Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Glycogen storage diseases

Abstract

Glycogen storage diseases (GSDs) are a group of rare, monogenic disorders that share a defect in the synthesis or breakdown of glycogen. This Primer describes the multi-organ clinical features of hepatic GSDs and muscle GSDs, in addition to their epidemiology, biochemistry and mechanisms of disease, diagnosis, management, quality of life and future research directions. Some GSDs have available guidelines for diagnosis and management. Diagnostic considerations include phenotypic characterization, biomarkers, imaging, genetic testing, enzyme activity analysis and histology. Management includes surveillance for development of characteristic disease sequelae, avoidance of fasting in several hepatic GSDs, medically prescribed diets, appropriate exercise regimens and emergency letters. Specific therapeutic interventions are available for some diseases, such as enzyme replacement therapy to correct enzyme deficiency in Pompe disease and SGLT2 inhibitors for neutropenia and neutrophil dysfunction in GSD Ib. Progress in diagnosis, management and definitive therapies affects the natural course and hence morbidity and mortality. The natural history of GSDs is still being described. The quality of life of patients with these conditions varies, and standard sets of patient-centred outcomes have not yet been developed. The landscape of novel therapeutics and GSD clinical trials is vast, and emerging research is discussed herein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell biology and organs affected in GSDs.
Fig. 2: Biochemical defects in GSDs.
Fig. 3: Histological features of muscle and liver GSDs.
Fig. 4: Standard treatments and investigational therapeutics for GSDs.

Similar content being viewed by others

References

  1. Ferreira, C. R., Rahman, S., Keller, M., Zschocke, J. & Group, I. A. An international classification of inherited metabolic disorders (ICIMD). J. Inherit. Metab. Dis. 44, 164–177 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brown, L. M. et al. Evaluation of glycogen storage disease as a cause of ketotic hypoglycemia in children. J. Inherit. Metab. Dis. 38, 489–493 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Haring, M. P. D. et al. High childhood serum triglyceride concentrations associate with hepatocellular adenoma development in patients with glycogen storage disease type Ia. JHEP Rep. 4, 100512 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Derks, T. G. J. et al. The potential of dietary treatment in patients with glycogen storage disease type IV. J. Inherit. Metab. Dis. 44, 693–704 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Santalla, A. et al. Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics 18, 819 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bruno, C. et al. McArdle disease: the mutation spectrum of PYGM in a large Italian cohort. Hum. Mutat. 27, 718 (2006).

    Article  PubMed  Google Scholar 

  7. Lucia, A. et al. Clinical practice guidelines for glycogen storage disease V & VII (McArdle disease and Tarui disease) from an international study group. Neuromusc. Disord. 31, 1296–1310 (2021). Clinical practice guidelines based on expert opinions for GSD V and GSD VII.

    Article  PubMed  Google Scholar 

  8. Herbert, M. et al. Phosphorylase Kinase Deficiency. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK55061/ (updated 1 Nov 2018).

  9. Kishnani, P. S. et al. Diagnosis and management of glycogen storage diseases type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 21, 772–789 (2019). Clinical practice guidelines based on expert opinions for GSD VI and GSD IX diagnosis and management.

    Article  PubMed  Google Scholar 

  10. Cho, S. Y., Lam, C. W., Tong, S. F. & Siu, W. K. X-linked glycogen storage disease IXa manifested in a female carrier due to skewed X chromosome inactivation. Clin. Chim. Acta 426, 75–78 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Schreuder, A. B. et al. Glycogen Storage Disease Type III. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK26372/ (updated 6 Jan 2022).

  12. Kishnani, P. S. et al. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med. 12, 446–463 (2010). Clinical practice guidelines based on expert opinion for GSD III diagnosis and management.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez, M. et al. Infantile-onset Pompe disease with neonatal debut: a case report and literature review. Medicine 96, e9186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dashty, M. A quick look at biochemistry: carbohydrate metabolism. Clin. Biochem. 46, 1339–1352 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Adeva-Andany, M. M., Gonzalez-Lucan, M., Donapetry-Garcia, C., Fernandez-Fernandez, C. & Ameneiros-Rodriguez, E. Glycogen metabolism in humans. BBA Clin. 5, 85–100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kanungo, S., Wells, K., Tribett, T. & El-Gharbawy, A. Glycogen metabolism and glycogen storage disorders. Ann. Transl Med. 6, 474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han, H. S., Kang, G., Kim, J. S., Choi, B. H. & Koo, S. H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 48, e218 (2016). Provides a useful description of hormonal regulation of hepatic glucose metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, G. & Zhang, B. B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 284, E671–E678 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ruderman, N. B., Aoki, T. T. & Cahill, G. F. in Gluconeogenesis: Its Regulation in Mammalian Species (eds Hanson, R. W. & Mehlman, M. A.) 515–530 (Wiley, 1976).

  20. Sass, J. O. & Grünert, S. C. in Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases (eds Blau, N., Duran, M., Gibson, K. M. & Dionisi-Vici, C.) 361–371 (Springer, 2014).

  21. Ferrier, D. R. in Lippincott Illustrated Reviews: Biochemistry 7th edn Ch. 24 321–336 (Wolters Kluwer, 2017). This book chapter, entitled ‘The feed–fast cycle’, provides a useful overview of different energy source contributions as individuals transition from postprandial to fasting states.

  22. Herszberg, B. et al. A GYS1 gene mutation is highly associated with polysaccharide storage myopathy in Cob Normand draught horses. Anim. Genet. 40, 94–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Firshman, A. M., Valberg, S. J., Bender, J. B., Annandale, E. J. & Hayden, D. W. Comparison of histopathologic criteria and skeletal muscle fixation techniques for the diagnosis of polysaccharide storage myopathy in horses. Vet. Pathol. 43, 257–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hedberg-Oldfors, C. & Oldfors, A. Polyglucosan storage myopathies. Mol. Asp. Med. 46, 85–100 (2015).

    Article  CAS  Google Scholar 

  25. Martín, M. A. et al. Glycogen Storage Disease Type V. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1344/ (updated 20 Jun 2019).

  26. Echaniz-Laguna, A. et al. A new glycogen storage disease caused by a dominant PYGM mutation. Ann. Neurol. 88, 274–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Brushia, R. J. & Walsh, D. A. Phosphorylase kinase: the complexity of its regulation is reflected in the complexity of its structure. Front. Biosci. 4, D618–D641 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Zhai, L., Feng, L., Xia, L., Yin, H. & Xiang, S. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat. Commun. 7, 11229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Hoof, F. & Hers, H. G. The subgroups of type 3 glycogenosis. Eur. J. Biochem. 2, 265–270 (1967).

    Article  PubMed  Google Scholar 

  30. Shen, J. et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J. Clin. Invest. 98, 352–357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Altassan, R. et al. International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1-CDG): diagnosis, follow-up, and management. J. Inherit. Metab. Dis. 44, 148–163 (2021). Guidelines based on expert opinions for diagnosis, follow-up and management of PGM1-CDG.

    Article  CAS  PubMed  Google Scholar 

  32. Kishnani, P. S. et al. Diagnosis and management of glycogen storage disease type I: a practice guideline of the American college of medical genetics and genomics. Genet. Med. 16, e1 (2014). Clinical practice guidelines based on expert opinions for GSD I diagnosis and management.

    Article  CAS  PubMed  Google Scholar 

  33. Boztug, K. et al. A syndrome with congenital neutropenia and mutations in G6PC3. N. Engl. J. Med. 360, 32–43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burchell, A., Allan, B. B. & Hume, R. Glucose-6-phosphatase proteins of the endoplasmic reticulum. Mol. Membr. Biol. 11, 217–227 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Kishnani, P. S. et al. Pompe disease diagnosis and management guideline. Genet. Med. 8, 267–288 (2006). Clinical practice guidelines based on expert opinions for diagnosis and management of Pompe disease.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zampieri, S. et al. Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients’ phenotypes. Eur. J. Hum. Genet. 19, 422–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Kroos, M., Hoogeveen-Westerveld, M., van der Ploeg, A. & Reuser, A. J. The genotype–phenotype correlation in Pompe disease. Am. J. Med. Genet. C. Semin. Med. Genet. 160C, 59–68 (2012).

    Article  PubMed  Google Scholar 

  38. Akman, H. O., Oldfors, A. & DiMauro, S. in Neuromuscular Disorders of Infancy, Childhood, and Adolescence (eds Darras, B. T., Jones, H. R., Jr, Ryan, M. M. & DeVivo, D. C.) 735–760 (Elsevier, 2015).

  39. Tarui, S. et al. Phosphofructokinase deficiency in skeletal muscle. a new type of glycogenosis. Biochem. Biophys. Res. Commun. 19, 517–523 (1965).

    Article  CAS  PubMed  Google Scholar 

  40. Haller, R. G. & Lewis, S. F. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N. Engl. J. Med. 324, 364–369 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Raben, N. & Sherman, J. B. Mutations in muscle phosphofructokinase gene. Hum. Mutat. 6, 1–6 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Brown, G. K. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 23, 237–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Rake, J. P. et al. Guidelines for management of glycogen storage disease type I – European Study on Glycogen Storage Disease type I (ESGSD I). Eur. J. Pediatr. 161, S112–S119 (2002). Guidelines based on expert opinions for GSD I from the European Study on Glycogen Storage Disease Type I.

    Article  PubMed  Google Scholar 

  44. Visser, G. et al. Consensus guidelines for management of glycogen storage disease type 1b – European Study on Glycogen Storage Disease Type 1. Eur. J. Pediatr. 161, S120–S123 (2002). Consensus guidelines based on expert opinions for management of GSD Ib, from the European Study on Glycogen Storage Disease Type 1.

    PubMed  Google Scholar 

  45. Koch, R. L. et al. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: a clinical practice resource. Mol. Genet. Metab. 138, 107525 (2023). Clinical practice guidelines based on expert opinions for GSD IV diagnosis and managment.

    Article  CAS  PubMed  Google Scholar 

  46. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nykamp, K. et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 19, 1105–1117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kazemi-Esfarjani, P., Skomorowska, E., Jensen, T. D., Haller, R. G. & Vissing, J. A nonischemic forearm exercise test for McArdle disease. Ann. Neurol. 52, 153–159 (2002).

    Article  PubMed  Google Scholar 

  49. Sluiter, W. et al. Rapid ultraperformance liquid chromatography-tandem mass spectrometry assay for a characteristic glycogen-derived tetrasaccharide in Pompe disease and other glycogen storage diseases. Clin. Chem. 58, 1139–1147 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Young, S. P. et al. Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Am. J. Med. Genet. C. Semin. Med. Genet. 160C, 50–58 (2012).

    Article  PubMed  Google Scholar 

  51. Heiner-Fokkema, M. R. et al. The multiple faces of urinary glucose tetrasaccharide as biomarker for patients with hepatic glycogen storage diseases. Genet. Med. 22, 1915–1916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paesold-Burda, P., Baumgartner, M. R., Santer, R., Bosshard, N. U. & Steinmann, B. Elevated serum biotinidase activity in hepatic glycogen storage disorders — a convenient biomarker. J. Inherit. Metab. Dis. 30, 896–902 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Scalco, R. S. et al. Misdiagnosis is an important factor for diagnostic delay in McArdle disease. Neuromuscul. Disord. 27, 852–855 (2017).

    Article  PubMed  Google Scholar 

  54. Lukacs, Z. et al. Prevalence of Pompe disease in 3,076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology 87, 295–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Topf, A. et al. Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet. Med. 22, 1478–1488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kemper, A. R. et al. Decision-making process for conditions nominated to the recommended uniform screening panel: statement of the US department of health and human services secretary’s advisory committee on heritable disorders in newborns and children. Genet. Med. 16, 183–187 (2014).

    Article  PubMed  Google Scholar 

  57. Keutzer, J. M. Establishing pompe disease newborn screening: the role of industry. Int. J. Neonatal Screen. 6, 55 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chien, Y. H. et al. Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 122, e39–e45 (2008).

    Article  PubMed  Google Scholar 

  59. Goomber, S. et al. Development of a clinically validated in vitro functional assay to assess pathogenicity of novel GAA variants in patients with Pompe disease identified via newborn screening. Front. Genet. 13, 1001154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prakash, S., Penn, J. D., Jackson, K. E. & Dean, L. W. Newborn screening for Pompe disease: parental experiences and follow-up care for a late-onset diagnosis. J. Genet. Couns. 31, 1404–1420 (2022).

    Article  PubMed  Google Scholar 

  61. Huggins, E. et al. Early clinical phenotype of late onset Pompe disease: lessons learned from newborn screening. Mol. Genet. Metab. 135, 179–185 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Yoo, H. W., Shin, Y. L., Seo, E. J. & Kim, G. H. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi–Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur. J. Pediatr. 161, 351–353 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Muller, D., Santer, R., Krawinkel, M., Christiansen, B. & Schaub, J. Fanconi–Bickel syndrome presenting in neonatal screening for galactosaemia. J. Inherit. Metab. Dis. 20, 607–608 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Peduto, A. et al. A novel mutation in the GLUT2 gene in a patient with Fanconi–Bickel syndrome detected by neonatal screening for galactosaemia. J. Inherit. Metab. Dis. 27, 279–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Esquerda, M. et al. Ethical questions concerning newborn genetic screening. Clin. Genet. 99, 93–98 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Bick, D. et al. An online compendium of treatable genetic disorders. Am. J. Med. Genet. C. Semin. Med. Genet. 187, 48–54 (2021).

    Article  PubMed  Google Scholar 

  67. Herbert, M. et al. Role of continuous glucose monitoring in the management of glycogen storage disorders. J. Inherit. Metab. Dis. 41, 917–927 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Peeks, F. et al. A retrospective in-depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease: recommended outcome parameters for glucose management. J. Inherit. Metab. Dis. 44, 1136–1150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossi, A. et al. A prospective study on continuous glucose monitoring in glycogen storage disease type Ia: toward glycemic targets. J. Clin. Endocrinol. Metab. 107, e3612–e3623 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kaiser, N. et al. Glycemic control and complications in glycogen storage disease type I: results from the Swiss registry. Mol. Genet. Metab. 126, 355–361 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, P. J. Glycogen storage disease type I: pathophysiology of liver adenomas. Eur. J. Pediatr. 161, S46–S49 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Franco, L. M. et al. Hepatocellular carcinoma in glycogen storage disease type Ia: a case series. J. Inherit. Metab. Dis. 28, 153–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Okata, Y., Hatakeyama, T., Bitoh, Y., Aida, Y. & Yuichiro, T. Hepatocellular carcinoma with glycogen storage disease type 1a. Pediatr. Int. 62, 744–745 (2020).

    Article  PubMed  Google Scholar 

  74. Verbeek, R. J. et al. Muscle ultrasound in patients with glycogen storage disease types I and III. Ultrasound Med. Biol. 42, 133–142 (2016).

    Article  PubMed  Google Scholar 

  75. Diaz-Manera, J., Walter, G. & Straub, V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 63, 640–650 (2021).

    Article  PubMed  Google Scholar 

  76. Vissing, J. & Haller, R. G. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N. Engl. J. Med. 349, 2503–2509 (2003). A randomized, placebo-controlled crossover study of patients with GSD V that suggests that sucrose ingestion before exercise improves exercise tolerance.

    Article  CAS  PubMed  Google Scholar 

  77. Haller, R. G. & Vissing, J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 62, 82–86 (2004). A study of patients with GSD VII and GSD V reinforces the absence of spontaneous second-wind phenomenon in GSD VII.

    Article  CAS  PubMed  Google Scholar 

  78. Weinstein, D. A., Steuerwald, U., De Souza, C. F. M. & Derks, T. G. J. Inborn errors of metabolism with hypoglycemia: glycogen storage diseases and inherited disorders of gluconeogenesis. Pediatr. Clin. North. Am. 65, 247–265 (2018).

    Article  PubMed  Google Scholar 

  79. Amalfitano, A. et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet. Med. 3, 132–138 (2001).

    CAS  PubMed  Google Scholar 

  80. Winkel, L. P. et al. Morphological changes in muscle tissue of patients with infantile Pompe’s disease receiving enzyme replacement therapy. Muscle Nerve 27, 743–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Kishnani, P. S. et al. Recombinant human acid α-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 68, 99–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Klinge, L. et al. Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial. Neuromuscul. Disord. 15, 24–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Van den Hout, H. et al. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356, 397–398 (2000).

    Article  PubMed  Google Scholar 

  84. Van den Hout, J. M. et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 113, e448–e457 (2004).

    Article  PubMed  Google Scholar 

  85. Van den Hout, J. M. et al. Enzyme therapy for pompe disease with recombinant human alpha-glucosidase from rabbit milk. J. Inherit. Metab. Dis. 24, 266–274 (2001).

    Article  PubMed  Google Scholar 

  86. van der Ploeg, A. T. et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N. Engl. J. Med. 362, 1396–1406 (2010).

    Article  PubMed  Google Scholar 

  87. van der Ploeg, A. T. et al. Open-label extension study following the late-onset treatment study (LOTS) of alglucosidase alfa. Mol. Genet. Metab. 107, 456–461 (2012).

    Article  PubMed  Google Scholar 

  88. Strothotte, S. et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J. Neurol. 257, 91–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Gungor, D. et al. Quality of life and participation in daily life of adults with Pompe disease receiving enzyme replacement therapy: 10 years of international follow-up. J. Inherit. Metab. Dis. 39, 253–260 (2016).

    Article  PubMed  Google Scholar 

  90. Diaz-Manera, J. et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial. Lancet Neurol. 20, 1012–1026 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Dimachkie, M. M. et al. Long-term safety and efficacy of avalglucosidase alfa in patients with late-onset Pompe disease. Neurology 99, e536–e548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kishnani, P. S. et al. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: the 6-month primary analysis report. Genet. Med. 25, 100328 (2022).

    Article  PubMed  Google Scholar 

  93. Dhillon, S. Avalglucosidase alfa: first approval. Drugs 81, 1803–1809 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Punnoose, A. R., Jeng, L. J. B., Maynard, J. W. & Review, T. Regulatory news: avalglucosidase alfa-ngpt (Nexviazyme) for late-onset Pompe disease-FDA approval summary. J. Inherit. Metab. Dis. 45, 1015–1017 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Schoser, B. et al. Safety and efficacy of cipaglucosidase alfa plus miglustat versus alglucosidase alfa plus placebo in late-onset Pompe disease (PROPEL): an international, randomised, double-blind, parallel-group, phase 3 trial. Lancet Neurol. 20, 1027–1037 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Blair, H. A. Cipaglucosidase alfa: first approval. Drugs 83, 739–745 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Banugaria, S. G. et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet. Med. 13, 729–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berrier, K. L. et al. CRIM-negative infantile Pompe disease: characterization of immune responses in patients treated with ERT monotherapy. Genet. Med. 17, 912–918 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Patel, T. T. et al. The impact of antibodies in late-onset Pompe disease: a case series and literature review. Mol. Genet. Metab. 106, 301–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Nino, M. Y. et al. Extension of the Pompe mutation database by linking disease-associated variants to clinical severity. Hum. Mutat. 40, 1954–1967 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bali, D. S. et al. Predicting cross-reactive immunological material (CRIM) status in Pompe disease using GAA mutations: lessons learned from 10 years of clinical laboratory testing experience. Am. J. Med. Genet. C. Semin. Med. Genet. 160C, 40–49 (2012).

    Article  PubMed  Google Scholar 

  102. Poelman, E. et al. High sustained antibody titers in patients with classic infantile pompe disease following immunomodulation at start of enzyme replacement therapy. J. Pediatr. 195, 236–243.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Li, C. et al. Transforming the clinical outcome in CRIM-negative infantile Pompe disease identified via newborn screening: the benefits of early treatment with enzyme replacement therapy and immune tolerance induction. Genet. Med. 23, 845–855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Banugaria, S. G. et al. Bortezomib in the rapid reduction of high sustained antibody titers in disorders treated with therapeutic protein: lessons learned from Pompe disease. Genet. Med. 15, 123–131 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Koeberl, D. D. et al. Improved muscle function in a phase I/II clinical trial of albuterol in Pompe disease. Mol. Genet. Metab. 129, 67–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Veiga-da-Cunha, M., Wortmann, S. B., Grunert, S. C. & Van Schaftingen, E. Treatment of the neutropenia associated with GSD1b and G6PC3 deficiency with SGLT2 inhibitors. Diagnostics 13, 1803 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grünert, S. C. et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: Data from an international questionnaire. Genet. Med. 24, 1781–1788 (2022). Questionnaire study highlighting both safety and efficacy of empagliflozin in patients with GSD Ib.

    Article  PubMed  Google Scholar 

  108. Grunert, S. C. et al. Patient-reported outcomes on empagliflozin treatment in glycogen storage disease type Ib: an international questionnaire study. JIMD Rep 64, 252–258 (2023). Questionnaire study describing patient-reported outcomes of empagliflozin use in GSD Ib.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Grünert, S. C. et al. Improved inflammatory bowel disease, wound healing and normal oxidative burst under treatment with empagliflozin in glycogen storage disease type Ib. Orphanet J. Rare Dis. 15, 218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Malatack, J. J. et al. Liver transplantation for type I glycogen storage disease. Lancet 1, 1073–1075 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Piper, J. B. et al. Living related liver transplantation in children: a report of the first 58 recipients at the university of Chicago. Transpl. Int. 7, S111–S113 (1994).

    Article  PubMed  Google Scholar 

  112. Beyzaei, Z. et al. Liver transplantation in glycogen storage disease: a single-center experience. Orphanet J. Rare Dis. 17, 127 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chan, Y. C. et al. Modifiable factors affecting renal preservation in type I glycogen storage disease after liver transplantation: a single-center propensity-match cohort study. Orphanet J. Rare Dis. 16, 423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yuen, W. Y., Quak, S. H., Aw, M. M. & Karthik, S. V. Long-term outcome after liver transplantation in children with type 1 glycogen storage disease. Pediatr. Transpl. 25, e13872 (2021).

    Article  CAS  Google Scholar 

  115. Irie, R. et al. Outcome for pediatric recipients of macrosteatotic liver grafts from living donors. Liver Transpl. 26, 899–905 (2020).

    Article  PubMed  Google Scholar 

  116. Shimizu, S. et al. Longterm outcomes of living donor liver transplantation for glycogen storage disease type 1b. Liver Transpl. 26, 57–67 (2020).

    Article  PubMed  Google Scholar 

  117. Troisi, R. I., Elsheikh, Y. M., Shagrani, M. A. & Broering, D. First fully laparoscopic donor hepatectomy for pediatric liver transplantation using the indocyanine green near-infrared fluorescence imaging in the Mmiddle East: a case report. Ann. Saudi Med. 34, 354–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Moosburner, S. et al. Over 30 years of pediatric liver transplantation at the Charite-Universitatsmedizin Berlin. J. Clin. Med. 11, 900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Labrune, P. Glycogen storage disease type I: indications for liver and/or kidney transplantation. Eur. J. Pediatr. 161, S53–S55 (2002).

    Article  PubMed  Google Scholar 

  120. Davis, M. K. & Weinstein, D. A. Liver transplantation in children with glycogen storage disease: controversies and evaluation of the risk/benefit of this procedure. Pediatr. Transpl. 12, 137–145 (2008).

    Article  Google Scholar 

  121. Matern, D. et al. Liver transplantation for glycogen storage disease types I, III, and IV. Eur. J. Pediatr. 158, S43–S48 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Martin, A. P. et al. Successful staged kidney and liver transplantation for glycogen storage disease type Ib: a case report. Transpl. Proc. 38, 3615–3619 (2006).

    Article  CAS  Google Scholar 

  123. Lee, P. J., Muiesan, P. & Heaton, N. Successful pregnancy after combined renal-hepatic transplantation in glycogen storage disease type Ia. J. Inherit. Metab. Dis. 27, 537–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Belingheri, M. et al. Combined liver–kidney transplantation in glycogen storage disease Ia: a case beyond the guidelines. Liver Transpl. 13, 762–764 (2007).

    Article  PubMed  Google Scholar 

  125. Maheshwari, A., Rankin, R., Segev, D. L. & Thuluvath, P. J. Outcomes of liver transplantation for glycogen storage disease: a matched-control study and a review of literature. Clin. Transpl. 26, 432–436 (2012).

    Article  Google Scholar 

  126. Magoulas, P. L. & El-Hattab, A. W. Glycogen Storage Disease Type IV. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK115333/ (updated 1 Aug 2019).

  127. Murko, S. et al. Liver transplantation in glycogen storage disease type Ib: the role of SGLT2 inhibitors. Mol. Genet. Metab. Rep. 35, 100977 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rossi, A. et al. A generic emergency protocol for patients with inborn errors of metabolism causing fasting intolerance: A retrospective, single-center study and the generation of https://www.emergencyprotocol.net. J. Inherit. Metab. Dis. 44, 1124–1135 (2021). Describing a generic emergency protocol for individuals with inborn metabolic disease; this publication has resources that are broadly relevent to metabolic disorders.

  129. Bali, D. S. et al. Glycogen Storage Disease Type I. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1312/ (updated 14 Oct 2021).

  130. Bordoli, C., Murphy, E., Varley, I., Sharpe, G. & Hennis, P. A systematic review investigating the effectiveness of exercise training in glycogen storage diseases. Ther. Adv. Rare Dis. 3, 26330040221076497 (2022).

    PubMed  PubMed Central  Google Scholar 

  131. Hennis, P. J. et al. Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study. Orphanet J. Rare Dis. 17, 28 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Derks, T. G. J. et al. Glycogen storage disease type ia: current management options, burden and unmet needs. Nutrients 13, 3828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, S., Wang, J., Zhu, J., Chung, R. Y. & Dong, D. Quality of life and its contributors among adults with late-onset Pompe disease in China. Orphanet J. Rare Dis. 16, 199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kansagra, S., Austin, S., DeArmey, S., Kishnani, P. S. & Kravitz, R. M. Polysomnographic findings in infantile Pompe disease. Am. J. Med. Genet. A 161A, 3196–3200 (2013).

    Article  PubMed  Google Scholar 

  135. Shah, N. M., Sharma, L., Ganeshamoorthy, S. & Kaltsakas, G. Respiratory failure and sleep-disordered breathing in late-onset Pompe disease: a narrative review. J. Thorac. Dis. 12, S235–S247 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kansagra, S. et al. Longitudinal polysomnographic findings in infantile Pompe disease. Am. J. Med. Genet. A 167A, 858–861 (2015).

    Article  PubMed  Google Scholar 

  137. Boentert, M., Drager, B., Glatz, C. & Young, P. Sleep-disordered breathing and effects of noninvasive ventilation in patients with late-onset Pompe disease. J. Clin. Sleep Med. 12, 1623–1632 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Venema, A. et al. A retrospective study of eating and psychosocial problems in patients with hepatic glycogen storage diseases and idiopathic ketotic hypoglycemia: towards a standard set of patient-reported outcome measures. JIMD Rep. 63, 29–40 (2022).

    Article  PubMed  Google Scholar 

  139. Sechi, A. et al. Quality of life in adult patients with glycogen storage disease type I: results of a multicenter italian study. JIMD Rep. 14, 47–53 (2014).

    Article  PubMed  Google Scholar 

  140. Storch, E. et al. Psychosocial functioning in youth with glycogen storage disease type I. J. Pediatr. Psychol. 33, 728–738 (2008).

    Article  PubMed  Google Scholar 

  141. Rousseau-Nepton, I. et al. Sleep and quality of life of patients with glycogen storage disease on standard and modified uncooked cornstarch. Mol. Genet. Metab. 123, 326–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Garbade, S. F. et al. Impact of glycogen storage disease type I on adult daily life: a survey. Orphanet. J. Rare Dis. 16, 371 (2021). Excellent example of work to elucidate factors affecting QoL in a GSD.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sobhy, G. A., El-Shabrawi, M. & Safar, H. A new perspective on the quality of life of children with glycogen storage diseases. Pediatr. Gastroenterol. Hepatol. Nutr. 25, 321–331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Massese, M., Tagliaferri, F., Dionisi-Vici, C. & Maiorana, A. Glycogen storage diseases with liver involvement: a literature review of GSD type 0, IV, VI, IX and XI. Orphanet J. Rare Dis. 17, 241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hagemans, M. L. et al. Late-onset Pompe disease primarily affects quality of life in physical health domains. Neurology 63, 1688–1692 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Kanters, T. A. et al. Burden of illness of Pompe disease in patients only receiving supportive care. J. Inherit. Metab. Dis. 34, 1045–1052 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dornelles, A. D. et al. A systematic review and meta-analysis of enzyme replacement therapy in late-onset Pompe disease. J. Clin. Med. 10, 4828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Toscano, A. & Schoser, B. Enzyme replacement therapy in late-onset Pompe disease: a systematic literature review. J. Neurol. 260, 951–959 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Kishnani, P. S. et al. Efficacy and safety of avalglucosidase alfa in patients with late-onset pompe disease after 97 weeks: a phase 3 randomized clinical trial. JAMA Neurol. 80, 558–567 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hamed, A. et al. Qualitative interviews to improve patient-reported outcome measures in late-onset Pompe disease: the patient perspective. Orphanet J. Rare Dis. 16, 428 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Harfouche, M. et al. Use of the patient-reported outcomes measurement information system (PROMIS(R)) to assess late-onset Pompe disease severity. J. Patient Rep. Outcomes 4, 83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yuan, M. et al. Positive association between physical outcomes and patient-reported outcomes in late-onset Pompe disease: a cross sectional study. Orphanet J. Rare Dis. 15, 232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kanters, T. A., van der Ploeg, A. T., Brouwer, W. B. F. & Hakkaart, L. The impact of informal care for patients with Pompe disease: an application of the CarerQol instrument. Mol. Genet. Metab. 110, 281–286 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Schoser, B. et al. The humanistic burden of Pompe disease: are there still unmet needs? A systematic review. BMC Neurol. 17, 202 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Jaromy, M. & Miller, J. D. Potential clinical applications for continuous ketone monitoring in the hospitalized patient with diabetes. Curr. Diab. Rep. 22, 501–510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. El-Gharbawy, A. et al. Beyond predicting diagnosis: is there a role for measuring biotinidase activity in liver glycogen storage diseases? Mol. Genet. Metab. Rep. 31, 100856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Desai, A. K., Kazi, Z. B., Bali, D. S. & Kishnani, P. S. Characterization of immune response in cross-reactive immunological material (CRIM)-positive infantile Pompe disease patients treated with enzyme replacement therapy. Mol. Genet. Metab. Rep. 20, 100475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kazi, Z. B. et al. An immune tolerance approach using transient low-dose methotrexate in the ERT-naive setting of patients treated with a therapeutic protein: experience in infantile-onset Pompe disease. Genet. Med. 21, 887–895 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Desai, A. K., Baloh, C. H., Sleasman, J. W., Rosenberg, A. S. & Kishnani, P. S. Benefits of prophylactic short-course immune tolerance induction in patients with infantile Pompe disease: demonstration of long-term safety and efficacy in an expanded cohort. Front. Immunol. 11, 1727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Koeberl, D. D. et al. Gene therapy for glycogen storage diseases. J. Inherit. Metab. Dis. https://doi.org/10.1002/jimd.12654 (2023).

  161. Kishnani, P. S., Sun, B. & Koeberl, D. D. Gene therapy for glycogen storage diseases. Hum. Mol. Genet. 28, R31–R41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Salabarria, S. M. et al. Advancements in AAV-mediated gene therapy for pompe disease. J. Neuromuscul. Dis. 7, 15–31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sun, B., Brooks, E. D. & Koeberl, D. D. Preclinical development of new therapy for glycogen storage diseases. Curr. Gene Ther. 15, 338–347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schulz, M. et al. Binding and neutralizing anti-AAV antibodies: detection and implications for rAAV-mediated gene therapy. Mol. Ther. 31, 616–630 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Cohen, J. L. et al. In utero enzyme-replacement therapy for infantile-onset pompe’s disease. N. Engl. J. Med. 387, 2150–2158 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Venema, A., Peeks, F., Rossi, A., Jager, E. A. & Derks, T. G. J. Towards values-based healthcare for inherited metabolic disorders: an overview of current practices for persons with liver glycogen storage disease and fatty acid oxidation disorders. J. Inherit. Metab. Dis. 45, 1018–1027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Peeks, F. et al. Research priorities for liver glycogen storage disease: an international priority setting partnership with the James Lind Alliance. J. Inherit. Metab. Dis. 43, 279–289 (2020).

    Article  PubMed  Google Scholar 

  168. Kamenets, E. A. et al. Hepatic glycogen synthase (GYS2) deficiency: seven novel patients and seven novel variants. JIMD Rep. 53, 39–44 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kasapkara, C. S. et al. The variable clinical phenotype of three patients with hepatic glycogen synthase deficiency. J. Pediatr. Endocrinol. Metab. 30, 459–462 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Orho, M. et al. Mutations in the liver glycogen synthase gene in children with hypoglycemia due to glycogen storage disease type 0. J. Clin. Invest. 102, 507–515 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kollberg, G. et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N. Engl. J. Med. 357, 1507–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Cameron, J. M. et al. Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol. Genet. Metab. 98, 378–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Musumeci, O. et al. A new phenotype of muscle glycogen synthase deficiency (GSD0B) characterized by an adult onset myopathy without cardiomyopathy. Neuromuscul. Disord. 32, 582–589 (2022).

    Article  PubMed  Google Scholar 

  174. Visser, G. et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J. Pediatr. 137, 187–191 (2000). Excellent description of GSD Ib neutropenia, neutrophil dysfunction and inflammatory bowel disease including disease course and frequency.

    Article  CAS  PubMed  Google Scholar 

  175. van der Ploeg, A. T. & Reuser, A. J. Pompe’s disease. Lancet 372, 1342–1353 (2008).

    Article  PubMed  Google Scholar 

  176. Chan, J. et al. The emerging phenotype of late-onset Pompe disease: a systematic literature review. Mol. Genet. Metab. 120, 163–172 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Kiely, B. T. et al. A novel approach to characterize phenotypic variation in GSD IV: reconceptualizing the clinical continuum. Front. Genet. 13, 992406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lucia, A. et al. McArdle disease: what do neurologists need to know? Nat. Clin. Pract. Neurol. 4, 568–577 (2008).

    Article  PubMed  Google Scholar 

  179. Grünert, S. C., Hannibal, L. & Spiekerkoetter, U. The phenotypic and genetic spectrum of glycogen storage disease type VI. Genes 12, 1205 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Degrassi, I. et al. Liver histology in children with glycogen storage disorders type VI and IX. Dig. Liver Dis. 53, 86–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Fernandes, S. A., Cooper, G. E., Gibson, R. A. & Kishnani, P. S. Benign or not benign? Deep phenotyping of liver glycogen storage disease IX. Mol. Genet. Metab. 131, 299–305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Willems, P. J., Gerver, W. J., Berger, R. & Fernandes, J. The natural history of liver glycogenosis due to phosphorylase kinase deficiency: a longitudinal study of 41 patients. Eur. J. Pediatr. 149, 268–271 (1990).

    Article  CAS  PubMed  Google Scholar 

  183. Yoshikuni, K., Tagami, H., Yamada, M., Sudo, K. & Kanno, T. Erythematosquamous skin lesions in hereditary lactate dehydrogenase m-subunit deficiency. Arch. Dermatol. 122, 1420–1424 (1986).

    Article  CAS  PubMed  Google Scholar 

  184. Takayasu, S., Fujiwara, S. & Waki, T. Hereditary lactate dehydrogenase M-subunit deficiency: lactate dehydrogenase activity in skin lesions and in hair follicles. J. Am. Acad. Dermatol. 24, 339–342 (1991).

    Article  CAS  PubMed  Google Scholar 

  185. Serrano-Lorenzo, P. et al. Clinical, biochemical, and molecular characterization of two families with novel mutations in the LDHA gene (GSD XI). Genes 13, 1835 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nazzari, G. & Crovato, F. Annually recurring acroerythema and hereditary lactate dehydrogenase M-subunit deficiency. J. Am. Acad. Dermatol. 27, 262–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Takeo, N. et al. Hereditary lactate dehydrogenase M-subunit deficiency with late-developing pustular psoriasis-like lesions. J. Dermatol. 43, 1429–1432 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Maekawa, M., Sudo, K., Kanno, T. & Li, S. S. Molecular characterization of genetic mutation in human lactate dehydrogenase-A (M) deficiency. Biochem. Biophys. Res. Commun. 168, 677–682 (1990).

    Article  CAS  PubMed  Google Scholar 

  189. Nagata, N. et al. Glycogen storage myopathy with abnormal lactate dehydrogenase. Neuropediatrics 13, 103–107 (1982).

    Article  CAS  PubMed  Google Scholar 

  190. Beutler, E. et al. Red cell aldolase deficiency and hemolytic anemia: a new syndrome. Trans. Assoc. Am. Physicians 86, 154–166 (1973).

    CAS  PubMed  Google Scholar 

  191. Hurst, J. A., Baraitser, M. & Winter, R. M. A syndrome of mental retardation, short stature, hemolytic anemia, delayed puberty, and abnormal facial appearance: similarities to a report of aldolase a deficiency. Am. J. Med. Genet. 28, 965–970 (1987).

    Article  CAS  PubMed  Google Scholar 

  192. Miwa, S. et al. Two cases of red cell aldolase deficiency associated with hereditary hemolytic anemia in a Japanese family. Am. J. Hematol. 11, 425–437 (1981).

    Article  CAS  PubMed  Google Scholar 

  193. Santoro, L. et al. A new phenotype of aldolase a deficiency in a 14 year-old boy with epilepsy and rhabdomyolysis – case report. Ital. J. Pediatr. 48, 39 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yao, D. C. et al. Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase, ALDOA(Arg303X/Cys338Tyr). Blood 103, 2401–2403 (2004).

    Article  CAS  PubMed  Google Scholar 

  195. Papadopoulos, C. et al. Aldolase a deficiency: report of new cases and literature review. Mol. Genet. Metab. Rep. 27, 100730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kreuder, J. et al. Brief report: inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N. Engl. J. Med. 334, 1100–1104 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Mamoune, A. et al. A thermolabile aldolase a mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia. PLoS Genet. 10, e1004711 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Comi, G. P. et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann. Neurol. 50, 202–207 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. Musumeci, O. et al. Recurrent rhabdomyolysis due to muscle beta-enolase deficiency: very rare or underestimated? J. Neurol. 261, 2424–2428 (2014).

    Article  PubMed  Google Scholar 

  200. Wigley, R. et al. The need for biochemical testing in beta-enolase deficiency in the genomic era. JIMD Rep. 50, 40–43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Buch, A. E. et al. Energy metabolism during exercise in patients with beta-enolase deficiency (GSDXIII). JIMD Rep. 61, 60–66 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Moslemi, A. R. et al. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N. Engl. J. Med. 362, 1203–1210 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Tegtmeyer, L. C. et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 370, 533–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Preisler, N. et al. Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency. Mol. Genet. Metab. 122, 117–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Santer, R., Schneppenheim, R., Suter, D., Schaub, J. & Steinmann, B. Fanconi-Bickel syndrome-the original patient and his natural history, historical steps leading to the primary defect, and a review of the literature. Eur. J. Pediatr. 157, 783–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  206. Baba, K. et al. A mild clinical phenotype with myopathic and hemolytic forms of phosphoglycerate kinase deficiency (PGK Osaka): a case report and literature review. Intern. Med. 61, 3589–3594 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Echaniz-Laguna, A. et al. Phosphoglycerate kinase deficiency: a nationwide multicenter retrospective study. J. Inherit. Metab. Dis. 42, 803–808 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Vissing, J. et al. Level of residual enzyme activity modulates the phenotype in phosphoglycerate kinase deficiency. Neurology 91, e1077–e1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Sotiriou, E., Greene, P., Krishna, S., Hirano, M. & DiMauro, S. Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve 41, 707–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sakaue, S. et al. Early-onset parkinsonism in a pedigree with phosphoglycerate kinase deficiency and a heterozygous carrier: do PGK-1 mutations contribute to vulnerability to parkinsonism. NPJ Parkinsons Dis. 3, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Virmani, T. et al. Levodopa responsive parkinsonism in two patients with phosphoglycerate kinase deficiency. Mov. Disord. Clin. Pract. 1, 240–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Morales-Briceno, H. et al. Parkinsonism in PGK1 deficiency implicates the glycolytic pathway in nigrostriatal dysfunction. Parkinsonism Relat. Disord. 64, 319–323 (2019).

    Article  PubMed  Google Scholar 

  213. Tonin, P. et al. Phosphoglycerate kinase deficiency: biochemical and molecular genetic studies in a new myopathic variant (PGK Alberta). Neurology 43, 387–391 (1993).

    Article  CAS  PubMed  Google Scholar 

  214. Ausems, M. G. et al. A diagnostic protocol for adult-onset glycogen storage disease type II. Neurology 52, 851–853 (1999).

    Article  CAS  PubMed  Google Scholar 

  215. Meena, N. K. & Raben, N. Pompe disease: new developments in an old lysosomal storage disorder. Biomolecules 10, 1339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. McAdams, A. J., Hug, G. & Bove, K. E. Glycogen storage disease, types I to X: criteria for morphologic diagnosis. Hum. Pathol. 5, 463–487 (1974).

    Article  CAS  PubMed  Google Scholar 

  217. Maire, I., Baussan, C., Moatti, N., Mathieu, M. & Lemonnier, A. Biochemical diagnosis of hepatic glycogen storage diseases: 20 years French experience. Clin. Biochem. 24, 169–178 (1991).

    Article  CAS  PubMed  Google Scholar 

  218. Perez, M. et al. The second wind phenomenon in very young McArdle’s patients. Neuromuscul. Disord. 19, 403–405 (2009).

    Article  PubMed  Google Scholar 

  219. Lu, S. Q. et al. Glycogen storage disease type VI can progress to cirrhosis: ten Chinese patients with GSD VI and a literature review. J. Pediatr. Endocrinol. Metab. 33, 1321–1333 (2020).

    Article  PubMed  Google Scholar 

  220. Labrador, E. & Weinstein, D. A. Glycogen Storage Disease Type VI. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK5941/ (updated 27 Nov 2019).

  221. Kissel, J. T. et al. Physiologic assessment of phosphoglycerate mutase deficiency: incremental exercise test. Neurology 35, 828–833 (1985).

    Article  CAS  PubMed  Google Scholar 

  222. Tsujino, S., Shanske, S., Sakoda, S., Fenichel, G. & DiMauro, S. The molecular genetic basis of muscle phosphoglycerate mutase (PGAM) deficiency. Am. J. Hum. Genet. 52, 472–477 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Tonin, P. et al. Unusual presentation of phosphoglycerate mutase deficiency due to two different mutations in PGAM-M gene. Neuromuscul. Disord. 19, 776–778 (2009).

    Article  PubMed  Google Scholar 

  224. DiMauro, S., Miranda, A. F., Khan, S., Gitlin, K. & Friedman, R. Human muscle phosphoglycerate mutase deficiency: newly discovered metabolic myopathy. Science 212, 1277–1279 (1981).

    Article  CAS  PubMed  Google Scholar 

  225. Bresolin, N., Ro, Y. I., Reyes, M., Miranda, A. F. & DiMauro, S. Muscle phosphoglycerate mutase (PGAM) deficiency: a second case. Neurology 33, 1049–1053 (1983).

    Article  CAS  PubMed  Google Scholar 

  226. Vita, G. et al. Muscle phosphoglycerate mutase (PGAM) deficiency in the first Caucasian patient: biochemistry, muscle culture and 31P-MR spectroscopy. J. Neurol. 241, 289–294 (1994).

    Article  CAS  PubMed  Google Scholar 

  227. Koo, B. & Oskarsson, B. Phosphoglycerate mutase deficiency (glycogen storage disease X) caused by a novel variant in PGAM-M. Neuromuscul. Disord. 26, 688–690 (2016).

    Article  PubMed  Google Scholar 

  228. Malfatti, E. et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann. Neurol. 76, 891–898 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Krag, T. O., Ruiz-Ruiz, C. & Vissing, J. Glycogen synthesis in glycogenin 1-deficient patients: a role for glycogenin 2 in muscle. J. Clin. Endocrinol. Metab. 102, 2690–2700 (2017).

    Article  PubMed  Google Scholar 

  230. Ben Yaou, R. et al. Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency. Neurol. Genet. 3, e208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Visuttijai, K. et al. Glycogenin is dispensable for glycogen synthesis in human muscle, and glycogenin deficiency causes polyglucosan storage. J. Clin. Endocrinol. Metab. 105, 557–566 (2020).

    Article  PubMed  Google Scholar 

  232. Akman, H. O. et al. Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1. Neuromuscul. Disord. 26, 16–20 (2016).

    Article  PubMed  Google Scholar 

  233. Hedberg-Oldfors, C. et al. Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature. J. Inherit. Metab. Dis. 40, 139–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Manz, F. et al. Fanconi–Bickel syndrome. Pediatr. Nephrol. 1, 509–518 (1987).

    Article  CAS  PubMed  Google Scholar 

  235. Toscano, A. & Musumeci, O. Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol. 26, 105–107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Hamano, T., Mutoh, T., Sugie, H., Koga, H. & Kuriyama, M. Phosphoglycerate kinase deficiency: an adult myopathic form with a novel mutation. Neurology 54, 1188–1190 (2000).

    Article  CAS  PubMed  Google Scholar 

  237. Rosa, R. et al. A new case of phosphoglycerate kinase deficiency: PGK Creteil associated with rhabdomyolysis and lacking hemolytic anemia. Blood 60, 84–91 (1982).

    Article  CAS  PubMed  Google Scholar 

  238. DiMauro, S., Dalakas, M. & Miranda, A. F. Phosphoglycerate kinase deficiency: another cause of recurrent myoglobinuria. Ann. Neurol. 13, 11–19 (1983).

    Article  CAS  PubMed  Google Scholar 

  239. Pena, L. D. M. et al. Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naive and alglucosidase alfa-treated patients with late-onset Pompe disease: a phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul. Disord. 29, 167–186 (2019).

    Article  PubMed  Google Scholar 

  240. Radenkovic, S. et al. The metabolic map into the pathomechanism and treatment of PGM1-CDG. Am. J. Hum. Genet. 104, 835–846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Halaby, C. A. et al. Liver fibrosis during clinical ascertainment of glycogen storage disease type III: a need for improved and systematic monitoring. Genet. Med. 21, 2686–2694 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Concolino, D., Deodato, F. & Parini, R. Enzyme replacement therapy: efficacy and limitations. Ital. J. Pediatr. 44, 120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Fukuda, T. et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol. Ther. 14, 831–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Kaufmann, K. B., Buning, H., Galy, A., Schambach, A. & Grez, M. Gene therapy on the move. EMBO Mol. Med. 5, 1642–1661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Swingle, K. L., Hamilton, A. G. & Mitchell, M. J. Lipid nanoparticle-mediated delivery of mrna therapeutics and vaccines. Trends Mol. Med. 27, 616–617 (2021).

    Article  CAS  PubMed  Google Scholar 

  247. Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Krag and M. Sheikh for their work preparing histological images for publication (Fig. 3), R. Koch for her review of the manuscript and for her contributions to preparing histological images and D. Bali for her thoughtful edits of Table 2.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (W.B.H.); Epidemiology (T.G.J.D.); Mechanisms/pathophysiology (M.L.D.); Diagnosis, screening and prevention (S.C.G.); Management (P.S.K.); Quality of life (J.V.); Outlook (W.B.H.); Overview of Primer (all authors). Authors contributed equally to this work and are listed alphabetically.

Corresponding author

Correspondence to William B. Hannah.

Ethics declarations

Competing interests

W.B.H. has received consulting fees from PTC Therapeutics and ReCode Therapeutics. T.G.J.D. declares that he experiences no competing interests concerning the content of this manuscript. However, there are confidentiality agreements with third parties. In the past 36 months, there have been consultation agreements (with Danone, Ultragenyx Pharmaceutical, Inc., ModernaTX, Inc. and Beam Therapeutics), contracts for financial research support for investigator-initiated research (NCT04311307) and sponsor-initiated research (NCT03517085, NCT03970278, NCT05139316 and NCT05196165), honoraria for lectures or presentations (by MEDTalks, Prelum and Danone) and participation in a Data Safety Monitoring Board (NCT05095727) and advisory boards (Ultragenyx Pharmaceutical, Inc., ModernaTX, Inc. and Beam Therapeutics). For all private–public relationships, all contracts are via UMCG Contract Research Desk and all payments are to UMCG. S.C.G.: the Centre for Paediatrics and Adolescent Medicine Freiburg received funding for the following sponsor-initiated study, for which S.C.G. is a local subinvestigator: NCT05139316 – ‘a study of adeno-associated virus serotype 8-mediated gene transfer of glucose-6-phosphatase in patients with glycogen storage disease type Ia (GSDIa)’, sponsored by Ultragenyx Pharmaceutical, Inc. S.C.G. has received honoraria for educational lectures from Vitaflo GmbH and Ultragenyx Pharmaceutical Inc. and support for attending metabolic expert meetings from Nutricia Metabolics GmbH. S.C.G. participated in an advisory board for Ultragenyx Pharmaceutical, Inc. P.S.K. has received research/grant support from Sanofi Genzyme, Amicus Therapeutics and Kriya Therapeutics. P.S.K. has received consulting fees and honoraria from Sanofi Genzyme, Amicus Therapeutics, Maze Therapeutics, JCR Pharmaceutical, Asklepios Biopharmaceutical, Inc. (AskBio), Ultragenyx Pharmaceutical, Moderna, Inc. and Kriya Therapeutics. P.S.K. is a member of the Pompe and Gaucher Disease Registry Advisory Board for Sanofi Genzyme, Amicus Therapeutics and Baebies. P.S.K. has equity in Asklepios Biopharmaceutical, Inc. (AskBio), Maze Therapeutics, and equity options with Kriya Therapeutics. J.V. has received honoraria for acting as speaker or consulting for Sanofi Genzyme and Amicus Therapeutics and has participated in a clinical trial sponsored by Sanofi Genzyme without getting honorarium. M.L.D. has no competing interests to declare relevant to this article.

Peer review

Peer review information

Nature Reviews Disease Primers thanks P. Labrune, T. Mozaffar, G. Ronzitti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannah, W.B., Derks, T.G.J., Drumm, M.L. et al. Glycogen storage diseases. Nat Rev Dis Primers 9, 46 (2023). https://doi.org/10.1038/s41572-023-00456-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00456-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing