viii19 (2018).

    Article  Google Scholar 

  306. Rashdan, S. et al. A ph 1/2 study of oral selective AXL inhibitor bemcentinib (BGB324) with Docetaxel in pts with previously treated NSCLC [abstract P2.01-37]. J. Thorac. Oncol. 13 (Suppl. 10), S679 (2018).

    Article  Google Scholar 

  307. Arce-Lara, C. et al. Ph II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with pembrolizumab in patients with advanced NSCLC [abstract P2.04-27]. J. Thorac. Oncol. 13 (Suppl. 10), S741 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The work of D.D. and D.K.G. is supported by NIH National Cancer Institute (NCI) grants R01 CA 249190–01 and R01 CA 259077–01; and the Emory University Lung Cancer SPORE, P50CA217691. The work of H.S.E. is supported by NIH NCI grant RO1 CA 205398.

Author information

Authors and Affiliations

Authors

Contributions

D.D. and J.M.H. researched data for the article and wrote the manuscript. All authors contributed substantially to discussion of the content and/or edited the manuscript before submission.

Corresponding author

Correspondence to Douglas K. Graham.

Ethics declarations

Competing interests

H.S.E. and D.K.G. are founders and serve on the Scientific Advisory Board of Meryx, and D.K.G. also serves on the Board of Directors. D.D., H.S.E. and D.K.G. hold equity in Meryx. The key clinical candidate therapeutic being developed by Meryx, MRX-2843, is discussed in this Review.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks K. C. Fuh, who co-reviewed with M. Pereira; R. B. Birge; R. Brekken; and T. Burstyn-Cohen for their contribution to the peer review of this work.

Additional information

Disclaimer The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeRyckere, D., Huelse, J.M., Earp, H.S. et al. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol 20, 755–779 (2023). https://doi.org/10.1038/s41571-023-00813-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00813-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer