Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailor made: the art of therapeutic mRNA design

Abstract

mRNA medicine is a new and rapidly developing field in which the delivery of genetic information in the form of mRNA is used to direct therapeutic protein production in humans. This approach, which allows for the quick and efficient identification and optimization of drug candidates for both large populations and individual patients, has the potential to revolutionize the way we prevent and treat disease. A key feature of mRNA medicines is their high degree of designability, although the design choices involved are complex. Maximizing the production of therapeutic proteins from mRNA medicines requires a thorough understanding of how nucleotide sequence, nucleotide modification and RNA structure interplay to affect translational efficiency and mRNA stability. In this Review, we describe the principles that underlie the physical stability and biological activity of mRNA and emphasize their relevance to the myriad considerations that factor into therapeutic mRNA design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of mRNA medicines.
Fig. 2: Basics of RNA structure.
Fig. 3: Intermediate and final folding states of long RNA molecules.
Fig. 4: Modified nucleotides affect secondary structure.
Fig. 5: Stem–loop structures can modulate mRNA function.
Fig. 6: Viral structural elements that facilitate translation.

Similar content being viewed by others

References

  1. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Vavilis, T. et al. mRNA in the context of protein replacement therapy. Pharmaceutics 15, 166 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyer, R. A., Neshat, S. Y., Green, J. J., Santos, J. L. & Tuesca, A. D. Targeting strategies for mRNA delivery. Mater. Today Adv. 14, 100240 (2022).

    Article  CAS  Google Scholar 

  5. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris, C., Cluet, D. & Ricci, E. P. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. Wiley Iinterdiscip. Rev. RNA 12, e1658 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Mercier, B. C. et al. Translation-dependent and independent mRNA decay occur through mutually exclusive pathways that are defined by ribosome density during T cell activation. Preprint at bioRxiv https://doi.org/10.1101/2020.10.16.341222 (2020).

  8. Villanueva, J. C. How Many Atoms Are There in the Universe? Universe Today https://www.universetoday.com/36302/atoms-in-the-universe/ (2009).

  9. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hanson, G., Alhusaini, N., Morris, N., Sweet, T. & Coller, J. Translation elongation and mRNA stability are coupled through the ribosomal A-site. RNA 24, 1377–1389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bae, H. & Coller, J. Codon optimality-mediated mRNA degradation: linking translational elongation to mRNA stability. Mol. Cell 82, 1467–1476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J. & Muzyczka, N. A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kudla, G., Lipinski, L., Caffin, F., Helwak, A. & Zylicz, M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 4, e180 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mordstein, C. et al. Codon usage and splicing jointly influence mRNA localization. Cell Syst. 10, 351–362.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parvathy, S. T., Udayasuriyan, V. & Bhadana, V. Codon usage bias. Mol. Biol. Rep. 49, 539–565 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Sharp, P. M. & Li, W. H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reis, M., dos, Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Forrest, M. E. et al. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS ONE 15, e0228730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pinkard, O., McFarland, S., Sweet, T. & Coller, J. Quantitative tRNA-sequencing uncovers metazoan tissue-specific tRNA regulation. Nat. Commun. 11, 4104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sejour, R., Leatherwood, J., Yurovsky, A. & Futcher, B. No ramp needed: spandrels, statistics, and a slippery slope. eLife 12, RP89656 (2023).

    Google Scholar 

  24. Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet. 15, 469–479 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanzer, A., Hofacker, I. L. & Lorenz, R. RNA modifications in structure prediction – status quo and future challenges. Methods 156, 32–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Mauger, D. M. et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl Acad. Sci. USA 116, 24075–24083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kierzek, E. et al. Secondary structure prediction for RNA sequences including N6-methyladenosine. Nat. Commun. 13, 1271 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turner, D. H., Sugimoto, N. & Freier, S. M. RNA structure prediction. Annu. Rev. Biophys. Biophys. Chem. 17, 167–192 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Turner, D. H. Thermodynamics of base pairing. Curr. Opin. Struct. Biol. 6, 299–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Pleij, C. W., Rietveld, K. & Bosch, L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zuber, J., Schroeder, S. J., Sun, H., Turner, D. H. & Mathews, D. H. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects. Nucleic Acids Res. 50, 5251–5262 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson−Crick base pairs. Biochemistry 37, 14719–14735 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Andronescu, M., Condon, A., Turner, D. H. & Mathews, D. H. The determination of RNA folding nearest neighbor parameters. Methods Mol. Biol. 1097, 45–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Raden, M., Mohamed, M. M., Ali, S. M. & Backofen, R. Interactive implementations of thermodynamics-based RNA structure and RNA–RNA interaction prediction approaches for example-driven teaching. PLOS Comput. Biol. 14, e1006341 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hofacker, I. L., Schuster, P. & Stadler, P. F. Combinatorics of RNA secondary structures. Discret. Appl. Math. 88, 207–237 (1998).

    Article  Google Scholar 

  38. Mathews, D. H. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10, 1178–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, H., Qi, Y. & Ding, Y. Deep learning in RNA structure studies. Front. Mol. Biosci. 9, 869601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, Z. J., Gloor, J. W. & Mathews, D. H. Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15, 1805–1813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Szikszai, M., Wise, M., Datta, A., Ward, M. & Mathews, D. H. Deep learning models for RNA secondary structure prediction (probably) do not generalise across families. Bioinformatics 38, 3892–3899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Flamm, C. et al. Caveats to deep learning approaches to RNA secondary structure prediction. Front. Bioinform. 2, 835422 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trotta, E. On the normalization of the minimum free energy of RNAs by sequence length. PLoS ONE 9, e113380 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huynen, M., Gutell, R. & Konings, D. Assessing the reliability of RNA folding using statistical mechanics. J. Mol. Biol. 267, 1104–1112 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, A. M. et al. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol. Cell 81, 870–883.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, X. et al. The landscape of mRNA nanomedicine. Nat. Med. 28, 2273–2287 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

  50. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morais, P., Adachi, H. & Yu, Y.-T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alameh, M.-G. & Weissman, D. Chapter 7 - Nucleoside modifications of in vitro transcribed mRNA to reduce immunogenicity and improve translation of prophylactic and therapeutic antigens. in RNA Therapeutics (eds. Giangrande, P. H., de Franciscis, V. & Rossi, J. J.) 141–169 (Academic Press, 2022).

  54. Liu, A. & Wang, X. The pivotal role of chemical modifications in mRNA therapeutics. Front. Cell Dev. Biol. 10, 901510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Brand, R. C., Klootwijk, J., Planta, R. J. & Maden, B. E. H. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem. J. 169, 71–77 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wurm, J. P. et al. The ribosome assembly factor Nep1 responsible for Bowen–Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res. 38, 2387–2398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilbert, W. V. & Nachtergaele, S. mRNA regulation by RNA modifications. Annu. Rev. Biochem. 92, 175–198 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, S. et al. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling. Genome Biol. 22, 330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, T., Potapov, V., Dai, N., Ong, J. L. & Roy, B. N1-methyl-pseudouridine is incorporated with higher fidelity than pseudouridine in synthetic RNAs. Sci. Rep. 12, 13017 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szabat, M., Prochota, M., Kierzek, R., Kierzek, E. & Mathews, D. H. A test and refinement of folding free energy nearest neighbor parameters for RNA including N6-methyladenosine. J. Mol. Biol. 434, 167632 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, J. & Cao, X. RBP–RNA interactions in the control of autoimmunity and autoinflammation. Cell Res. 33, 97–115 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D’Esposito, R. J., Myers, C. A., Chen, A. A. & Vangaveti, S. Challenges with simulating modified RNA: insights into role and reciprocity of experimental and computational approaches. Genes 13, 540 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hopfinger, M. C., Kirkpatrick, C. C. & Znosko, B. M. Predictions and analyses of RNA nearest neighbor parameters for modified nucleotides. Nucleic Acids Res. 48, 8901–8913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pelletier, J. & Sonenberg, N. The organizing principles of eukaryotic ribosome recruitment. Annu. Rev. Biochem. 88, 307–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Shirokikh, N. E. & Preiss, T. Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions. Wiley Interdiscip. Rev. RNA 9, e1473 (2018).

    Article  PubMed  Google Scholar 

  69. Ringnér, M. & Krogh, M. Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput. Biol. 1, e72 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Babendure, J. R. Control of mammalian translation by mRNA structure near caps. RNA 12, 851–861 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kozak, M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134–5142 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumari, S., Bugaut, A. & Balasubramanian, S. Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry 47, 12664–12669 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, J. et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185, 4474–4487.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dave, P. et al. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol. Cell 83, 589–606.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Piccinelli, P. & Samuelsson, T. Evolution of the iron-responsive element. RNA 13, 952–966 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hentze, M. et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238, 1570–1573 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kavita, K. & Breaker, R. R. Discovering riboswitches: the past and the future. Trends Biochem, Sci. 48, 119–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Mustafina, K., Fukunaga, K. & Yokobayashi, Y. Design of mammalian ON-riboswitches based on tandemly fused aptamer and ribozyme. ACS Synth. Biol. 9, 19–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Pelletier, J., Graff, J., Ruggero, D. & Sonenberg, N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 75, 250–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vaklavas, C., Blume, S. W. & Grizzle, W. E. Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Front. Oncol. 7, 158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Raza, F., Waldron, J. A. & Quesne, J. L. Translational dysregulation in cancer: eIF4A isoforms and sequence determinants of eIF4A dependence. Biochem. Soc. Trans. 43, 1227–1233 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt, T. et al. eIF4A1-dependent mRNAs employ purine-rich 5′UTR sequences to activate localised eIF4A1-unwinding through eIF4A1-multimerisation to facilitate translation. Nucleic Acids Res. 51, 1859–1879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fath, S. et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS ONE 6, e17596 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, S. et al. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109, E2424–E2432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Simonetti, A., Guca, E., Bochler, A., Kuhn, L. & Hashem, Y. Structural insights into the mammalian late-stage initiation complexes. Cell Rep. 31, 107497 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kozak, M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl Acad. Sci. USA 87, 8301–8305 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kochetov, A. V. et al. AUG_hairpin: prediction of a downstream secondary structure influencing the recognition of a translation start site. BMC Bioinformatics 8, 318 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liang, H. et al. PTENβ is an alternatively translated isoform of PTEN that regulates rDNA transcription. Nat. Commun. 8, 14771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gu, W., Zhou, T. & Wilke, C. O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput. Biol. 6, e1000664 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li, F. et al. Global analysis of RNA secondary structure in two metazoans. Cell Rep. 1, 69–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shabalina, S. A., Ogurtsov, A. Y. & Spiridonov, N. A. A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res. 34, 2428–2437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toribio, R., Díaz-López, I., Boskovic, J. & Ventoso, I. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Res. 44, 4368–4380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Clote, P., Ponty, Y. & Steyaert, J.-M. Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 65, 581–599 (2012).

    Article  PubMed  Google Scholar 

  100. Yoffe, A. M., Prinsen, P., Gelbart, W. M. & Ben-Shaul, A. The ends of a large RNA molecule are necessarily close. Nucleic Acids Res. 39, 292–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Simms, C. L., Yan, L. L. & Zaher, H. S. Ribosome collision is critical for quality control during no-go decay. Mol. Cell 68, 361–373.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Saito, K. et al. Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 603, 503–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, C. C.-C., Peterson, A., Zinshteyn, B., Regot, S. & Green, R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gorochowski, T. E., Ignatova, Z., Bovenberg, R. A. L. & Roubos, J. A. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res. 43, 3022–3032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chaney, J. L. & Clark, P. L. Roles for synonymous codon usage in protein biogenesis. Annu. Rev. Biophys. 44, 143–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Collart, M. A. & Weiss, B. Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res. 48, 1043–1055 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. D’Orazio, K. N. & Green, R. Ribosome states signal RNA quality control. Mol. Cell 81, 1372–1383 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Arpat, A. B. et al. Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res. 30, 985–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, T. et al. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol. 22, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, Y. & Bebok, Z. An examination of mechanisms by which synonymous mutations may alter protein levels, structure and functions. in Single Nucleotide Polymorphisms: Human Variation and a Coming Revolution in Biology and Medicine (eds. Sauna, Z. E. & Kimchi-Sarfaty, C.) 99–132 (Springer International Publishing, 2022).

  111. Lin, B. C., Kaissarian, N. M. & Kimchi-Sarfaty, C. Implementing computational methods in tandem with synonymous gene recoding for therapeutic development. Trends Pharmacol. Sci. 44, 73–84 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, Y. G. & Hur, S. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol. 23, 286–301 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Wuebben, C., Bartok, E. & Hartmann, G. Innate sensing of mRNA vaccines. Curr. Opin. Immunol. 79, 102249 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Mu, X. & Hur, S. Immunogenicity of in vitro-transcribed RNA. Acc. Chem. Res. 54, 4012–4023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dousis, A., Ravichandran, K., Hobert, E. M., Moore, M. J. & Rabideau, A. E. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nat. Biotechnol. 41, 560–568 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Weissman, D., Pardi, N., Muramatsu, H. & Karikó, K. HPLC purification of in vitro transcribed long RNA. Methods Mol. Biol. 969, 43–54 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Das, S., Vera, M., Gandin, V., Singer, R. H. & Tutucci, E. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 22, 483–504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ermolenko, D. N. & Mathews, D. H. Making ends meet: new functions of mRNA secondary structure. Wiley Interdiscip. Rev. RNA 12, e1611 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Tan, D., Marzluff, W. F., Dominski, Z. & Tong, L. Structure of histone mRNA stem-loop, human stem-loop binding protein and 3′hExo ternary complex. Science 339, 318–321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marzluff, W. F. & Koreski, K. P. Birth and death of histone mRNAs. Trends Genet. 33, 745–759 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gorgoni, B. et al. The stem–loop binding protein stimulates histone translation at an early step in the initiation pathway. RNA 11, 1030–1042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Choe, J., Ahn, S. H. & Kim, Y. K. The mRNP remodeling mediated by UPF1 promotes rapid degradation of replication-dependent histone mRNA. Nucleic Acids Res. 42, 9334–9349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thess, A., Schlake, T. & Probst, J. US patent US20200345831A1 (2020).

  124. Gebre, M. S. et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Miras, M., Miller, W. A., Truniger, V. & Aranda, M. A. Non-canonical translation in plant RNA viruses. Front. Plant Sci. 8, 494 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kim, D. et al. Viral hijacking of the TENT4–ZCCHC14 complex protects viral RNAs via mixed tailing. Nat. Struct. Mol. Biol. 27, 581–588 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Krawczyk, P. S. et al. SARS-CoV-2 mRNA vaccine is re-adenylated in vivo, enhancing antigen production and immune response. Preprint at bioRxiv https://doi.org/10.1101/2022.12.01.518149 (2022).

  128. Miyazawa, M., Bogdan, A. R., Hashimoto, K. & Tsuji, Y. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3′-IRE stem–loops. RNA 24, 468–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid. Ther. 28, 285–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hagedorn, P. H., Hansen, B. R., Koch, T. & Lindow, M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res. 45, 2262–2282 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Orlandini von Niessen, A. G. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 27, 824–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Solodushko, V. & Fouty, B. Terminal hairpins improve protein expression in IRES-initiated mRNA in the absence of a cap and polyadenylated tail. Gene Ther. 30, 620–627 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shanmugasundaram, M., Senthilvelan, A. & Kore, A. R. Recent advances in modified cap analogs: synthesis, biochemical properties, and mRNA based vaccines. Chem. Rec. 22, e202200005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Deal, C. E. et al. mRNA delivery of dimeric human IgA protects mucosal tissues from bacterial infection. Preprint at bioRxiv https://doi.org/10.1101/2023.01.03.521487 (2023).

  135. Liu, C.-X. & Chen, L.-L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Ren, L. et al. Mechanisms of circular RNA degradation. Commun. Biol. 5, 1355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Mailliot, J. & Martin, F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip. Rev. RNA 9, e1458 (2018).

    Article  Google Scholar 

  140. Jaafar, Z. A. & Kieft, J. S. Viral RNA structure-based strategies to manipulate translation. Nat. Rev. Microbiol. 17, 110–123 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wellensiek, B. P. et al. Genome-wide profiling of human cap-independent translation-enhancing elements. Nat. Methods 10, 747–750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    Article  PubMed  Google Scholar 

  144. Chen, C.-K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Akirtava, C. & McManus, C. J. Control of translation by eukaryotic mRNA transcript leaders-Insights from high-throughput assays and computational modeling. Wiley Interdiscip. Rev. RNA 12, e1623 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Jackson, R. J. The current status of vertebrate cellular mRNA IRESs. Cold Spring Harb. Perspect. Biol. 5, a011569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Busa, V. F. & Leung, A. K. L. Thrown for a (stem) loop: how RNA structure impacts circular RNA regulation and function. Methods 196, 56–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, C. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Comes, J. D. G., Pijlman, G. P. & Hick, T. A. H. Rise of the RNA machines – self-amplification in mRNA vaccine design. Trends Biotechnol. 41, 1417–1421 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

    Article  CAS  Google Scholar 

  153. Packer, M., Gyawali, D., Yerabolu, R., Schariter, J. & White, P. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat. Commun. 12, 6777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oude Blenke, E. et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case. J. Pharm. Sci. 112, 386–403 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Cheng, F. et al. Research advances on the stability of mRNA vaccines. Viruses 15, 668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo, F. et al. Effect of ribose conformation on RNA cleavage via internal transesterification. J. Am. Chem. Soc. 140, 11893–11897 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Hernandez-Alias, X., Benisty, H., Radusky, L. G., Serrano, L. & Schaefer, M. H. Using protein-per-mRNA differences among human tissues in codon optimization. Genome Biol. 24, 34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brader, M. L. et al. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. 120, 2766–2770 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Castillo-Hair, S. M. & Seelig, G. Machine learning for designing next-generation mRNA therapeutics. Acc. Chem. Res. 55, 24–34 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug. Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. New England Biolabs. mRNA capping. NEB, https://www.neb.com/products/rna-reagents/rna-synthesis/rna-synthesis/rna-capping (2023).

  163. Chan, S.-H. & Roy, B. Preparation of synthetic mRNAs—overview and considerations. In Messenger RNA Therapeutics (eds. Jurga, S. & Barciszewski, J.) 181–207 (Springer International Publishing, 2022).

  164. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug. Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Trepotec, Z., Geiger, J., Plank, C., Aneja, M. K. & Rudolph, C. Segmented poly(A) tails significantly reduce recombination of plasmid DNA without affecting mRNA translation efficiency or half-life. RNA 25, 507–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bundschuh, R. & Gerland, U. Dynamics of intramolecular recognition: base-pairing in DNA/RNA near and far from equilibrium. Eur. Phys. J. E 19, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Kim, G.-W. & Siddiqui, A. N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition. Proc. Natl Acad. Sci. USA 118, e2022024118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Quade, N., Boehringer, D., Leibundgut, M., van den Heuvel, J. & Ban, N. Cryo-EM structure of hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat. Commun. 6, 7646 (2015).

    Article  PubMed  Google Scholar 

  169. He, M. et al. Bio-orthogonal chemistry enables solid phase synthesis and HPLC and gel-free purification of long RNA oligonucleotides. Chem. Commun. 57, 4263–4266 (2021).

    Article  CAS  Google Scholar 

  170. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang, Q., Fairman, M. E. & Jankowsky, E. DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values. J. Mol. Biol. 368, 1087–1100 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Singh, G., Pratt, G., Yeo, G. W. & Moore, M. J. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84, 325–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Metkar, M. et al. Higher-order organization principles of pre-translational mRNPs. Mol. Cell 72, 715–726.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322–330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim, S. et al. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 12, 5057 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Gilmore for the atomic force microscopy images in Fig. 3i, D. Mauger, I. McFadyen and C. Köhrer for preliminary discussions of this work, and A. Bicknell, D. Reid, K. Loh, J. Zimmer and E. Jankowsky for critical reading of the manuscript. This work was supported by Moderna, Inc.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding authors

Correspondence to Mihir Metkar or Melissa J. Moore.

Ethics declarations

Competing interests

All authors are employees of and shareholders in Moderna, Inc.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Rhiju Das, Shu-Bing Qian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metkar, M., Pepin, C.S. & Moore, M.J. Tailor made: the art of therapeutic mRNA design. Nat Rev Drug Discov 23, 67–83 (2024). https://doi.org/10.1038/s41573-023-00827-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00827-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research