Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Perioperative stroke

Abstract

Ischaemic or haemorrhagic perioperative stroke (that is, stroke occurring during or within 30 days following surgery) can be a devastating complication following surgery. Incidence is reported in the 0.1–0.7% range in adults undergoing non-cardiac and non-neurological surgery, in the 1–5% range in patients undergoing cardiac surgery and in the 1–10% range following neurological surgery. However, higher rates have been reported when patients are actively assessed and in high-risk populations. Prognosis is significantly worse than stroke occurring in the community, with double the 30-day mortality, greater disability and diminished quality of life among survivors. Considering the annual volume of surgeries performed worldwide, perioperative stroke represents a substantial burden. Despite notable differences in aetiology, patient populations and clinical settings, existing clinical recommendations for perioperative stroke are extrapolated mainly from stroke in the community. Perioperative in-hospital stroke is unique with respect to the stroke occurring in other settings, and it is essential to apply evidence from other settings with caution and to identify existing knowledge gaps in order to effectively guide patient care and future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence (%) of 30-day postoperative stroke according to surgical category.
Fig. 2: Forest plot and adjusted odds ratio of predictors for 30-day postoperative stroke complication.
Fig. 3: Aetiologic contributions to perioperative stroke.
Fig. 4: Neuroimaging of two patients with large postoperative intracerebral haemorrhages.
Fig. 5: Clinical pathways for suspected perioperative stroke.
Fig. 6: Neuroimaging of a large postoperative thromboembolic stroke of the left middle cerebral artery territory managed with mechanical thrombectomy.

Similar content being viewed by others

References

  1. International Surgical Outcomes Study group Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries. Br. J. Anaesth. 117, 601–609 (2016).

    Article  Google Scholar 

  2. Mashour, G., Moore, L., Lele, A., Robicsek, S. & Gelb, A. Perioperative care of patients at high risk for stroke during or after non-cardiac, non-neurologic surgery: consensus statement from the society for neuroscience in anesthesiology and critical care. J. Neurosurg. Anesthesiol. 26, 273–285 (2014). An original authoritative consensus statement, endorsed by the Society for Neuroscience in Anesthesiology and Critical Care, provides evidence-based guidelines for a previously under-represented patient cohort. It offers a structured risk stratification methodology and outlines best practices for multidisciplinary teams.

    Article  PubMed  Google Scholar 

  3. Mashour, G., Shanks, A. & Kheterpal, S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology 114, 1289–1296 (2011). This study presents comprehensive data regarding the incidence and mortality of perioperative stroke from 523,059 patients in the American College of Surgeons National Surgical Quality Improvement Program database who underwent noncardiac, non-neurological surgery. This is foundational in highlighting the risk factors and significant morbidity and mortality associated with perioperative stroke.

    Article  PubMed  Google Scholar 

  4. Wilcox, T., Smilowitz, N. R., Xia, Y. & Berger, J. S. Cardiovascular risk scores to predict perioperative stroke in noncardiac surgery. Stroke 50, 2002–2006 (2019). This study compares several scoring tools used clinically for perioperative stroke risk prediction. It reports excellent risk discrimination for perioperative stroke in patients undergoing noncardiac surgery using the myocardial infarction or cardiac arrest risk score and the American College of Surgeons surgical risk calculator.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nepogodiev, D. et al. Global burden of postoperative death. Lancet 393, 401 (2019).

    Article  PubMed  Google Scholar 

  6. Puskas, J. D. et al. Stroke after coronary artery operation: incidence, correlates, outcome, and cost. Ann. Thorac. Surg. 69, 1053–1056 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, R. et al. Worldwide 1-month case fatality of ischaemic stroke and the temporal trend. Stroke Vasc. Neurol. 5, 353–360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woo, S. H., Marhefka, G. D., Cowan, S. W. & Ackermann, L. Development and validation of a prediction model for stroke, cardiac, and mortality risk after non-cardiac surgery. J. Am. Heart Assoc. 10, e018013 (2021). This paper presents a validated predictive model for perioperative cardiovascular complications, including stroke, with comprehensive analysis of stroke-specific risk factors, including granular detail regarding specific types of surgery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer, J. D., Sparrow, O. C. & Iannotti, F. Postoperative hematoma: a 5-year survey and identification of avoidable risk factors. Neurosurgery 35, 1061–1065 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Lichtman, J. H., Jones, S. B., Leifheit-Limson, E. C., Wang, Y. & Goldstein, L. B. 30-Day mortality and readmission after hemorrhagic stroke among medicare beneficiaries in Joint Commission Primary Stroke Center-certified and noncertified hospitals. Stroke 42, 3387–3391 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giovannetti, T. et al. Cognition and cerebral infarction in older adults after surgical aortic valve replacement. Ann. Thorac. Surg. 107, 787–794 (2019).

    Article  PubMed  Google Scholar 

  12. Messé, S. R. et al. Stroke after aortic valve surgery: results from a prospective cohort. Circulation 129, 2253–2261 (2014). This study characterizes stroke after aortic valve replacement highlighting the importance of routine neurological assessments to identify stroke and the increased mortality and length of stay associated with clinical stroke complicating aortic valve replacement.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aguirre, A. O. et al. Stroke management and outcomes in low-income and lower-middle-income countries: a meta-analysis of 8535 patients. J. Neurosurg. 139, 1042–1051 (2023).

    PubMed  Google Scholar 

  14. Saltman, A., Silver, F., Fang, J., Stamplecoski, M. & Kapral, M. Care and outcomes of patients with in-hospital stroke. JAMA Neurol. 72, 749–755 (2015).

    Article  PubMed  Google Scholar 

  15. Al-Hader, R. et al. The incidence of perioperative stroke: estimate using state and national databases and systematic review. J. Stroke 21, 290–301 (2019). This study establishes a comprehensive baseline estimate for perioperative stroke incidence in the USA.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Likosky, D. S. et al. Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery. Stroke 34, 2830–2834 (2003).

    Article  PubMed  Google Scholar 

  17. Benesch, C. et al. Perioperative neurological evaluation and management to lower the risk of acute stroke in patients undergoing noncardiac, nonneurological surgery: a scientific statement from the American Heart Association/American Stroke Association. Circulation 143, e923–e946 (2021). An authoritative scientific statement from the American Heart Association/American Stroke Association, it provides the most up-to-date (published in 2021) evidence-based recommendations for neurological evaluation and management to lower the risk of acute stroke in patients undergoing non-cardiac, non-neurological surgery.

    Article  CAS  PubMed  Google Scholar 

  18. Gaudino, M. et al. Considerations for reduction of risk of perioperative stroke in adult patients undergoing cardiac and thoracic aortic operations: a scientific statement from the American Heart Association. Circulation 142, e193–e209 (2020). An authoritative scientific statement from the American Heart Association, it offers evidence-based guidelines aimed at reducing the risk of perioperative stroke, specifically in cardiac and thoracic aortic operations.

    Article  PubMed  Google Scholar 

  19. GBD 2019 Stroke Collaborators Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20, 795–820 (2021).

    Article  Google Scholar 

  20. Pichlmaier, M. et al. Routine stent bridging to the supraaortic vessels in aortic arch replacement: 10-year-experience. Ann. Thorac. Surg. 113, 1491–1497 (2022).

    Article  PubMed  Google Scholar 

  21. NeuroVISION Investigators Perioperative covert stroke in patients undergoing non-cardiac surgery (NeuroVISION): a prospective cohort study. Lancet 394, 1022–1029 (2019). A prospective, multinational cohort study of over 1,100 patients ≥65 years of age who underwent elective, high-risk noncardiac and noncarotid surgery. It reveals a 7% incidence rate of perioperative covert (or clinically silent) stroke detected via MRI and underscores the need for vigilant monitoring.

    Article  Google Scholar 

  22. Woldendorp, K. et al. Silent brain infarcts and early cognitive outcomes after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur. Heart J. 42, 1004–1015 (2021).

    Article  PubMed  Google Scholar 

  23. Fanning, J. P., Wong, A. A. & Fraser, J. F. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med. 12, 119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fanning, J. P., Wesley, A. J., Wong, A. A. & Fraser, J. F. Emerging spectra of silent brain infarction. Stroke 45, 3461–3471 (2014).

    Article  PubMed  Google Scholar 

  25. Gensicke, H. et al. Ischemic brain lesions after carotid artery stenting increase future cerebrovascular risk. J. Am. Coll. Cardiol. 65, 521–529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smilowitz, N. R. et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2, 181–187 (2017). Among 10,581,621 hospitalizations for major noncardiac surgery, major adverse cardiovascular and cerebrovascular events are a significant source of perioperative morbidity and mortality. An increase in perioperative ischaemic stroke is seen from 2004 to 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bateman, B., Schumacher, C., Wang, S., Shaefi, S. & Berman, M. Perioperative acute ischemic stroke in noncardiac and nonvascular surgery: incidence, risk factors, and outcomes. Anesthesiology 110, 231–238 (2009). National Inpatient Sample of 372,000 patients who underwent major intra-abdominal, orthopaedic and noncardiac thoracic surgery. Detailed study of the incidence and outcomes of acute ischaemic stroke in noncardiac surgery and nonvascular surgery.

    Article  PubMed  Google Scholar 

  28. Vasivej, T., Sathirapanya, P. & Kongkamol, C. Incidence and risk factors of perioperative stroke in noncardiac, and nonaortic and its major branches surgery. J. Stroke Cerebrovasc. Dis. 25, 1172–1176 (2016).

    Article  PubMed  Google Scholar 

  29. Wang, H., Li, S. L., Bai, J. & Wang, D. X. Perioperative acute ischemic stroke increases mortality after noncardiac, nonvascular, and non-neurologic surgery: a retrospective case series. J. Cardiothorac. Vasc. Anesth. 33, 2231–2236 (2019).

    Article  PubMed  Google Scholar 

  30. Reynolds, M. R. et al. Investigating the mechanisms of perioperative ischemic stroke in the Carotid Occlusion Surgery Study. J. Neurosurg. 119, 988–995 (2013).

    Article  PubMed  Google Scholar 

  31. Garcia, R. M., Yoon, S., Cage, T., Potts, M. B. & Lawton, M. T. Ethnicity, race, and postoperative stroke risk among 53,593 patients with asymptomatic carotid stenosis undergoing revascularization. World Neurosurg. 108, 246–253 (2017).

    Article  PubMed  Google Scholar 

  32. Mehdi, Z., Birns, J., Partridge, J., Bhalla, A. & Dhesi, J. Perioperative management of adult patients with a history of stroke or transient ischaemic attack undergoing elective non-cardiac surgery. Clin. Med. 16, 535–540 (2016).

    Article  Google Scholar 

  33. Aries, M. J. H., Elting, J. W., De Keyser, J., Kremer, B. P. H. & Vroomen, P. C. A. J. Cerebral autoregulation in stroke: a review of transcranial Doppler studies. Stroke 41, 2697–2704 (2010).

    Article  PubMed  Google Scholar 

  34. Jørgensen, M. E. et al. Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery. JAMA 312, 269–277 (2014). By rigorously quantifying the time-dependent risk factors related to major adverse cardiovascular events and mortality in patients with prior ischaemic stroke, this study finds that the timing of surgery in patients with recent ischaemic stroke is an important and inadequately addressed issue.

    Article  PubMed  Google Scholar 

  35. Andreasen, C. et al. Association of timing of aortic valve replacement surgery after stroke with risk of recurrent stroke and mortality. JAMA Cardiol. 3, 506–513 (2018). This study demonstrated association between the time elapsed from previous stroke (especially <3 months) and surgical aortic valve replacement with the risk of recurrent perioperative stroke, major adverse events (MACE) and mortality.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Christiansen, M. N. et al. Risks of cardiovascular adverse events and death in patients with previous stroke undergoing emergency noncardiac, nonintracranial surgery: the importance of operative timing. Anesthesiology 127, 9–19 (2017).

    Article  PubMed  Google Scholar 

  37. Glance, L. G. et al. Association of time elapsed since ischemic stroke with risk of recurrent stroke in older patients undergoing elective nonneurologic, noncardiac surgery. JAMA Surg. 157, e222236 (2022). There is limited information on which to base decisions for how long to delay elective non-neurological and noncardiac surgery in patients with a history of stroke. This study suggests that the risk plateaus after 90 days between a previous stroke and elective surgery.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Musleh, R. et al. Surgical timing in patients with infective endocarditis and with intracranial hemorrhage: a systematic review and meta-analysis. J. Am. Heart Assoc. 11, e024401 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Psychogios, M. et al. European Stroke Organisation (ESO) guidelines on treatment of patients with intracranial atherosclerotic disease. Eur. Stroke J. 7, XLII–LXXX (2022).

    Article  Google Scholar 

  40. Blacker, D. J., Flemming, K. D. & Wijdicks, E. F. M. Risk of ischemic stroke in patients with symptomatic vertebrobasilar stenosis undergoing surgical procedures. Stroke 34, 2659–2663 (2003).

    Article  PubMed  Google Scholar 

  41. Chimowitz, M. I. et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med. 352, 1305–1316 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Shishehbor, M. H. et al. A direct comparison of early and late outcomes with three approaches to carotid revascularization and open heart surgery. J. Am. Coll. Cardiol. 62, 1948–1956 (2013).

    Article  PubMed  Google Scholar 

  43. Masabni, K. et al. Nonselective carotid artery ultrasound screening in patients undergoing coronary artery bypass grafting: is it necessary? J. Thorac. Cardiovasc. Surg. 151, 402–408 (2016).

    Article  PubMed  Google Scholar 

  44. de Weerd, M. et al. Prevalence of asymptomatic carotid artery stenosis in the general population. Stroke 41, 1294–1297 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Naylor, A. R. & Bown, M. J. Stroke after cardiac surgery and its association with asymptomatic carotid disease: an updated systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 41, 607–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Naylor, A. R., Mehta, Z., Rothwell, P. M. & Bell, P. R. F. Carotid artery disease and stroke during coronary artery bypass: a critical review of the literature. Eur. J. Vasc. Endovasc. Surg. 23, 283–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y. et al. Strokes after cardiac surgery and relationship to carotid stenosis. Arch. Neurol. 66, 1091–1096 (2009).

    Article  PubMed  Google Scholar 

  48. Sonny, A., Gornik, H. L., Yang, D., Mascha, E. J. & Sessler, D. I. Lack of association between carotid artery stenosis and stroke or myocardial injury after noncardiac surgery in high-risk patients. Anesthesiology 121, 922–929 (2014). This study finds no association between carotid artery stenosis and perioperative stroke.

    Article  PubMed  Google Scholar 

  49. AbuRahma, A. F. et al. Society for Vascular Surgery clinical practice guidelines for management of extracranial cerebrovascular disease. J. Vasc. Surg. 75, 4S–22S (2022).

    Article  PubMed  Google Scholar 

  50. Naylor, A. R. et al. Editor’s choice — Management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 55, 3–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Bonati, L. H. et al. European stroke organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur. Stroke J. 6, I–XLVII (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Naylor, A. et al. Editor’s choice — European society for vascular surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur. J. Vasc. Endovasc. Surg. 65, 7–111 (2023).

    Article  PubMed  Google Scholar 

  53. US Preventive Services Task Force Screening for asymptomatic carotid artery stenosis: US preventive services task force recommendation statement. JAMA 325, 476–481 (2021).

    Article  Google Scholar 

  54. Weimar, C. et al. Safety of simultaneous coronary artery bypass grafting and carotid endarterectomy versus isolated coronary artery bypass grafting. Stroke 48, 2769–2775 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neumann, F. J. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

    Article  PubMed  Google Scholar 

  56. Park, K. H. et al. Clinical impact of computerised tomographic angiography performed for preoperative evaluation before coronary artery bypass grafting. Eur. J. Cardiothorac. Surg. 37, 1346–1352 (2010).

    Article  PubMed  Google Scholar 

  57. Biancari, F. et al. Epiaortic ultrasound to prevent stroke in coronary artery bypass grafting. Ann. Thorac. Surg. 109, 294–301 (2020). This study demonstrates the efficacy of epiaortic ultrasound to alter coronary artery surgical technique to avoid aortic plaque, a major source of cerebral embolism and stroke.

    Article  PubMed  Google Scholar 

  58. Kaatz, S., Douketis, J. D., Zhou, H., Gage, B. F. & White, R. H. Risk of stroke after surgery in patients with and without chronic atrial fibrillation. J. Thromb. Haemost. 8, 884–890 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. van Diepen, S., Bakal, J. A., McAlister, F. A. & Ezekowitz, J. A. Mortality and readmission of patients with heart failure, atrial fibrillation, or coronary artery disease undergoing noncardiac surgery. Circulation 124, 289–296 (2011).

    Article  PubMed  Google Scholar 

  60. Bhatnagar, P., Wickramasinghe, K., Williams, J., Rayner, M. & Townsend, N. The epidemiology of cardiovascular disease in the UK 2014. Heart 101, 1182–1189 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Gotoh, S., Yasaka, M., Nakamura, A., Kuwashiro, T. & Okada, Y. Management of antithrombotic agents during surgery or other kinds of medical procedures with bleeding: the MARK study. J. Am. Heart Assoc. 9, e012774 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Douketis, J. et al. Perioperative bridging anticoagulation in patients with atrial fibrillation. N. Engl. J. Med. 373, 823–833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kovacs, M. J. et al. Postoperative low molecular weight heparin bridging treatment for patients at high risk of arterial thromboembolism (PERIOP2): double blind randomised controlled trial. BMJ 373, n1205 (2023).

    Google Scholar 

  64. Ayoub, K. et al. Perioperative heparin bridging in atrial fibrillation patients requiring temporary interruption of anticoagulation: evidence from meta-analysis. J. Stroke Cerebrovasc. Dis. 25, 2215–2221 (2016).

    Article  PubMed  Google Scholar 

  65. Hindricks, G. et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 42, 373–498 (2021).

    Article  PubMed  Google Scholar 

  66. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation 140, e125–e151 (2019).

    Article  PubMed  Google Scholar 

  67. Gaudino, M. et al. Posterior left pericardiotomy for the prevention of atrial fibrillation after cardiac surgery: an adaptive, single-centre, single-blind, randomised, controlled trial. Lancet 398, 2075–2083 (2021).

    Article  PubMed  Google Scholar 

  68. Whitlock, R. P. et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N. Engl. J. Med. 384, 2081–2091 (2021).

    Article  PubMed  Google Scholar 

  69. Turagam, M. K., Osmancik, P., Neuzil, P., Dukkipati, S. R. & Reddy, V. Y. Left atrial appendage closure versus oral anticoagulants in atrial fibrillation: a meta-analysis of randomized trials. J. Am. Coll. Cardiol. 76, 2795–2797 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Marfella, R. et al. Brief episodes of silent atrial fibrillation predict clinical vascular brain disease in type 2 diabetic patients. J. Am. Coll. Cardiol. 62, 525–530 (2013).

    Article  PubMed  Google Scholar 

  71. Healey, J. S. et al. Subclinical atrial fibrillation and the risk of stroke. N. Engl. J. Med. 366, 120–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. US Preventive Services Task Force Screening for atrial fibrillation: US Preventive Services Task Force recommendation statement. JAMA 327, 360–367 (2022).

    Article  Google Scholar 

  73. Lin, M. H. et al. Perioperative/postoperative atrial fibrillation and risk of subsequent stroke and/or mortality. Stroke 50, 1364–1371 (2019).

    Article  PubMed  Google Scholar 

  74. Meissner, I. et al. Patent foramen ovale: innocent or guilty?: Evidence from a prospective population-based study. J. Am. Coll. Cardiol. 47, 440–445 (2006).

    Article  PubMed  Google Scholar 

  75. Ng, P. et al. Association of preoperatively diagnosed patent foramen ovale with perioperative ischemic stroke. JAMA 319, 452–462 (2018). Retrospective cohort of 182,393 adults undergoing noncardiac surgery finds PFO to be a significant risk factor for perioperative ischaemic stroke.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Perfetti, D. C. et al. Atrial septal defect increases the risk for stroke after total hip arthroplasty. J. Arthroplasty 32, 3152–3156 (2017).

    Article  PubMed  Google Scholar 

  77. Kent, D. M. et al. Heterogeneity of treatment effects in an analysis of pooled individual patient data from randomized trials of device closure of patent foramen ovale after stroke. JAMA 326, 2277–2286 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Svensson, L. et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J. Thorac. Cardiovasc. Surg. 106, 19–31 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Fanning, J. P. et al. Characterization of neurological injury in transcatheter aortic valve implantation: how clear is the picture? Circulation 129, 504–515 (2014).

    Article  PubMed  Google Scholar 

  80. Huibers, A. et al. The mechanism of procedural stroke following carotid endarterectomy within the asymptomatic carotid surgery trial 1. Cerebrovasc. Dis. 42, 178–185 (2016).

    Article  PubMed  Google Scholar 

  81. Huibers, A. et al. Mechanism of procedural stroke following carotid endarterectomy or carotid artery stenting within the International Carotid Stenting Study (ICSS) randomised trial. Eur. J. Vasc. Endovasc. Surg. 50, 281–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Andrews, R. J. & Bringas, J. R. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery 33, 1052–1063 (1993).

    CAS  PubMed  Google Scholar 

  83. O’Brien, H., Mohan, H., Hare, C. O., Reynolds, J. V. & Kenny, R. A. Mind over matter? The hidden epidemic of cognitive dysfunction in the older surgical patient. Ann. Surg. 265, 677–691 (2017).

    Article  PubMed  Google Scholar 

  84. Berger, M. et al. Best practices for postoperative brain health: recommendations from the fifth international Perioperative Neurotoxicity Working group. Anesth. Analg. 127, 1406–1413 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Neuman, M. D. et al. Spinal anesthesia or general anesthesia for hip surgery in older adults. N. Engl. J. Med. 385, 2025–2035 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Kettner, S. C., Willschke, H. & Marhofer, P. Does regional anaesthesia really improve outcome? Br. J. Anaesth. 107, i90–i95 (2011).

    Article  PubMed  Google Scholar 

  87. Chu, C.-C. et al. Propensity score–matched comparison of postoperative adverse outcomes between geriatric patients given a general or a neuraxial anesthetic for hip surgery. Anesthesiology 123, 136–147 (2015).

    Article  PubMed  Google Scholar 

  88. Memtsoudi, S. et al. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 118, 1046–1058 (2013).

    Article  Google Scholar 

  89. Guay, J., Parker, M. J., Gajendragadkar, P. R. & Kopp, S. Anaesthesia for hip fracture surgery in adults. Cochrane Database Syst. Rev. 2, CD000521 (2016).

    PubMed  Google Scholar 

  90. Barbosa, F. T., Jucá, M. J., Castro, A. A. & Cavalcante, J. C. Neuraxial anaesthesia for lower-limb revascularization. Cochrane Database Syst. Rev. 7, CD007083 (2013).

    Google Scholar 

  91. Vlisides, P. E. et al. Carbon dioxide, blood pressure, and perioperative stroke: a retrospective case-control study. Anesthesiology 137, 434–445 (2022).

    Article  PubMed  Google Scholar 

  92. Caplan, L. R. & Hennerici, N. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch. Neurol. 55, 1475–1482 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. McKetton, L. et al. The aging brain and cerebrovascular reactivity. Neuroimage 181, 132–141 (2018).

    Article  PubMed  Google Scholar 

  94. Aguirre, J. A. et al. The beach chair position for shoulder surgery in intravenous general anesthesia and controlled hypotension: impact on cerebral oxygenation, cerebral blood flow and neurobehavioral outcome. J. Clin. Anesth. 53, 40–48 (2019).

    Article  PubMed  Google Scholar 

  95. Lee, J. H., Min, K. T., Chun, Y. M., Kim, E. J. & Choi, S. H. Effects of beach-chair position and induced hypotension on cerebral oxygen saturation in patients undergoing arthroscopic shoulder surgery. Arthroscopy 27, 889–894 (2011).

    Article  PubMed  Google Scholar 

  96. Slupe, A. M. & Kirsch, J. R. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J. Cereb. Blood Flow Metab. 38, 2192–2208 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Puy, L. et al. Intracerebral haemorrhage. Nat. Rev. Dis. Primers 9, 14 (2023).

    Article  PubMed  Google Scholar 

  98. Nam, J. S. et al. Perioperative rupture risk of unruptured intracranial aneurysms in cardiovascular surgery. Brain 142, 1408–1415 (2019).

    Article  PubMed  Google Scholar 

  99. O’Donnell, H. C. et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N. Engl. J. Med. 342, 240–245 (2000).

    Article  PubMed  Google Scholar 

  100. Libman, R. B. et al. Stroke associated with cardiac surgery: determinants, timing, and stroke subtypes. Arch. Neurol. 54, 83–87 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Marsh, E. B. et al. Predicting hemorrhagic transformation of acute ischemic stroke: prospective validation of the HeRS score. Medicine 95, e2430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baddour, L. M. et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications. Circulation 132, 1435–1486 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Ko, S.-B. Perioperative stroke: pathophysiology and management. Korean J. Anesthesiol. 71, 3–11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ogasawara, K. et al. Intracranial hemorrhage associated with cerebral hyperperfusion syndrome following carotid endarterectomy and carotid artery stenting: retrospective review of 4494 patients. J. Neurosurg. 107, 1130–1136 (2007).

    Article  PubMed  Google Scholar 

  105. Yoo, D. H. et al. Staged carotid artery stenting in patients with severe carotid stenosis: multicenter experience. J. Clin. Neurosci. 53, 74–78 (2018).

    Article  PubMed  Google Scholar 

  106. Alejaldre, A., Delgado-Mederos, R., Santos, M. Á. & Martí-Fàbregas, J. Cerebrovascular complications after heart transplantation. Curr. Cardiol. Rev. 6, 214–217 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tahir, R. A. et al. Intracranial hemorrhage in patients with a left ventricular assist device. World Neurosurg. 113, e714–e721 (2018).

    Article  PubMed  Google Scholar 

  108. García-Cabrera, E. et al. Neurological complications of infective endocarditis risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation 127, 2272–2284 (2013).

    Article  PubMed  Google Scholar 

  109. Nadig, A. S. & King, A. T. Traumatic extradural haematoma revealed after contralateral decompressive craniectomy. Br. J. Neurosurg. 26, 877–879 (2012).

    Article  PubMed  Google Scholar 

  110. Al-Rodhan, N. R. et al. Occlusive hyperemia: a theory for the hemodynamic complications following resection of intracerebral arteriovenous malformations. J. Neurosurg. 78, 167–175 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Sun, Z., Yue, Y., Leung, C. C. H., Chan, M. T. V. & Gelb, A. W. Clinical diagnostic tools for screening of perioperative stroke in general surgery: a systematic review. Br. J. Anaesth. 116, 328–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Perry, J. J. et al. Sensitivity of computed tomography performed within six hours of onset of headache for diagnosis of subarachnoid haemorrhage: prospective cohort study. BMJ 343, d4277 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dubosh, N. M., Bellolio, M. F., Rabinstein, A. A. & Edlow, J. A. Sensitivity of early brain computed tomography to exclude aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Stroke 47, 750–755 (2016).

    Article  PubMed  Google Scholar 

  114. Kauw, F. et al. Detection of early ischemic changes with virtual noncontrast dual-energy CT in acute ischemic stroke: a noninferiority analysis. Am. J. Neuroradiol. 43, 1259–1264 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Albers, G. W. et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N. Engl. J. Med. 378, 708–718 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Nogueira, R. G. et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018).

    Article  PubMed  Google Scholar 

  117. Lin, K. et al. Perfusion CT improves diagnostic accuracy for hyperacute ischemic stroke in the 3-hour window: study of 100 patients with diffusion MRI confirmation. Cerebrovasc. Dis. 28, 72–79 (2009).

    Article  PubMed  Google Scholar 

  118. Goyal, M. et al. Correspondence to challenging the ischemic core concept in acute ischemic stroke imaging. Stroke 51, 3147–3155 (2020).

    Article  PubMed  Google Scholar 

  119. Wardlaw, J. M., Dorman, P. J., Lewis, S. C. & Sandercock, P. A. Can stroke physicians and neuroradiologists identify signs of early cerebral infarction on CT? J. Neurol. Neurosurg. Psychiatry 67, 651–653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mohr, J. P. et al. Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26, 807–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Thomalla, G. et al. Intravenous alteplase for stroke with unknown time of onset guided by advanced imaging: systematic review and meta-analysis of individual patient data. Lancet 396, 1574–1584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Campbell, B. C. V. et al. Extending thrombolysis to 4·5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet 394, 139–147 (2019).

    Article  PubMed  Google Scholar 

  123. Vlisides, P. & Mashour, G. Perioperative stroke. Can. J. Anaesth. 63, 193–204 (2016).

    Article  PubMed  Google Scholar 

  124. Flexman, A. M. et al. Postoperative screening with the modified national institutes of health stroke scale after noncardiac surgery: a pilot study. J. Neurosurg. Anesthesiol. 34, 327–332 (2022).

    Article  PubMed  Google Scholar 

  125. Engelman, D. T. et al. Guidelines for perioperative care in cardiac surgery: enhanced recovery after surgery society recommendations. JAMA Surg. 154, 755–766 (2019).

    Article  PubMed  Google Scholar 

  126. Wong, W. T., Lai, V. K. W., Chee, Y. E. & Lee, A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst. Rev. 9, CD003587 (2016).

    PubMed  Google Scholar 

  127. Rudd, M., Buck, D., Ford, G. & Price, C. A systematic review of stroke recognition instruments in hospital and prehospital settings. Emerg. Med. J. 33, 818–822 (2016).

    Article  PubMed  Google Scholar 

  128. Kassardjian, C. D. et al. In-patient code stroke: a quality improvement strategy to overcome knowledge-to-action gaps in response time. Stroke 48, 2176–2183 (2017).

    Article  PubMed  Google Scholar 

  129. Fleisher, L. et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 130, e278–e333 (2014).

    PubMed  Google Scholar 

  130. Kristensen, S. D. et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: the joint task force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur. Heart J. 35, 2383–2431 (2014).

    Article  PubMed  Google Scholar 

  131. POISE Study Group Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371, 1839–1847 (2008).

    Article  Google Scholar 

  132. Wijeysundera, D. N. et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association on Practice Guidelines. Circulation 130, 2246–2264 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Jørgensen, M. et al. Beta-blocker subtype and risks of perioperative adverse events following non-cardiac surgery: a nationwide cohort study. Eur. Heart J. 38, 2421–2428 (2017).

    Article  PubMed  Google Scholar 

  134. Sousa-Uva, M. et al. 2017 EACTS guidelines on perioperative medication in adult cardiac surgery. Eur. J. Cardiothorac. Surg. 53, 5–33 (2018).

    Article  PubMed  Google Scholar 

  135. Devereaux, P. et al. Aspirin in patients undergoing noncardiac surgery. N. Engl. J. Med. 370, 1494–1503 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Kamel, H. et al. Association between major perioperative hemorrhage and stroke or Q-wave myocardial infarction. Circulation 126, 207–212 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Marquis-Gravel, G. et al. Revisiting the role of aspirin for the primary prevention of cardiovascular disease. Circulation 140, 1115–1124 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Hornor, M. et al. American College of Surgeons’ guidelines for the perioperative management of antithrombotic medication. J. Am. Coll. Surg. 227, 521–536.e1 (2018).

    Article  PubMed  Google Scholar 

  139. Fanning, J. P., Huth, S. F., Robba, C., Grieve, S. M. & Highton, D. Advances in neuroimaging and monitoring to defend cerebral perfusion in noncardiac surgery. Anesthesiology 136, 1015–1038 (2022). Detailed review of the methods, metrics and evidence supporting neuroimaging and neuromonitoring methods in patients undergoing noncardiac, non-neurological surgery.

    Article  PubMed  Google Scholar 

  140. Thirumala, P. D. et al. Diagnostic accuracy of somatosensory evoked potential and electroencephalography during carotid endarterectomy. Neurol. Res. 38, 698–705 (2016).

    Article  PubMed  Google Scholar 

  141. Anetakis, K. M. et al. Last electrically well: intraoperative neurophysiological monitoring for identification and triage of large vessel occlusions. J. Stroke Cerebrovasc. Dis. 29, 105158 (2020).

    Article  PubMed  Google Scholar 

  142. Bijker, J. B. et al. Incidence of intraoperative hypotension as a function of the chosen definition literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology 107, 213–220 (2007).

    Article  PubMed  Google Scholar 

  143. Vedel, A. G. et al. High-target versus low-target blood pressure management during cardiopulmonary bypass to prevent cerebral injury in cardiac surgery patients. Circulation 137, 1770–1780 (2018).

    Article  PubMed  Google Scholar 

  144. Sessler, D. I. et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 trial. Anesthesiology 128, 317–327 (2018).

    Article  PubMed  Google Scholar 

  145. Marcucci, M. et al. Hypotension-avoidance versus hypertension-avoidance strategies in noncardiac surgery: an international randomized controlled trial. Ann. Intern. Med. 176, 605–614 (2023).

    Article  PubMed  Google Scholar 

  146. Calvo-Vecino, J. et al. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial). Br. J. Anaesth. 120, 734–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Sessler, D. et al. Perioperative quality initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery. Br. J. Anaesth. 122, 563–574 (2019).

    Article  PubMed  Google Scholar 

  148. Meng, L. et al. Blood pressure targets in perioperative care. Hypertension 72, 806–817 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Benedetto, U. et al. Postoperative atrial fibrillation and long-term risk of stroke after isolated coronary artery bypass graft surgery. Circulation 142, 1320–1329 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chebbout, R. et al. A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery. Anaesthesia 73, 490–498 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Bhave, P. D., Goldman, L. E., Vittinghoff, E., Maselli, J. & Auerbach, A. Incidence, predictors, and outcomes associated with postoperative atrial fibrillation after major noncardiac surgery. Am. Heart J. 164, 918–924 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Siontis, K. C. et al. Association of new-onset atrial fibrillation after noncardiac surgery with subsequent stroke and transient ischemic attack. JAMA 324, 871–878 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Freedman, B., Kamel, H., Van Gelder, I. C. & Schnabel, R. B. Atrial fibrillation: villain or bystander in vascular brain injury. Eur. Heart J. Suppl. 22, M51–M59 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Taha, A. et al. New-onset atrial fibrillation after coronary artery bypass grafting and long-term outcome: a population-based nationwide study from the SWEDEHEART registry. J. Am. Heart Assoc. 10, e017966 (2021).

    Article  PubMed  Google Scholar 

  155. Riad, F. S. et al. Anticoagulation in new-onset postoperative atrial fibrillation: an analysis from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Heart Rhythm O2 3, 325–332 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Khatib, R., Arevalo, Y. A., Berendsen, M. A., Prabhakaran, S. & Huffman, M. D. Presentation, evaluation, management, and outcomes of acute stroke in low- and middle-income countries: a systematic review and meta-analysis. Neuroepidemiology 51, 104–112 (2018).

    Article  PubMed  Google Scholar 

  157. Langhorne, P., de Villiers, L. & Pandian, J. D. Applicability of stroke-unit care to low-income and middle-income countries. Lancet Neurol. 11, 341–348 (2012).

    Article  PubMed  Google Scholar 

  158. ENOS Trial Investigators Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): a partial-factorial randomised controlled trial. Lancet 385, 617–628 (2015).

    Article  Google Scholar 

  159. Bruce, K. M., Yelland, G. W., Smith, J. A. & Robinson, S. R. in Handbook of Psychocardiology (eds Alvarenga, M. E. & Byrne, D.) 585–628 (Springer, 2016).

  160. Nasi, L. A. et al. Early manipulation of arterial blood pressure in acute ischemic stroke (MAPAS): results of a randomized controlled trial. Neurocrit. Care 30, 372–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Powers, W. J. et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50, e344–e418 (2019). Authoritative guidelines by the American Heart Association/American Stroke Association for the management of acute ischaemic stroke.

    Article  PubMed  Google Scholar 

  162. Sandset, E. C. et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. Eur. Stroke J. 6, XLVIII–LXXXIX (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Berge, E. et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 6, I–LXII (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Turc, G. et al. European Stroke Organisation (ESO) - European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 15, e8 (2023).

    Article  PubMed  Google Scholar 

  165. Anderson, C. S. et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): an international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 393, 877–888 (2019).

    Article  PubMed  Google Scholar 

  166. Yang, P. et al. Intensive blood pressure control after endovascular thrombectomy for acute ischaemic stroke (ENCHANTED2/MT): a multicentre, open-label, blinded-endpoint, randomised controlled trial. Lancet 400, 1585–1596 (2022).

    Article  PubMed  Google Scholar 

  167. Bang, O. Y. et al. Therapeutic-induced hypertension in patients with noncardioembolic acute stroke. Neurology 93, e1955–e1963 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Goyal, M. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 372, 1019–1030 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Jovin, T. G. et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): a systematic review and individual patient data meta-analysis. Lancet 399, 249–258 (2022).

    Article  PubMed  Google Scholar 

  170. Sarraj, A. et al. Trial of endovascular thrombectomy for large ischemic strokes. N. Engl. J. Med. 388, 1259–1271 (2023).

    Article  PubMed  Google Scholar 

  171. Huo, X. et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N. Engl. J. Med. 388, 1272–1283 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Yoshimura, S. et al. Endovascular therapy for acute stroke with a large ischemic region. N. Engl. J. Med. 386, 1303–1313 (2022).

    Article  PubMed  Google Scholar 

  173. Premat, K. et al. Mechanical thrombectomy in perioperative strokes. Stroke 48, 3149–1351 (2017).

    Article  PubMed  Google Scholar 

  174. Thomalla, G. et al. MRI-guided thrombolysis for stroke with unknown time of onset. N. Engl. J. Med. 379, 611–622 (2018).

    Article  PubMed  Google Scholar 

  175. Voelkel, N., Hubert, N. D., Backhaus, R., Haberl, R. L. & Hubert, G. J. Thrombolysis in postoperative stroke. Stroke 48, 3034–3039 (2017).

    Article  PubMed  Google Scholar 

  176. Burgos, A. M. & Saber, J. L. Evidence that tenecteplase is noninferior to alteplase for acute ischemic stroke. Stroke 50, 2156–2162 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Koga, M. et al. Thrombolysis with alteplase at 0.6 mg/kg for stroke with unknown time of onset. Stroke 51, 1530–1538 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Anderson, C. S. et al. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. N. Engl. J. Med. 374, 2313–2323 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Khatri, P. et al. The safety and efficacy of thrombolysis for strokes after cardiac catheterization. J. Am. Coll. Cardiol. 51, 906–911 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  180. van der Worp, H. B. et al. European Stroke Organisation (ESO) guidelines on the management of space-occupying brain infarction. Eur. Stroke J. 6, XC–CX (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Hofmeijer, J. et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 8, 326–333 (2009).

    Article  PubMed  Google Scholar 

  182. Jüttler, E. et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N. Engl. J. Med. 370, 1091–1100 (2014).

    Article  PubMed  Google Scholar 

  183. Kleindorfer, D. O. et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 52, e364–e467 (2021).

    Article  PubMed  Google Scholar 

  184. Minhas, J. S. et al. Oral antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst. Rev. 1, CD000029 (2022).

    PubMed  Google Scholar 

  185. Hao, Q. et al. Clopidogrel plus aspirin versus aspirin alone for acute minor ischaemic stroke or high risk transient ischaemic attack: systematic review and meta-analysis. BMJ 363, k5108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pan, Y. et al. Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of clopidogrel in high-risk patients with acute non-disabling cerebrovascular events (CHANCE) and platelet-oriented inhibition in new TIA and minor ischemic stroke (POINT) trials. JAMA Neurol. 76, 1466–1473 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zaidat, O. O. et al. Effect of a balloon-expandable intracranial stent vs medical therapy on risk of stroke in patients with symptomatic intracranial stenosis: the VISSIT randomized clinical trial. JAMA 313, 1240–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Chimowitz, M. I. et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N. Engl. J. Med. 365, 993–1003 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gao, P. et al. Effect of stenting plus medical therapy vs medical therapy alone on risk of stroke and death in patients with symptomatic intracranial stenosis: the CASSISS randomized clinical trial. JAMA 328, 534–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ma, L. et al. The third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): an international, stepped wedge cluster randomised controlled trial. Lancet 402, 27–40 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Moullaali, T. J. et al. Early lowering of blood pressure after acute intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. J. Neurol. Neurosurg. Psychiatry 93, 6–13 (2022).

    Article  PubMed  Google Scholar 

  192. Greenberg, S. M. et al. 2022 guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 53, e282–e361 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Shoamanesh, A. et al. Canadian stroke best practice recommendations: Management of Spontaneous Intracerebral Hemorrhage, 7th edition update 2020. Int. J. Stroke 16, 321–341 (2021).

    Article  PubMed  Google Scholar 

  194. Qureshi, A. I. et al. Outcomes of intensive systolic blood pressure reduction in patients with intracerebral hemorrhage and excessively high initial systolic blood pressure: post hoc analysis of a randomized clinical trial. JAMA Neurol. 77, 1355–1365 (2020).

    Article  PubMed  Google Scholar 

  195. Anderson, C. S. et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 368, 2355–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Qureshi, A. I. et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N. Engl. J. Med. 375, 1033–1043 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Inohara, T. et al. Association of intracerebral hemorrhage among patients taking non-Vitamin K antagonist vs vitamin K antagonist oral anticoagulants with in-hospital mortality. JAMA 319, 463–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tsivgoulis, G. et al. Neuroimaging and clinical outcomes of oral anticoagulant–associated intracerebral hemorrhage. Ann. Neurol. 84, 694–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Sprigg, N. et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 391, 2107–2115 (2022).

    Article  Google Scholar 

  200. Qiu, Y. et al. Research progress on perioperative blood-brain barrier damage and its potential mechanism. Front. Cell. Dev. Biol. 11, 1174043 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Lovasik, B. P. et al. The effect of external ventricular drain use in intracerebral hemorrhage. World Neurosurg. 94, 309–318 (2016).

    Article  PubMed  Google Scholar 

  202. Kuramatsu, J. B. et al. Association of intraventricular fibrinolysis with clinical outcomes in intracerebral hemorrhage: an individual participant data meta-analysis. Stroke 53, 2876–2886 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhang, Z. et al. Application of neuroendoscopy in the treatment of intraventricular hemorrhage. Cerebrovasc. Dis. 24, 91–96 (2007).

    Article  PubMed  Google Scholar 

  204. Mendelow, A. D. et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet 365, 387–397 (2005).

    Article  PubMed  Google Scholar 

  205. Mendelow, A. D. et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 382, 397–408 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Hanley, D. F. et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 393, 1021–1032 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Kuramatsu, J. B. et al. Association of surgical hematoma evacuation vs conservative treatment with functional outcome in patients with cerebellar intracerebral hemorrhage. JAMA 322, 1392–1403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Casolla, B. et al. Five-year risk of major ischemic and hemorrhagic events after intracerebral hemorrhage. Stroke 50, 1100–1107 (2019).

    Article  PubMed  Google Scholar 

  209. Mullen, M. T. & Anderson, C. S. Review of long-term blood pressure control after intracerebral hemorrhage: challenges and opportunities. Stroke 53, 2142–2151 (2022).

    Article  PubMed  Google Scholar 

  210. Puy, L., Forman, R., Cordonnier, C. & Sheth, K. N. Protecting the brain, from the heart: safely mitigating the consequences of thrombosis in intracerebral hemorrhage survivors with atrial fibrillation. Stroke 53, 2152–2160 (2022).

    Article  PubMed  Google Scholar 

  211. Endres, M., Nolte, C. H. & Scheitz, J. F. Statin treatment in patients with intracerebral hemorrhage. Stroke 49, 240–246 (2018).

    Article  PubMed  Google Scholar 

  212. Pezzini, A. et al. Serum cholesterol levels, HMG-CoA reductase inhibitors and the risk of intracerebral haemorrhage. The Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy). J. Neurol. Neurosurg. Psychiatry 87, 924–929 (2016).

    Article  PubMed  Google Scholar 

  213. Middleton, S. et al. Implementation of evidence-based treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial. Lancet 378, 1699–1706 (2011).

    Article  PubMed  Google Scholar 

  214. Langhorne, P. & Ramachandra, S. Organised inpatient (stroke unit) care for stroke: network meta-analysis. Cochrane Database Syst. Rev. 4, CD000197 (2020).

    PubMed  Google Scholar 

  215. Kurtz, P. et al. How does care differ for neurological patients admitted to a neurocritical care unit versus a general ICU? Neurocrit. Care 15, 477–480 (2011).

    Article  PubMed  Google Scholar 

  216. Rønning, O. M. & Guldvog, B. Stroke units versus general medical wards, i: twelve- and eighteen-month survival. Stroke 29, 58–62 (1998).

    Article  PubMed  Google Scholar 

  217. Bladin, C. F. et al. Improving acute stroke care in regional hospitals: clinical evaluation of the Victorian Stroke Telemedicine program. Med. J. Aust. 212, 371–377 (2020).

    Article  PubMed  Google Scholar 

  218. Lazarus, G. et al. Telestroke strategies to enhance acute stroke management in rural settings: a systematic review and meta-analysis. Brain Behav. 10, e01787 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cella, D. et al. Neuro-QOL: brief measures of health-related quality of life for clinical research in neurology. Neurology 78, 1860–1867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Williams, L. S., Weinberger, M., Harris, L. E., Clark, D. O. & Biller, J. Development of a stroke-specific quality of life scale. Stroke 30, 1362–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  221. Levin, S. R. et al. Most patients experiencing 30-day postoperative stroke after carotid endarterectomy will initially experience disability. J. Vasc. Surg. 70, 1499–1505.e1 (2019).

    Article  PubMed  Google Scholar 

  222. Levin, S. R. et al. Postoperative disability and one-year outcomes for patients suffering a stroke after carotid endarterectomy. J. Vasc. Surg. 78, 413–422.e1 (2023).

    Article  PubMed  Google Scholar 

  223. Levinson, M. M. & Rodriguez, D. I. Endarterectomy for preventing stroke in symptomatic and asymptomatic carotid stenosis. Review of clinical trials and recommendations for surgical therapy. Heart Surg. Forum 2, 147–168 (1999).

    CAS  PubMed  Google Scholar 

  224. Eckstein, H. H. et al. The carotid surgery for ischemic stroke trial: a prospective observational study on carotid endarterectomy in the early period after ischemic stroke. J. Vasc. Surg. 36, 997–1004 (2002).

    Article  CAS  PubMed  Google Scholar 

  225. Shulman, M. A. et al. Measurement of disability-free survival after surgery. Anesthesiology 122, 524–536 (2015).

    Article  PubMed  Google Scholar 

  226. Ghoneim, M. M. & O’Hara, M. W. Depression and postoperative complications: an overview. BMC Surg. 16, 5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Messé, S. R. et al. The impact of perioperative stroke and delirium on outcomes after surgical aortic valve replacement. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2022.01.053 (2022).

  228. Glaser, J. et al. Factors that determine the length of stay after carotid endarterectomy represent opportunities to avoid financial losses. J. Vasc. Surg. 60, 966–972.e1 (2014).

    Article  PubMed  Google Scholar 

  229. Taylor, T. N. et al. Lifetime cost of stroke in the United States. Stroke 27, 1459–1466 (1996).

    Article  CAS  PubMed  Google Scholar 

  230. Platzbecker, K. et al. Development and external validation of a prognostic model for ischaemic stroke after surgery. Br. J. Anaesth. 127, 713–721 (2021). This study presents a highly accurate screening model specific for perioperative ischaemic stroke.

    Article  PubMed  Google Scholar 

  231. Gupta, P. K. et al. Development and validation of a risk calculator for prediction of cardiac risk after surgery. Circulation 124, 381–387 (2011).

    Article  PubMed  Google Scholar 

  232. Bilimoria, K. Y. et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 217, 833–842 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Lip, G. Y. H., Nieuwlaat, R., Pisters, R., Lane, D. A. & Crijns, H. J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on atrial fibrillation. Chest 137, 263–272 (2010).

    Article  PubMed  Google Scholar 

  234. Lee, T. et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 100, 1043–1049 (1999).

    Article  CAS  PubMed  Google Scholar 

  235. Pellicer, A. & Bravo, M. del C. Near-infrared spectroscopy: a methodology-focused review. Semin. Fetal Neonatal Med. 16, 42–49 (2011).

    Article  PubMed  Google Scholar 

  236. D’Andrea, A. et al. Transcranial Doppler ultrasound: physical principles and principal applications in neurocritical care unit. J. Cardiovasc. Echogr. 26, 28–41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hori, D. et al. Cerebral autoregulation monitoring with ultrasound-tagged near-infrared spectroscopy in cardiac surgery patients. Anesth. Analg. 121, 1187–1193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hajat, Z., Ahmad, N. & Andrzejowski, J. The role and limitations of EEG-based depth of anaesthesia monitoring in theatres and intensive care. Anaesthesia 72, 38–47 (2017).

    Article  PubMed  Google Scholar 

  239. Vlisides, P. E. et al. Perioperative care of patients at high risk for stroke during or after non-cardiac, non-neurological surgery: 2020 guidelines from the society for neuroscience in anesthesiology and critical care. J. Neurosurg. Anesthesiol. 32, 210–226 (2020).

    Article  PubMed  Google Scholar 

  240. Sacco, R. L. et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 44, 2064–2089 (2013).

    Article  PubMed  Google Scholar 

  241. Pisters, R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart survey. Chest 138, 1093–1100 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.P.F. performed the literature search, wrote the first draft, designed the figures, and finalized and submitted the Primer. All authors discussed and approved the strategy of the Primer, its overall content and organization, and carefully assessed and revised the entire manuscript, when appropriate, including its figures, tables and references.

Corresponding author

Correspondence to Jonathon P. Fanning.

Ethics declarations

Competing interests

S.R.M. is co-founder of Neuralert Technologies, which is developing a continuous non-invasive monitor to detect stroke rapidly. He is on the patient selection committee for the Terumo RelayBranch trial, the steering committee for the Boston Scientific PROTECT-TAVR trial, the data safety monitoring board for the WL Gore REDUCE PFO closure post-marketing study and receives research support from WL Gore for a prospective study of outcomes from ascending aortic repair. T.F.F. is founder of NFOSYS, Inc., which is involved in the development of minimally invasive devices for the monitoring of spinal cord and brain blood flow and oxygenation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks C. Benesch, D. Dippel, A. Flexman and P. Thirumala for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanning, J.P., Campbell, B.C.V., Bulbulia, R. et al. Perioperative stroke. Nat Rev Dis Primers 10, 3 (2024). https://doi.org/10.1038/s41572-023-00487-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00487-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing