Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organs-on-chips: into the next decade

Abstract

Organs-on-chips (OoCs), also known as microphysiological systems or ‘tissue chips’ (the terms are synonymous), have attracted substantial interest in recent years owing to their potential to be informative at multiple stages of the drug discovery and development process. These innovative devices could provide insights into normal human organ function and disease pathophysiology, as well as more accurately predict the safety and efficacy of investigational drugs in humans. Therefore, they are likely to become useful additions to traditional preclinical cell culture methods and in vivo animal studies in the near term, and in some cases replacements for them in the longer term. In the past decade, the OoC field has seen dramatic advances in the sophistication of biology and engineering, in the demonstration of physiological relevance and in the range of applications. These advances have also revealed new challenges and opportunities, and expertise from multiple biomedical and engineering fields will be needed to fully realize the promise of OoCs for fundamental and translational applications. This Review provides a snapshot of this fast-evolving technology, discusses current applications and caveats for their implementation, and offers suggestions for directions in the next decade.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of features and platform designs for organs on chips.
Fig. 2: Examples of linked multi-organ systems, which can help understand systemic or off-target drug effects and create ‘body-on-a-chip’ systems.
Fig. 3: Utility of OoCs in a variety of stages of drug development.

References

  1. 1.

    Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203 (2010).

    CAS  PubMed  Google Scholar 

  2. 2.

    Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191 (2012).

    CAS  PubMed  Google Scholar 

  3. 3.

    Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hay, M., Thomas, D. W., Craighead, J. L., Economides, C. & Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32, 40 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Waring, M. J. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14, 475 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Sweeney, L. M., Shuler, M. L., Babish, J. G. & Ghanem, A. A cell culture analogue of rodent physiology: Application to naphthalene toxicology. Toxicol. In Vitro 9, 307–316 (1995).

    CAS  PubMed  Google Scholar 

  7. 7.

    Sin, A. et al. The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol. Prog. 20, 338–345 (2004).

    CAS  PubMed  Google Scholar 

  8. 8.

    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). Early OoC study recreating the alveolar–capillary interface of the human lung incorporating cyclic biomechanical stretch forces and showing replication of in vivo responses.

    CAS  PubMed  Google Scholar 

  9. 9.

    Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet. 19, 671–687 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Ingber, D. E. Reverse engineering human pathophysiology with organs-on-chips. Cell 164, 1105–1109 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Pamies, D. et al. A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX https://doi.org/10.14573/altex.1609122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Plummer, S. et al. A human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci. Rep. 9, 1407 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schwartz, M. P. et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl Acad. Sci. USA 112, 12516–12521 (2015).

    CAS  PubMed  Google Scholar 

  14. 14.

    Rothbauer, M., Rosser, J. M., Zirath, H. & Ertl, P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr. Opin. Biotechnol. 55, 81–86 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Kasendra, M. et al. Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci. Rep. 8, 2871 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ramme, A. P. et al. Towards an autologous iPSC-derived patient-on-a-chip. bioRxiv https://doi.org/10.1101/376970 (2018).

    Article  Google Scholar 

  17. 17.

    Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e1006 (2019).

    CAS  PubMed  Google Scholar 

  18. 18.

    Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Crapo, P. M., Tottey, S., Slivka, P. F. & Badylak, S. F. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng. Part. A 20, 313–323 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Safaee, H. et al. Tethered jagged-1 synergizes with culture substrate stiffness to modulate notch-induced myogenic progenitor differentiation. Cell. Mol. Bioeng. 10, 501–513 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Trappmann, B. et al. Matrix degradability controls multicellularity of 3D cell migration. Nat. Commun. 8, 371 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Shin, D. S. et al. Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater. Sci. Eng. 4, 378–387 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wikswo, J. P. et al. Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans. Biomed. Eng. 60, 682–690 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wikswo, J. P. et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip 13, 3496–3511 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Johnson, B. P. et al. Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc. Natl Acad. Sci. USA 111, 18757 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Cyr, K. J., Avaldi, O. M. & Wikswo, J. P. Circadian hormone control in a human-on-a-chip: In vitro biology’s ignored component? Exp. Biol. Med. 242, 1714–1731 (2017).

    CAS  Google Scholar 

  28. 28.

    Chang, S.-Y. et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity. JCI Insight https://doi.org/10.1172/jci.insight.95978 (2017). Physically coupled liver and kidney OoCs used to uncover the mechanism of nephrotoxicity of aristolochic acid via bioactivation in the liver, showing utility of coupled OoCs for understanding toxic effects.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17, 511–520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Zhang, C., Zhao, Z., Abdul Rahim, N. A., van Noort, D. & Yu, H. Towards a human-on-chip: Culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9, 3185–3192 (2009).

    CAS  PubMed  Google Scholar 

  31. 31.

    Materne, E.-M. et al. The multi-organ chip - a microfluidic platform for long-term multi-tissue coculture. J. Vis. Exp. https://doi.org/10.3791/52526 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15, 2688–2699 (2015). Development of a multi-organ integrated OoC with pulsatile flow which reliably supports homeostasis over 28 days and allows ADME profiling and repeated dose drug testing.

    CAS  PubMed  Google Scholar 

  33. 33.

    Tsamandouras, N. et al. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J. 19, 1499–1512 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Oleaga, C. et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci. Rep. 6, 20030 (2016). Development of a multi-organ pumpless OoC with common medium under serum-free conditions, maintaining tissues to 14 days and profiling accurate acute responses to therapeutic compounds.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Oleaga, C. et al. Human-on-a-chip systems: long-term electrical and mechanical function monitoring of a human-on-a-chip system (Adv. Funct. Mater. 8/2019). Adv. Funct. Mater. 29, 1970049 (2019).

    Google Scholar 

  36. 36.

    Stone, H. A., Stroock, A. D. & Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004).

    Google Scholar 

  37. 37.

    Lochovsky, C., Yasotharan, S. & Günther, A. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices. Lab Chip 12, 595–601 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Kaarj, K. & Yoon, J.-Y. Methods of delivering mechanical stimuli to organ-on-a-chip. Micromachines https://doi.org/10.3390/mi10100700 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Maoz, B. M. et al. Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 17, 2294–2302 (2017).

    CAS  PubMed  Google Scholar 

  41. 41.

    Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Agarwal, A., Goss, J. A., Cho, A., McCain, M. L. & Parker, K. K. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13, 3599–3608 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Nunes, S. S. et al. Biowire: a platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat. Methods 10, 781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lee-Montiel, F. T. et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp. Biol. Med. 242, 1617–1632 (2017).

    CAS  Google Scholar 

  46. 46.

    Senutovitch, N. et al. Fluorescent protein biosensors applied to microphysiological systems. Exp. Biol. Med. 240, 795–808 (2015).

    CAS  Google Scholar 

  47. 47.

    Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293 (2017). Advanced multi-organ platform for automated control and biosensing over multiple days, including pH, O 2, temperature, protein biomarker presence and microscopes for imaging. Demonstrated cardiotoxicity and hepatotoxicity from chronic and acute drug dosing.

    CAS  PubMed  Google Scholar 

  48. 48.

    Toepke, M. W. & Beebe, D. J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6, 1484–1486 (2006).

    CAS  PubMed  Google Scholar 

  49. 49.

    Markov, D. A., Lillie, E. M., Garbett, S. P. & McCawley, L. J. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomed. Microdevices 16, 91–96 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tan, S. H., Nguyen, N.-T., Chua, Y. C. & Kang, T. G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4, 032204 (2010).

    PubMed Central  Google Scholar 

  51. 51.

    Chuah, Y. J. et al. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 5, 18162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Regehr, K. J. et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132–2139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kaur, R., Sidhu, P. & Singh, S. What failed BIA 10-2474 phase I clinical trial? Global speculations and recommendations for future phase I trials. J. Pharmacol. Pharmacother. 7, 120–126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Fowler, S. et al. Microphysiological systems for ADME-related applications: current status and recommendations for system development and characterization. Lab Chip 20, 446–467 (2020).

    CAS  PubMed  Google Scholar 

  57. 57.

    Fabre, K. et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip 20, 1049–1057 (2020).

    PubMed  Google Scholar 

  58. 58.

    Rudmann, D. G. The emergence of microphysiological systems (organs-on-chips) as paradigm-changing tools for toxicologic pathology. Toxicol. Pathol. 47, 4–10 (2018).

    PubMed  Google Scholar 

  59. 59.

    Gerets, H. H. J. et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28, 69–87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Heslop, J. A. et al. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch. Toxicol. 91, 439–452 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Vernetti, L. A. et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp. Biol. Med. 241, 101–114 (2016).

    CAS  Google Scholar 

  62. 62.

    Li, X., George, S. M., Vernetti, L., Gough, A. H. & Taylor, D. L. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 18, 2614–2631 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Jang, K.-J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 11, eaax5516 (2019). First article to compare rat, dog and human microfluidic multicellular liver chips after exposure to hepatotoxic compounds. A fibrotic liver model showed species differences highlighting species-specific differences in drug metabolism and toxicity.

    CAS  PubMed  Google Scholar 

  64. 64.

    Mathur, A. et al. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ahn, S. et al. Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Anal. Bioanal. Chem. 410, 6141–6154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Marsano, A. et al. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16, 599–610 (2016).

    CAS  PubMed  Google Scholar 

  67. 67.

    Lind, J. U. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 16, 303 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Capulli, A. K., MacQueen, L. A., O’Connor, B. B., Dauth, S. & Parker, K. K. Acute pergolide exposure stiffens engineered valve interstitial cell tissues and reduces contractility in vitro. Cardiovas. Pathol. 25, 316–324 (2016).

    CAS  Google Scholar 

  69. 69.

    Goversen, B., van der Heyden, M. A. G., van Veen, T. A. B. & de Boer, T. P. The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: Special focus on IK1. Pharmacol. Ther. 183, 127–136 (2018).

    CAS  PubMed  Google Scholar 

  70. 70.

    Sheehy, S. P. et al. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes. Exp. Biol. Med. 242, 1643–1656 (2017).

    CAS  Google Scholar 

  71. 71.

    Ronaldson-Bouchard, K. et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556, 239–243 (2018). OoC used to show enhanced maturation of stem cell-derived cardiac tissues in three dimensions when subjected to electrical stimulation protocols, addressing a key challenge in cardiac stem cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e918 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372 (2017).

    CAS  PubMed  Google Scholar 

  74. 74.

    Giacomelli, E. et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell 26, 862–879.e811 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Jang, K.-J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).

    CAS  Google Scholar 

  76. 76.

    Kim, S. et al. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8, 015021 (2016).

    PubMed  Google Scholar 

  77. 77.

    Weber, E. J. et al. Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90, 627–637 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Weber, E. J. et al. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity. JCI Insight https://doi.org/10.1172/jci.insight.123673 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    CAS  Google Scholar 

  80. 80.

    Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49 (2016).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Williamson, I. A. et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell. Mol. Gastroenterol. Hepatol. 6, 301–319 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Workman, M. J. et al. Enhanced utilization of induced pluripotent stem cell–derived human intestinal organoids using microengineered chips. Cell. Mol. Gastroenterol. Hepatol. 5, 669–677.e662 (2018).

    PubMed  Google Scholar 

  84. 84.

    Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 43 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Benam, K. H. et al. in 3D Cell Culture: Methods and Protocols (ed. Koledova, Z.) 345–365 (Springer, 2017).

  87. 87.

    Benam, K. H. et al. Matched-comparative modeling of normal and diseased human airway responses using a microengineered breathing lung chip. Cell Syst. 3, 456–466.e454 (2016).

    CAS  PubMed  Google Scholar 

  88. 88.

    Blundell, C. et al. Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv. Healthc. Mater. 7, 1700786 (2018).

    Google Scholar 

  89. 89.

    Yin, F. et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol. In Vitro 54, 105–113 (2019).

    CAS  PubMed  Google Scholar 

  90. 90.

    Sobrino, A. et al. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Barrile, R. et al. Organ-on-chip recapitulates thrombosis induced by an anti-CD154 monoclonal antibody: translational potential of advanced microengineered systems. Clin. Pharmacol. Ther. 104, 1240–1248 (2018).

    CAS  PubMed  Google Scholar 

  92. 92.

    Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  93. 93.

    Horton, R. E. et al. Angiotensin II induced cardiac dysfunction on a chip. PLoS ONE 11, e0146415 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Hinson, J. T. et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349, 982–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Nesmith, A. P., Agarwal, A., McCain, M. L. & Parker, K. K. Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation. Lab Chip 14, 3925–3936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    van der Meer, A. D., Orlova, V. V., ten Dijke, P., van den Berg, A. & Mummery, C. L. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13, 3562–3568 (2013).

    PubMed  Google Scholar 

  97. 97.

    Cruz, N. M. et al. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat. Mater. 16, 1112 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Faal, T. et al. Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood-brain barrier interactions. Stem Cell Rep. 12, 451–460 (2019).

    CAS  Google Scholar 

  99. 99.

    Rooney, G. E. et al. Human iPS cell-derived neurons uncover the impact of increased ras signaling in Costello syndrome. J. Neurosci. 36, 142 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Atchison, L., Zhang, H., Cao, K. & Truskey, G. A. A tissue engineered blood vessel model of Hutchinson-Gilford progeria syndrome using human iPSC-derived smooth muscle cells. Sci. Rep. 7, 8168 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Wang, G. et al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med. 20, 616–623 (2014). Rare paediatric disease modelled on an OoC and mechanism of disease uncovered using gene editing techniques.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Ben Jehuda, R., Shemer, Y. & Binah, O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev. Rep. 14, 323–336 (2018).

    PubMed  Google Scholar 

  103. 103.

    Nguyen, D.-H. T. et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc. Natl Acad. Sci. USA 110, 6712–6717 (2013).

    CAS  PubMed  Google Scholar 

  104. 104.

    Montanez-Sauri, S. I., Sung, K. E., Berthier, E. & Beebe, D. J. Enabling screening in 3D microenvironments: probing matrix and stromal effects on the morphology and proliferation of T47D breast carcinoma cells. Integr. Biol. 5, 631–640 (2013).

    CAS  Google Scholar 

  105. 105.

    Zervantonakis, I. K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl Acad. Sci. USA 109, 13515 (2012).

    CAS  PubMed  Google Scholar 

  106. 106.

    Jeon, J. S. et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl Acad. Sci. USA 112, 214–219 (2015).

    CAS  PubMed  Google Scholar 

  107. 107.

    Clark, A. M. et al. A model of dormant-emergent metastatic breast cancer progression enabling exploration of biomarker signatures. Mol. Cell. Proteomics 17, 619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Shirure, V. S. et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18, 3687–3702 (2018).

    CAS  PubMed  Google Scholar 

  109. 109.

    Regier, M. C. et al. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments. Biomed. Microdevices 18, 70 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Marturano-Kruik, A. et al. Human bone perivascular niche-on-a-chip for studying metastatic colonization. Proc. Natl Acad. Sci. USA 115, 1256 (2018).

    CAS  PubMed  Google Scholar 

  111. 111.

    Kim, S., Lee, H., Chung, M. & Jeon, N. L. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13, 1489–1500 (2013).

    CAS  PubMed  Google Scholar 

  112. 112.

    Miller, C. P., Tsuchida, C., Zheng, Y., Himmelfarb, J. & Akilesh, S. A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610–620 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Hassell, B. A. et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep. 21, 508–516 (2017).

    CAS  PubMed  Google Scholar 

  114. 114.

    Lee, J.-H. et al. Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J. Exp. Clin. Cancer Res. 37, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Jeong, S.-Y., Lee, J.-H., Shin, Y., Chung, S. & Kuh, H.-J. Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS ONE 11, e0159013 (2016).

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Rizvi, I. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl Acad. Sci. USA 110, E1974 (2013).

    CAS  PubMed  Google Scholar 

  117. 117.

    Li, R. et al. Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res. 77, 279 (2017).

    CAS  PubMed  Google Scholar 

  118. 118.

    Wang, N. et al. 3D microfluidic in vitro model and bioinformatics integration to study the effects of Spatholobi Caulis tannin in cervical cancer. Sci. Rep. 8, 12285 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Low, L. A. & Tagle, D. A. Tissue chips to aid drug development and modeling for rare diseases. Expert Opin. Orphan Drugs 4, 1113–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Shik Mun, K. et al. Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders. Nat. Commun. 10, 3124 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Shahjalal, H. M., Abdal Dayem, A., Lim, K. M., Jeon, T.-i & Cho, S.-G. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res. Ther. 9, 355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Takebe, T., Zhang, B. & Radisic, M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell 21, 297–300 (2017).

    CAS  PubMed  Google Scholar 

  123. 123.

    Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960 (2019).

    CAS  PubMed  Google Scholar 

  124. 124.

    Takebe, T. et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16, 556–565 (2015).

    CAS  PubMed  Google Scholar 

  125. 125.

    Zhang, Y. S. et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45–59 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Park, D., Lee, J., Chung, J. J., Jung, Y. & Kim, S. H. Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.06.006 (2019).

    Article  PubMed  Google Scholar 

  127. 127.

    Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018). Multi-organ microfluidic ‘physiome-on-a-chip’ platform modelling up to 10 organs for 4 weeks with pharmacokinetic analysis of diclofenac metabolism, noting general design and operational principles for multi-organ platforms.

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020). Multi-organ linked system for up to 10 OoCs for 3 weeks in automated culture and perfusion machine capable of medium addition, fluidic linking, sample collection and in situ microscopy.

    PubMed  Google Scholar 

  129. 129.

    Shim, M. K. et al. Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. J. Control. Release 294, 376–389 (2019).

    CAS  PubMed  Google Scholar 

  130. 130.

    Al-Malahmeh, A. J. et al. Physiologically based kinetic modeling of the bioactivation of myristicin. Arch. Toxicol. 91, 713–734 (2017).

    CAS  PubMed  Google Scholar 

  131. 131.

    Schurdak, M. E. et al. in Phenotypic Screening: Methods and Protocols (ed. Wagner B.) 207–222 (Springer, 2018).

  132. 132.

    Oliver, C. R. et al. A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. Lab Chip https://doi.org/10.1039/C8LC01387J (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Satoh, T. et al. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18, 115–125 (2018).

    CAS  Google Scholar 

  134. 134.

    Boos, J. A., Misun, P. M., Michlmayr, A., Hierlemann, A. & Frey, O. Microfluidic multitissue platform for advanced embryotoxicity testing in vitro. Adv. Sci. 6, 1900294–1900294 (2019).

    Google Scholar 

  135. 135.

    Vunjak-Novakovic, G., Bhatia, S., Chen, C. & Hirschi, K. HeLiVa platform: integrated heart-liver-vascular systems for drug testing in human health and disease. Stem Cell Res. Ther. 4, 1–6 (2013).

    Google Scholar 

  136. 136.

    Vernetti, L. et al. Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Brown, J. A. et al. Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics 9, 054124 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Brown, J. A. et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J. Neuroinflammation 13, 306 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865 (2018).

    CAS  PubMed  Google Scholar 

  140. 140.

    Chen, W. L. K. et al. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114, 2648–2659 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Esch, M. B., Ueno, H., Applegate, D. R. & Shuler, M. L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16, 2719–2729 (2016).

    CAS  PubMed  Google Scholar 

  142. 142.

    Loskill, P., Marcus, S. G., Mathur, A., Reese, W. M. & Healy, K. E. μOrgano: a Lego®-like plug & play system for modular multi-organ-chips. PLoS ONE 10, e0139587 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017). Human female reproductive system and cycle recreated on a five-organ platform with inclusion of endocrine signalling to mimic hormonal markers of pregnancy as a tool for female reproductive toxicity assessment.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Skardal, A., Shupe, T. & Atala, A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov. Today 21, 1399–1411 (2016).

    CAS  PubMed  Google Scholar 

  145. 145.

    Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. 146.

    Oleaga, C. et al. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182, 176–190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Sakolish, C. et al. Technology transfer of the microphysiological systems: a case study of the human proximal tubule tissue chip. Sci. Rep. 8, 14882–14882 (2018).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Roberts, R. A. et al. Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov. Today 19, 341–347 (2014).

    CAS  PubMed  Google Scholar 

  149. 149.

    Livingston, C. A., Fabre, K. M. & Tagle, D. A. Facilitating the commercialization and use of organ platforms generated by the microphysiological systems (Tissue Chip) program through public–private partnerships. Comput. Struct. Biotechnol. J. 14, 207–210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Schurdak, M. et al. Applications of the microphysiology systems database for experimental ADME-Tox and disease models. Lab Chip 20, 1472–1492 (2020).

    CAS  PubMed  Google Scholar 

  151. 151.

    Lee, J. et al. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2020.107501 (2020).

    Article  PubMed  Google Scholar 

  152. 152.

    Franzen, N. et al. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov. Today 24, 1720–1724 (2019).

    PubMed  Google Scholar 

  153. 153.

    Sances, S. et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10, 1222–1236 (2018). Increased calcium transients and mature gene expression seen in spinal motor neurons and brain microvascular endothelial cells derived from iPS cells when cultured on a 3D OoC versus a 96-well plate.

    CAS  Google Scholar 

  154. 154.

    Mulholland, T. et al. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci. Rep. 8, 14672 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    CAS  PubMed  Google Scholar 

  156. 156.

    Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22, 310–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    McAleer, C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci. Transl. Med. 11, eaav1386 (2019).

    CAS  PubMed  Google Scholar 

  158. 158.

    Wagner, J. A. et al. Application of a dynamic map for learning, communicating, navigating, and improving therapeutic development. Clin. Transl. Sci. 11, 166–174 (2017).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Wagner, J. A. et al. Drug Discovery, Development and Deployment Map (4DM): Small Molecules. National Center for Advancing Translational Sciences https://ncats.nih.gov/translation/maps (NIH).

  160. 160.

    Peterson, N. C., Mahalingaiah, P. K., Fullerton, A. & Di Piazza, M. Application of microphysiological systems in biopharmaceutical research and development. Lab Chip 20, 697–708 (2020).

    CAS  PubMed  Google Scholar 

  161. 161.

    Hardwick, R. N. et al. Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays. Lab Chip 20, 199–214 (2020).

    CAS  PubMed  Google Scholar 

  162. 162.

    Ainslie, G. R. et al. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective. Lab Chip 19, 3152–3161 (2019).

    CAS  PubMed  Google Scholar 

  163. 163.

    Peters, M. F. et al. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems. Lab Chip 20, 1177–1190 (2020).

    CAS  PubMed  Google Scholar 

  164. 164.

    Phillips, J. A. et al. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. Lab Chip 20, 468–476 (2020).

    CAS  PubMed  Google Scholar 

  165. 165.

    Baudy, A. R. et al. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. Lab Chip 20, 215–225 (2020).

    CAS  PubMed  Google Scholar 

  166. 166.

    Yeung, C. K. et al. Tissue chips in space — challenges and opportunities. Clin. Transl. Sci. https://doi.org/10.1111/cts.12689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

L.A.L. wrote and edited the manuscript and created the figures. C.M., B.R.B., D.A.T. and C.P.A. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Lucie A. Low or Danilo A. Tagle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CiPA: http://cipaproject.org/

Defense Advanced Research Project Agency (DARPA) funded linked 10-organ system: https://www.darpa.mil/program/microphysiological-systems

EUROoCS: https://euroocs.eu/

European Union Reference Laboratory for Alternatives to Animal Testing: https://ec.europa.eu/jrc/en/eurl/ecvam

Good manufacturing practice guidelines: https://www.ecfr.gov/cgi-bin/text-idx?SID=cb7c830642b365274d824a432e118e77&mc=true&node=pt21.8.820&rgn=div5

Human Organ and Disease Model Technologies (hDMT): https://www.hdmt.technology/

IQ Consortium: https://iqconsortium.org/

National Center for Advancing Translational Sciences (NCATS) Tissue Chips in Space: https://ncats.nih.gov/tissuechip/projects/space

NIH Heal Initiative: https://heal.nih.gov

ORCHID: https://h2020-orchid.eu/

Organisation for Economic Co-operation and Development “Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment”: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd-gd34.pdf

Organs on chips — 2017 market overview analysis by Yole Développement: http://www.yole.fr/OrgansOnChips_Market.aspx#.XIP6dVNKiV4

The Center for Advancement of Science in Space (CASIS): https://www.iss-casis.org/

The Gartner hype cycle for emerging technologies 2018: https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/

Tissue Chip Drug Screening: https://ncats.nih.gov/tissuechip

Tissue Chip Testing Centers: https://ncats.nih.gov/tissuechip/projects/Centres

US National Institutes of Health (NIH), FDA and DARPA funded development of tissue chips to advance regulatory sciences: https://www.nih.gov/news-events/news-releases/nih-fda-announce-collaborative-initiative-fast-track-innovations-public

Glossary

Extracellular matrix

(ECM). Supporting network of macromolecules providing structural and biochemical support to surrounding cells. Promotes cell adhesion and cell–cell communication and produces biochemical cues for tissue growth and maintenance. The ECM is tissue specific and in animal tissues consists of fibrous elements (collagen and elastin), and links proteins (laminin and fibronectin) and other molecules.

Hydrogels

Highly absorbent and hydrophilic biocompatible 3D polymer networks used to contain cells or drugs for tissue engineering applications. Can consist of natural (collagen, gelatin and agarose) or synthetic components and respond to environmental conditions such as pH. May have both liquid and solid properties. Other uses include wound dressings and contact lenses.

Multi-electrode arrays

Arrays of tens to thousands of tightly spaced microelectrical sensors designed to record from single cells to networks of cells on submillisecond timescales. Can also be used to stimulate cells with precise spatial and temporal characteristics. Used in electrically excitable tissues such as cardiac, muscle and neural tissues.

Pharmacokinetic/pharmacodynamic modelling

Integration of pharmacokinetics (movement of drugs through the body) and pharmacodynamics (the body’s biological response to drugs) into a mathematical model describing dose–concentration–response relationships. Can be used to predict effect and efficacy of drug dosing over time.

Physiologically based pharmacokinetic modelling

Mathematical modelling of body compartments (predefined organs or tissues) combined with known parameters of concentrations, quantities and transport between compartments used to predict absorption, distribution, metabolism and excretion of synthetic or natural chemical substances within the body.

Investigational New Drug

(IND). An application submitted to the US Food and Drug Administration to administer a novel drug to humans. The first step in the drug review process, which includes information on animal studies, manufacturing protocols and clinical and personnel protocols. Data gathered become part of the New Drug Application.

New Drug Application

(NDA). An application submitted to the US Food and Drug Administration requesting permission to sell and market a drug in the USA. Information submitted includes data from the Investigational New Drug and is reviewed for safety and efficacy, benefit versus risks, appropriate labelling information, and manufacturing and processing methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Low, L.A., Mummery, C., Berridge, B.R. et al. Organs-on-chips: into the next decade. Nat Rev Drug Discov (2020). https://doi.org/10.1038/s41573-020-0079-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing