Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Imprinting disorders

Abstract

Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader–Willi syndrome, Angelman syndrome and Beckwith–Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular disturbances associated with imprinting disorders.
Fig. 2: Inheritance of ImpDis.
Fig. 3: Imprinting dynamics during development.
Fig. 4: Cross-talk between imprinted loci.
Fig. 5: Major clinical findings in ImpDis.
Fig. 6: Molecular diagnostic work-up for ImpDis.

Similar content being viewed by others

References

  1. Mackay, D. J. G. & Temple, I. K. Human imprinting disorders: principles, practice, problems and progress. Eur. J. Med. Genet. 60, 618–626 (2017).

    PubMed  Google Scholar 

  2. Nakamura, A. et al. A case of paternal uniparental isodisomy for chromosome 7 associated with overgrowth. J. Med. Genet. 55, 567–570 (2018).

    CAS  PubMed  Google Scholar 

  3. Lazier, J., Martin, N., Stavropoulos, J. D. & Chitayat, D. Maternal uniparental disomy for chromosome 6 in a patient with IUGR, ambiguous genitalia, and persistent Mullerian structures. Am. J. Med. Genet. A 170, 3227–3230 (2016).

    CAS  PubMed  Google Scholar 

  4. Kagami, M. et al. ZNF445: a homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin. Epigenetics 13, 119 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Eggermann, T. et al. Growth restriction and genomic imprinting-overlapping phenotypes support the concept of an imprinting network. Genes 12, 585 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hedgeman, E. et al. Long-term health outcomes in patients with Prader–Willi syndrome: a nationwide cohort study in Denmark. Int. J. Obes. 41, 1531–1538 (2017).

    CAS  Google Scholar 

  7. Lokulo-Sodipe, O. et al. Phenotype of genetically confirmed Silver-Russell syndrome beyond childhood. J. Med. Genet. 57, 683–691 (2020).

    PubMed  Google Scholar 

  8. Sommese, M. & Corrado, B. A comprehensive approach to rehabilitation interventions in patients with angelman syndrome: a systematic review of the literature. Neurol. Int. 13, 359–370 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Ballard, L. M. et al. Experiences of adolescents living with Silver–Russell syndrome. Arch. Dis. Child. 106, 1195–1201 (2021).

    PubMed  Google Scholar 

  10. Patten, M. M., Cowley, M., Oakey, R. J. & Feil, R. Regulatory links between imprinted genes: evolutionary predictions and consequences. Proc. Biol. Sci. 283, 20152760 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Soellner, L. et al. Recent advances in imprinting disorders. Clin. Genet. 91, 3–13 (2017).

    CAS  PubMed  Google Scholar 

  12. Yakoreva, M. et al. A retrospective analysis of the prevalence of imprinting disorders in Estonia from 1998 to 2016. Eur. J. Hum. Genet. 27, 1649–1658 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Oiglane-Shlik, E. et al. Prevalence of Angelman syndrome and Prader–Willi syndrome in Estonian children: sister syndromes not equally represented. Am. J. Med. Genet. A 140, 1936–1943 (2006).

    PubMed  Google Scholar 

  14. Thomson, A. K., Glasson, E. J. & Bittles, A. H. A long-term population-based clinical and morbidity review of Prader–Willi syndrome in Western Australia. J. Intellect. Disabil. Res. 50, 69–78 (2006).

    CAS  PubMed  Google Scholar 

  15. Lionti, T., Reid, S. M., White, S. M. & Rowell, M. M. A population-based profile of 160 Australians with Prader–Willi syndrome: trends in diagnosis, birth prevalence and birth characteristics. Am. J. Med. Genet. A 167A, 371–378 (2015).

    PubMed  Google Scholar 

  16. Acuna-Hidalgo, R., Veltman, J. A. & Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 17, 241 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Chantot-Bastaraud, S. et al. Formation of upd(7)mat by trisomic rescue: SNP array typing provides new insights in chromosomal nondisjunction. Mol. Cytogenet. 10, 28 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Carli, D. et al. Clinical and molecular characterization of patients affected by Beckwith–Wiedemann spectrum conceived through assisted reproduction techniques. Clin. Genet. 102, 314–323 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortessis, V. K. et al. Comprehensive meta-analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J. Assist. Reprod. Genet. 35, 943–952 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Maher, E. R. et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet. 40, 62–64 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Doornbos, M. E., Maas, S. M., McDonnell, J., Vermeiden, J. P. & Hennekam, R. C. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study. Hum. Reprod. 22, 2476–2480 (2007).

    PubMed  Google Scholar 

  22. Hauer, N. N. et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. Genet. Med. 20, 630–638 (2018).

    CAS  PubMed  Google Scholar 

  23. Freire, B. L. et al. High frequency of genetic/epigenetic disorders in short stature children born with very low birth weight. Am. J. Med. Genet. A 188, 2599–2604 (2022).

    CAS  PubMed  Google Scholar 

  24. Brioude, F. et al. Overgrowth syndromes — clinical and molecular aspects and tumour risk. Nat. Rev. Endocrinol. 15, 299–311 (2019).

    CAS  PubMed  Google Scholar 

  25. Temple, I. K. & Mackay, D. J. G. Diabetes mellitus, 6q24-related transient neonatal. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1534/ (updated 13 Sep 2018).

  26. Vilchis, Z. et al. The high frequency of genetic diseases in hypotonic infants referred by neuropediatrics. Am. J. Med Genet A 164A, 1702–1705 (2014).

    PubMed  Google Scholar 

  27. Scott, R. H. et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat. Genet. 40, 1329–1334 (2008).

    CAS  PubMed  Google Scholar 

  28. Bliek, J. et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur. J. Hum. Genet. 17, 1625–1634 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Riess, A. et al. First report on concordant monozygotic twins with Silver-Russell syndrome and ICR1 hypomethylation. Eur. J. Med. Genet. 59, 1–4 (2016).

    PubMed  Google Scholar 

  30. Monk, D., Sanchez-Delgado, M. & Fisher, R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction 154, R161–R170 (2017).

    CAS  PubMed  Google Scholar 

  31. Eggermann, T. et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin. Epigenetics 14, 41 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maupetit-Mehouas, S. et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res. 44, 621–635 (2016).

    CAS  PubMed  Google Scholar 

  33. Henckel, A. et al. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum. Mol. Genet. 18, 3375–3383 (2009).

    CAS  PubMed  Google Scholar 

  34. Cai, X. & Cullen, B. R. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mackay, D. J. G. & Temple, I. K. Ongoing challenges in the diagnosis of 11p15.5-associated imprinting disorders. Mol. Diagn. Ther. 26, 263–272 (2022).

    CAS  PubMed  Google Scholar 

  36. Baran, Y. et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25, 927–936 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Horsthemke, B. Mechanisms of imprint dysregulation. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 321–328 (2010).

    CAS  PubMed  Google Scholar 

  38. Valente, F. M. et al. Transcription alterations of KCNQ1 associated with imprinted methylation defects in the Beckwith–Wiedemann locus. Genet. Med. 21, 1808–1820 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sparago, A., Cerrato, F. & Riccio, A. Is ZFP57 binding to H19/IGF2:IG-DMR affected in Silver–Russell syndrome. Clin. Epigenetics 10, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Demars, J. et al. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum. Mol. Genet. 19, 803–814 (2010).

    CAS  PubMed  Google Scholar 

  41. Mackay, D. J. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

    CAS  PubMed  Google Scholar 

  42. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Anvar, Z. et al. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res. 44, 1118–1132 (2016).

    CAS  PubMed  Google Scholar 

  44. Jiang, W. et al. ZFP57 dictates allelic expression switch of target imprinted genes. Proc. Natl Acad. Sci. USA 118, e2005377118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Geoffron, S. et al. Chromosome 14q32.2 imprinted region disruption as an alternative molecular diagnosis of Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 103, 2436–2446 (2018).

    PubMed  Google Scholar 

  46. Goto, M., Kagami, M., Nishimura, G. & Yamagata, T. A patient with Temple syndrome satisfying the clinical diagnostic criteria of Silver–Russell syndrome. Am. J. Med. Genet. A 170, 2483–2485 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Kagami, M. et al. Temple syndrome: comprehensive molecular and clinical findings in 32 Japanese patients. Genet. Med. 19, 1356–1366 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Abi Habib, W. et al. Transcriptional profiling at the DLK1/MEG3 domain explains clinical overlap between imprinting disorders. Sci. Adv. 5, eaau9425 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Ito, M. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 142, 2425–2430 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stelzer, Y., Sagi, I., Yanuka, O., Eiges, R. & Benvenisty, N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader–Willi syndrome. Nat. Genet. 46, 551–557 (2014).

    CAS  PubMed  Google Scholar 

  51. Monnier, P. et al. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl Acad. Sci. USA 110, 20693–20698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Varrault, A. et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11, 711–722 (2006).

    CAS  PubMed  Google Scholar 

  53. Iglesias-Platas, I. et al. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum. Mol. Genet. 23, 6275–6285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lui, J. C., Finkielstain, G. P., Barnes, K. M. & Baron, J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R189–R196 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bortolin-Cavaille, M. L. & Cavaille, J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader–Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res. 40, 6800–6807 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Paulsen, M. et al. Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res. 11, 2085–2094 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Robson, J. E., Eaton, S. A., Underhill, P., Williams, D. & Peters, J. MicroRNAs 296 and 298 are imprinted and part of the GNAS/Gnas cluster and miR-296 targets IKBKE and Tmed9. RNA 18, 135–144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    CAS  PubMed  Google Scholar 

  59. Li, J. et al. LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. Int. J. Cardiol. 338, 14–23 (2021).

    PubMed  Google Scholar 

  60. Chen, Q. H. et al. LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell Int. 20, 394 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng, P. et al. LncRNA KCNQ1OT1 controls cell proliferation, differentiation and apoptosis by sponging miR-326 to regulate c-Myc expression in acute myeloid leukemia. Neoplasma 67, 238–248 (2020).

    CAS  PubMed  Google Scholar 

  62. Yao, L., Yang, L., Song, H., Liu, T. & Yan, H. MicroRNA miR-29c-3p modulates FOS expression to repress EMT and cell proliferation while induces apoptosis in TGF-beta2-treated lens epithelial cells regulated by lncRNA KCNQ1OT1. Biomed. Pharmacother. 129, 110290 (2020).

    CAS  PubMed  Google Scholar 

  63. Wakeling, E. L. et al. Diagnosis and management of Silver–Russell syndrome: first international consensus statement. Nat. Rev. Endocrinol. 13, 105–124 (2017).

    CAS  PubMed  Google Scholar 

  64. Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 14, 229–249 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Goldstone, A. P. et al. Recommendations for the diagnosis and management of Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 93, 4183–4197 (2008).

    CAS  PubMed  Google Scholar 

  66. Williams, C. A. et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am. J. Med. Genet. A 140, 413–418 (2006).

    PubMed  Google Scholar 

  67. Mantovani, G. et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat. Rev. Endocrinol. 14, 476–500 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mackay, D. et al. First step towards a consensus strategy for multi-locus diagnostic testing of imprinting disorders. Clin. Epigenetics 14, 143 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Duffy, K. A., Hathaway, E. R., Klein, S. D., Ganguly, A. & Kalish, J. M. Epigenetic mosaicism and cell burden in Beckwith–Wiedemann syndrome due to loss of methylation at imprinting control region 2. Cold Spring Harb. Mol. Case Stud. 7, a006115 (2021).

    PubMed  PubMed Central  Google Scholar 

  70. Wakeling, E. L. et al. Epigenotype–phenotype correlations in Silver–Russell syndrome. J. Med. Genet. 47, 760–768 (2010).

    CAS  PubMed  Google Scholar 

  71. Fuke, T. et al. Role of imprinting disorders in short children born SGA and Silver–Russell syndrome spectrum. J. Clin. Endocrinol. Metab. 106, 802–813 (2021).

    PubMed  Google Scholar 

  72. Ioannides, Y., Lokulo-Sodipe, K., Mackay, D. J., Davies, J. H. & Temple, I. K. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. J. Med. Genet. 51, 495–501 (2014).

    CAS  PubMed  Google Scholar 

  73. Wollmann, H. A., Kirchner, T., Enders, H., Preece, M. A. & Ranke, M. B. Growth and symptoms in Silver–Russell syndrome: review on the basis of 386 patients. Eur. J. Pediatr. 154, 958–968 (1995).

    CAS  PubMed  Google Scholar 

  74. Elliott, M., Bayly, R., Cole, T., Temple, I. K. & Maher, E. R. Clinical features and natural history of Beckwith–Wiedemann syndrome: presentation of 74 new cases. Clin. Genet. 46, 168–174 (1994).

    CAS  PubMed  Google Scholar 

  75. Ogata, T. & Kagami, M. Kagami-Ogata syndrome: a clinically recognizable upd(14)pat and related disorder affecting the chromosome 14q32.2 imprinted region. J. Hum. Genet. 61, 87–94 (2016).

    CAS  PubMed  Google Scholar 

  76. Kagami, M. et al. Comprehensive clinical studies in 34 patients with molecularly defined UPD(14)pat and related conditions (Kagami–Ogata syndrome). Eur. J. Hum. Genet. 23, 1488–1498 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yamaguchi, K. T. Jr, Salem, J. B., Myung, K. S., Romero, A. N. Jr. & Skaggs, D. L. Spinal deformity in Russell–Silver syndrome. Spine Deform. 3, 95–97 (2015).

    PubMed  Google Scholar 

  78. Kawashima, S. et al. Maternal uniparental disomy for chromosome 20: physical and endocrinological characteristics of five patients. J. Clin. Endocrinol. Metab. 103, 2083–2088 (2018).

    PubMed  Google Scholar 

  79. Patti, G. et al. Clinical manifestations and metabolic outcomes of seven adults with Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 103, 2225–2233 (2018).

    PubMed  Google Scholar 

  80. Tauber, M. & Hoybye, C. Endocrine disorders in Prader–Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol. 9, 235–246 (2021).

    CAS  PubMed  Google Scholar 

  81. Wang, L. & Shoemaker, A. H. Eating behaviors in obese children with pseudohypoparathyroidism type 1a: a cross-sectional study. Int. J. Pediatr. Endocrinol. 2014, 21 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Poitou, C. et al. The transition from paediatric to adult care in individuals with Prader–Willi syndrome. Endocr. Connect. 12, e220373 (2022).

    PubMed  PubMed Central  Google Scholar 

  83. Patti, G. et al. Pubertal timing in children with Silver Russell syndrome compared to those born small for gestational age. Front. Endocrinol. 13, 975511 (2022).

    Google Scholar 

  84. Juriaans, A. F., Kerkhof, G. F. & Hokken-Koelega, A. C. S. The spectrum of the Prader–Willi-like pheno- and genotype: a review of the literature. Endocr. Rev. 43, 1–18 (2022).

    PubMed  Google Scholar 

  85. Juriaans, A. F. et al. Temple syndrome: clinical findings, body composition and cognition in 15 patients. J. Clin. Med. 11, 6289 (2022).

    PubMed  PubMed Central  Google Scholar 

  86. Kagami, M. et al. Genome-wide multilocus imprinting disturbance analysis in Temple syndrome and Kagami–Ogata syndrome. Genet. Med. 19, 476–482 (2017).

    CAS  PubMed  Google Scholar 

  87. Binder, G., Schweizer, R., Blumenstock, G. & Ferrand, N. Adrenarche in Silver–Russell syndrome: timing and consequences. J. Clin. Endocrinol. Metab. 102, 4100–4108 (2017).

    PubMed  Google Scholar 

  88. Dauber, A. et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J. Clin. Endocrinol. Metab. 102, 1557–1567 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Bindels-de Heus, K. et al. An overview of health issues and development in a large clinical cohort of children with Angelman syndrome. Am. J. Med. Genet. A 182, 53–63 (2020).

    PubMed  Google Scholar 

  90. Fuke, T. et al. Molecular and clinical studies in 138 Japanese patients with Silver–Russell syndrome. PLoS ONE 8, e60105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Noeker, M. & Wollmann, H. A. Cognitive development in Silver–Russell syndrome: a sibling-controlled study. Dev. Med. Child Neurol. 46, 340–346 (2004).

    PubMed  Google Scholar 

  92. Patti, G. et al. Cognitive profiles and brain volume are affected in patients with Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 105, dgz151 (2020).

    PubMed  Google Scholar 

  93. Ghanim, M. et al. Possible association between complex congenital heart defects and 11p15 hypomethylation in three patients with severe Silver–Russell syndrome. Am. J. Med. Genet. A 161A, 572–577 (2013).

    PubMed  Google Scholar 

  94. Huang, H. et al. Kagami–Ogata syndrome in a fetus presenting with polyhydramnios, malformations, and preterm delivery: a case report. J. Med. Case Rep. 13, 340 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Mussa, A. et al. Cancer risk in Beckwith–Wiedemann syndrome: a systematic review and meta-analysis outlining a novel (epi)genotype specific histotype targeted screening protocol. J. Pediatr. 176, 142–149.e1 (2016).

    PubMed  Google Scholar 

  96. Maas, S. M. et al. Phenotype, cancer risk, and surveillance in Beckwith–Wiedemann syndrome depending on molecular genetic subgroups. Am. J. Med. Genet. A 170, 2248–2260 (2016).

    CAS  PubMed  Google Scholar 

  97. Weksberg, R. et al. Tumor development in the Beckwith–Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum. Mol. Genet. 10, 2989–3000 (2001).

    CAS  PubMed  Google Scholar 

  98. Kalish, J. M. et al. Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am. J. Med. Genet. A 161A, 1929–1939 (2013).

    PubMed  Google Scholar 

  99. Spier, I. et al. Male infant with paternal uniparental diploidy mosaicism and a 46,XX/46,XY karyotype. Am. J. Med. Genet. A 179, 2252–2256 (2019).

    CAS  PubMed  Google Scholar 

  100. Spreafico, F. et al. Wilms tumour. Nat. Rev. Dis. Primers 7, 75 (2021).

    PubMed  Google Scholar 

  101. Higashiyama, H. et al. Two infants with mild, atypical clinical features of Kagami–Ogata syndrome caused by epimutation. Eur. J. Med. Genet. 65, 104580 (2022).

    CAS  PubMed  Google Scholar 

  102. Kagan, K. O. et al. Novel fetal and maternal sonographic findings in confirmed cases of Beckwith–Wiedemann syndrome. Prenat. Diagn. 35, 394–399 (2015).

    CAS  PubMed  Google Scholar 

  103. Nunes, S., Xavier, M., Lourenco, C., Melo, M. & Godinho, C. Schaaf–Yang syndrome: a real challenge for prenatal diagnosis. Cureus 13, e20414 (2021).

    PubMed  PubMed Central  Google Scholar 

  104. Carli, D. et al. Prenatal features in Beckwith–Wiedemann syndrome and indications for prenatal testing. J. Med. Genet. 58, 842–849 (2021).

    CAS  PubMed  Google Scholar 

  105. Kagami, M. et al. Paternal uniparental disomy 14 and related disorders: placental gene expression analyses and histological examinations. Epigenetics 7, 1142–1150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wangler, M. F., Chang, A. S., Moley, K. H., Feinberg, A. P. & Debaun, M. R. Factors associated with preterm delivery in mothers of children with Beckwith–Wiedemann syndrome: a case cohort study from the BWS registry. Am. J. Med. Genet. A 134A, 187–191 (2005).

    PubMed  Google Scholar 

  107. Cizmecioglu, F. M. et al. Neonatal features of the Prader–Willi syndrome; the case for making the diagnosis during the first week of life. J. Clin. Res. Pediatr. Endocrinol. 10, 264–273 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Kalish, J. M. et al. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. J. Med. Genet. 53, 53–61 (2016).

    CAS  PubMed  Google Scholar 

  109. Saal, H. M., Harbison, M. D. & Netchine, I. Silver-Russell Syndrome. GeneReviews [online] https://www.ncbi.nlm.nih.gov/books/NBK1324/ (updated 21 Oct 2019).

  110. Beygo, J. et al. Update of the EMQN/ACGS best practice guidelines for molecular analysis of Prader-Willi and Angelman syndromes. Eur. J. Hum. Genet. 27, 1326–1340 (2019).

    PubMed  PubMed Central  Google Scholar 

  111. Nygren, A. O. et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res. 33, e128 (2005).

    PubMed  PubMed Central  Google Scholar 

  112. Zeschnigk, M., Lich, C., Buiting, K., Doerfler, W. & Horsthemke, B. A single-tube PCR test for the diagnosis of Angelman and Prader–Willi syndrome based on allelic methylation differences at the SNRPN locus. Eur. J. Hum. Genet. 5, 94–98 (1997).

    CAS  PubMed  Google Scholar 

  113. Russo, S. et al. A multi-method approach to the molecular diagnosis of overt and borderline 11p15.5 defects underlying Silver–Russell and Beckwith–Wiedemann syndromes. Clin. Epigenetics 8, 23 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Baker, E. K. et al. Methylation analysis and developmental profile of two individuals with Angelman syndrome due to mosaic imprinting defects. Eur. J. Med. Genet. 65, 104456 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lindgren, V., Cobian, K. & Bhat, G. Temple syndrome resulting from uniparental disomy is undiagnosed by a methylation assay due to low-level mosaicism for trisomy 14. Am. J. Med. Genet. A 185, 1538–1543 (2021).

    CAS  PubMed  Google Scholar 

  116. Eggermann, T. et al. Need for a precise molecular diagnosis in Beckwith–Wiedemann and Silver–Russell syndrome: what has to be considered and why it is important. J. Mol. Med. 98, 1447–1455 (2020).

    CAS  PubMed  Google Scholar 

  117. Keren, B. et al. SNP arrays in Beckwith–Wiedemann syndrome: an improved diagnostic strategy. Eur. J. Med. Genet. 56, 546–550 (2013).

    PubMed  Google Scholar 

  118. Stalman, S. E., Pons, A., Wit, J. M., Kamp, G. A. & Plotz, F. B. Diagnostic work-up and follow-up in children with tall stature: a simplified algorithm for clinical practice. J. Clin. Res. Pediatr. Endocrinol. 7, 260–267 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Andrews, A. et al. Genetic characterization of short stature patients with overlapping features of growth hormone insensitivity syndromes. J. Clin. Endocrinol. Metab. 106, e4716–e4733 (2021).

    PubMed  PubMed Central  Google Scholar 

  120. Freire, B. L. et al. Multigene sequencing analysis of children born small for gestational age with isolated short stature. J. Clin. Endocrinol. Metab. 104, 2023–2030 (2019).

    PubMed  Google Scholar 

  121. Moore, A. M. & Richer, J. Genetic testing and screening in children. Paediatr. Child Health 27, 243–253 (2022).

    PubMed  Google Scholar 

  122. Kraft, F. et al. Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. Clin. Epigenetics 11, 30 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Berland, S. et al. Evidence for anticipation in Beckwith–Wiedemann syndrome. Eur. J. Hum. Genet. 21, 1344–1348 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Eggermann, T. et al. Heterogeneous phenotypes in families with duplications of the paternal allele within the imprinting center 1 (H19/IGF2:TSS-DMR) in 11p15.5. Clin. Genet. 98, 418–419 (2020).

    CAS  PubMed  Google Scholar 

  125. Beygo, J. et al. Novel deletions affecting the MEG3-DMR provide further evidence for a hierarchical regulation of imprinting in 14q32. Eur. J. Hum. Genet. 23, 180–188 (2015).

    CAS  PubMed  Google Scholar 

  126. Elbracht, M., Mackay, D., Begemann, M., Kagan, K. O. & Eggermann, T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum. Reprod. Update 26, 197–213 (2020).

    CAS  PubMed  Google Scholar 

  127. Akoury, E. et al. Live births in women with recurrent hydatidiform mole and two NLRP7 mutations. Reprod. Biomed. Online 31, 120–124 (2015).

    CAS  PubMed  Google Scholar 

  128. Rezaei, M. et al. Novel pathogenic variants in NLRP7, NLRP5, and PADI6 in patients with recurrent hydatidiform moles and reproductive failure. Clin. Genet. 99, 823–828 (2021).

    CAS  PubMed  Google Scholar 

  129. Kotzot, D. Complex and segmental uniparental disomy updated. J. Med. Genet. 45, 545–556 (2008).

    CAS  PubMed  Google Scholar 

  130. Eggermann, T. et al. Prenatal molecular testing for Beckwith–Wiedemann and Silver–Russell syndromes: a challenge for molecular analysis and genetic counseling. Eur. J. Hum. Genet. 24, 784–793 (2016).

    CAS  PubMed  Google Scholar 

  131. Caldwell, S. et al. Deletion rescue resulting in segmental homozygosity: a mechanism underlying discordant NIPT results. Am. J. Med. Genet. A 182, 2666–2670 (2020).

    CAS  PubMed  Google Scholar 

  132. Sabria-Back, J. et al. Preimplantation genetic testing for a chr14q32 microdeletion in a family with Kagami–Ogata syndrome and Temple syndrome. J. Med. Genet. 59, 253–261 (2022).

    CAS  PubMed  Google Scholar 

  133. Smeets, C. C., Renes, J. S., van der Steen, M. & Hokken-Koelega, A. C. Metabolic health and long-term safety of growth hormone treatment in Silver–Russell syndrome. J. Clin. Endocrinol. Metab. 102, 983–991 (2017).

    PubMed  Google Scholar 

  134. Ayet-Roger, A., Joga-Elvira, L., Caixas, A. & Corripio, R. Cognitive and adaptive effects of early growth hormone treatment in Prader–Willi syndrome patients: a cohort study. J. Clin. Med. 11, 1592 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Brightman, D. S. et al. Growth hormone improves short-term growth in patients with Temple Syndrome. Horm. Res. Paediatr. 90, 407–413 (2018).

    CAS  PubMed  Google Scholar 

  136. Tauber, M. & Diene, G. Prader–Willi syndrome: hormone therapies. Handb. Clin. Neurol. 181, 351–367 (2021).

    PubMed  Google Scholar 

  137. Goodbody, C. M., Buksbaum, J., Harbison, M. D., Fragomen, A. T. & Rozbruch, S. R. Limb lengthening in Russell–Silver syndrome: an update confirming safe and speedy healing. J. Pediatr. Orthop. 41, 428–432 (2021).

    PubMed  Google Scholar 

  138. Marsaud, C., Rossignol, S., Tounian, P., Netchine, I. & Dubern, B. Prevalence and management of gastrointestinal manifestations in Silver–Russell syndrome. Arch. Dis. Child. 100, 353–358 (2015).

    PubMed  Google Scholar 

  139. Lemoine, A. et al. Effect of cyproheptadine on weight and growth velocity in children with Silver–Russell syndrome. J. Pediatr. Gastroenterol. Nutr. 66, 306–311 (2018).

    CAS  PubMed  Google Scholar 

  140. Giabicani, E., Pham, A., Brioude, F., Mitanchez, D. & Netchine, I. Diagnosis and management of postnatal fetal growth restriction. Best. Pract. Res. Clin. Endocrinol. Metab. 32, 523–534 (2018).

    PubMed  Google Scholar 

  141. Lokulo-Sodipe, O. et al. Height and body mass index in molecularly confirmed Silver–Russell syndrome and the long-term effects of growth hormone treatment. Clin. Endocrinol. 97, 284–292 (2022).

    CAS  Google Scholar 

  142. Ezzahir, N. et al. Time course of catch-up in adiposity influences adult anthropometry in individuals who were born small for gestational age. Pediatr. Res. 58, 243–247 (2005).

    PubMed  Google Scholar 

  143. Azcona, C. & Stanhope, R. Hypoglycaemia and Russell–Silver syndrome. J. Pediatr. Endocrinol. Metab. 18, 663–670 (2005).

    CAS  PubMed  Google Scholar 

  144. Clerc, A. et al. Diabetes mellitus in Prader–Willi syndrome: natural history during the transition from childhood to adulthood in a cohort of 39 patients. J. Clin. Med. 10, 5310 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. van der Steen, M. et al. Metabolic health in short children born small for gestational age treated with growth hormone and gonadotropin-releasing hormone analog: results of a randomized, dose–response trial. J. Clin. Endocrinol. Metab. 100, 3725–3734 (2015).

    PubMed  Google Scholar 

  146. Bollerslev, J. et al. European Society of Endocrinology Clinical Guideline: treatment of chronic hypoparathyroidism in adults. Eur. J. Endocrinol. 173, G1–G20 (2015).

    CAS  PubMed  Google Scholar 

  147. Tauber, M. et al. The use of oxytocin to improve feeding and social skills in infants with Prader–Willi syndrome. Pediatrics 139, e20162976 (2017).

    PubMed  Google Scholar 

  148. Gigliucci, V. et al. Oxytocin receptors in the Magel2 mouse model of autism: specific region, age, sex and oxytocin treatment effects. Front. Neurosci. 17, 1026939 (2023).

    PubMed  PubMed Central  Google Scholar 

  149. Duis, J. et al. A multidisciplinary approach and consensus statement to establish standards of care for Angelman syndrome. Mol. Genet. Genom. Med. 10, e1843 (2022).

    Google Scholar 

  150. Grocott, O. R., Herrington, K. S., Pfeifer, H. H., Thiele, E. A. & Thibert, R. L. Low glycemic index treatment for seizure control in Angelman syndrome: a case series from the Center for Dietary Therapy of Epilepsy at the Massachusetts General Hospital. Epilepsy Behav. 68, 45–50 (2017).

    PubMed  Google Scholar 

  151. Herber, D. L., Weeber, E. J., D’Agostino, D. P. & Duis, J. Evaluation of the safety and tolerability of a nutritional formulation in patients with Angelman syndrome (FANS): study protocol for a randomized controlled trial. Trials 21, 60 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Manzardo, A. M., Loker, J., Heinemann, J., Loker, C. & Butler, M. G. Survival trends from the Prader–Willi Syndrome Association (USA) 40-year mortality survey. Genet. Med. 20, 24–30 (2018).

    PubMed  Google Scholar 

  153. Pacoricona Alfaro, D. L. et al. Causes of death in Prader–Willi syndrome: lessons from 11 years’ experience of a national reference center. Orphanet J. Rare Dis. 14, 238 (2019).

    PubMed  PubMed Central  Google Scholar 

  154. Spruyt, K., Braam, W. & Curfs, L. M. Sleep in Angelman syndrome: a review of evidence. Sleep Med. Rev. 37, 69–84 (2018).

    PubMed  Google Scholar 

  155. Brzezinski, J. et al. Wilms tumour in Beckwith–Wiedemann syndrome and loss of methylation at imprinting centre 2: revisiting tumour surveillance guidelines. Eur. J. Hum. Genet. 25, 1031–1039 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Scalabre, A. et al. Is nephron sparing surgery justified in Wilms tumor with Beckwith–Wiedemann syndrome or isolated hemihypertrophy? Pediatr. Blood Cancer 63, 1571–1577 (2016).

    CAS  PubMed  Google Scholar 

  157. Goldsmith, S. M., De Silva, R. K., Tong, D. C. & Love, R. M. Influence of a pedicle flap design on acute postoperative sequelae after lower third molar removal. Int. J. Oral Maxillofac. Surg. 41, 371–375 (2012).

    PubMed  Google Scholar 

  158. Giabicani, E. et al. Sleep disordered breathing in Silver–Russell syndrome patients: a new outcome. Sleep Med. 64, 23–29 (2019).

    PubMed  Google Scholar 

  159. Pavone, M. et al. Sleep disordered breathing in patients with Prader–Willi syndrome: a multicenter study. Pediatr. Pulmonol. 50, 1354–1359 (2015).

    PubMed  Google Scholar 

  160. Vo Quang, S. et al. Contribution of a better maxillofacial phenotype in Silver–Russell syndrome to define a better orthodontics and surgical management. J. Stomatol. Oral Maxillofac. Surg. 120, 110–115 (2019).

    CAS  PubMed  Google Scholar 

  161. Sato, C. et al. Systemic and maxillofacial characteristics of 11 Japanese children with Russell–Silver syndrome. Congenit. Anom. 56, 217–225 (2016).

    Google Scholar 

  162. Defabianis, P., Ninivaggi, R. & Romano, F. Oral health-related quality of life among children and adolescents with Beckwith–Wiedemann syndrome in northern Italy. J. Clin. Med. 11, 5685 (2022).

    PubMed  PubMed Central  Google Scholar 

  163. Goldman, M., Shuman, C., Weksberg, R. & Rosenblum, N. D. Hypercalciuria in Beckwith–Wiedemann syndrome. J. Pediatr. 142, 206–208 (2003).

    PubMed  Google Scholar 

  164. Safi-Stibler, S. & Gabory, A. Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin. Cell Dev. Biol. 97, 172–180 (2020).

    CAS  PubMed  Google Scholar 

  165. Markati, T., Duis, J. & Servais, L. Therapies in preclinical and clinical development for Angelman syndrome. Expert Opin. Investig. Drugs 30, 709–720 (2021).

    CAS  PubMed  Google Scholar 

  166. Meng, L. et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518, 409–412 (2015).

    CAS  PubMed  Google Scholar 

  167. Daily, J. L. et al. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. PLoS ONE 6, e27221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Cooper, A. et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk–Barel intellectual disability syndrome. Nat. Commun. 11, 480 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Barel, O. et al. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am. J. Hum. Genet. 83, 193–199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Audi, L. et al. GENETICS IN ENDOCRINOLOGY: approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur. J. Endocrinol. 179, R197–R206 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Reiner, D. et al. Epigenetics meets GPCR: inhibition of histone H3 methyltransferase (G9a) and histamine H3 receptor for Prader–Willi syndrome. Sci. Rep. 10, 13558 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Pullen, L. C., Picone, M., Tan, L., Johnston, C. & Stark, H. Cognitive improvements in children with Prader–Willi syndrome following pitolisant treatment-patient reports. J. Pediatr. Pharmacol. Ther. 24, 166–171 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Knopp, C. et al. Twenty-one years to the right diagnosis - clinical overlap of Simpson–Golabi–Behmel and Beckwith–Wiedemann syndrome. Am. J. Med. Genet. A 167A, 151–155 (2015).

    CAS  PubMed  Google Scholar 

  174. Meyer, R. et al. Targeted next generation sequencing approach in patients referred for Silver–Russell syndrome testing increases the mutation detection rate and provides decisive information for clinical management. J. Pediatr. 187, 206–212.e1 (2017).

    CAS  PubMed  Google Scholar 

  175. Backeljauw, P. et al. Impact of short stature on quality of life: a systematic literature review. Growth Horm. IGF Res. 57–58, 101392 (2021).

    PubMed  Google Scholar 

  176. Ballard, L. M. et al. Lived experience of Silver–Russell syndrome: implications for management during childhood and into adulthood. Arch. Dis. Child. 104, 76–82 (2019).

    PubMed  Google Scholar 

  177. Rosenberg, A. G. W. et al. Growth hormone treatment for adults with Prader–Willi syndrome: a meta-analysis. J. Clin. Endocrinol. Metab. 106, 3068–3091 (2021).

    PubMed  PubMed Central  Google Scholar 

  178. Shivers, C. M., Leonczyk, C. L. & Dykens, E. M. Life satisfaction among mothers of individuals with Prader–Willi syndrome. J. Autism Dev. Disord. 46, 2126–2137 (2016).

    PubMed  Google Scholar 

  179. Kowal, K., Skrzypek, M. & Kocki, J. Experiencing illness as a crisis by the caregivers of individuals with Prader–Willi syndrome. PLoS ONE 17, e0273295 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ochoa, E. et al. ImprintSeq, a novel tool to interrogate DNA methylation at human imprinted regions and diagnose multilocus imprinting disturbance. Genet. Med. 24, 463–474 (2022).

    CAS  PubMed  Google Scholar 

  181. Mackay, D. J. G. et al. Discrepant molecular and clinical diagnoses in Beckwith–Wiedemann and Silver–Russell syndromes. Genet. Res. 101, e3 (2019).

    Google Scholar 

  182. Mannens, M., Lombardi, M. P., Alders, M., Henneman, P. & Bliek, J. Further introduction of DNA methylation (DNAm) arrays in regular diagnostics. Front. Genet. 13, 831452 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Battaglia, S. et al. Long-range phasing of dynamic, tissue-specific and allele-specific regulatory elements. Nat. Genet. 54, 1504–1513 (2022).

    CAS  PubMed  Google Scholar 

  184. Gurovich, Y. et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 25, 60–64 (2019).

    CAS  PubMed  Google Scholar 

  185. Hsieh, T. C. et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat. Genet. 54, 349–357 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Inoue, T. et al. Molecular and clinical analyses of two patients with UPD(16)mat detected by screening 94 patients with Silver–Russell syndrome phenotype of unknown aetiology. J. Med. Genet. 56, 413–418 (2019).

    PubMed  Google Scholar 

  187. Abi Habib, W. et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet. Med. 20, 250–258 (2018).

    CAS  PubMed  Google Scholar 

  188. Chamberlain, S. J. et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes. Proc. Natl Acad. Sci. USA 107, 17668–17673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Yang, J. et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader–Willi syndrome. J. Biol. Chem. 285, 40303–40311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Burnett, L. C. et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader–Willi syndrome. J. Clin. Invest. 127, 293–305 (2017).

    PubMed  Google Scholar 

  191. Dunaway, K. et al. Dental pulp stem cells model early life and imprinted DNA methylation patterns. Stem Cell 35, 981–988 (2017).

    CAS  Google Scholar 

  192. Giabicani, E. et al. Dental pulp stem cells as a promising model to study imprinting diseases. Int. J. Oral Sci. 14, 19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Malzac, P. et al. Mutation analysis of UBE3A in Angelman syndrome patients. Am. J. Hum. Genet. 62, 1353–1360 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Cardarelli, L. et al. Silver–Russell syndrome and Beckwith–Wiedemann syndrome phenotypes associated with 11p duplication in a single family. Pediatr. Dev. Pathol. 13, 326–330 (2010).

    CAS  PubMed  Google Scholar 

  195. Soellner, L. et al. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur. J. Hum. Genet. 25, 924–929 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Hernandez Mora, J. R. et al. Single-cell multi-omic analysis profiles defective genome activation and epigenetic reprogramming associated with human pre-implantation embryo arrest. Cell Rep. 42, 112100 (2023).

    CAS  PubMed  Google Scholar 

  197. Monteagudo-Sanchez, A. et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 48, 11394–11407 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Sanchez-Delgado, M. et al. Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet. 32, 444–455 (2016).

    CAS  PubMed  Google Scholar 

  199. Sano, S. et al. Beckwith–Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J. Hum. Genet. 61, 765–769 (2016).

    CAS  PubMed  Google Scholar 

  200. Grosvenor, S. E. et al. A patient with multilocus imprinting disturbance involving hypomethylation at 11p15 and 14q32, and phenotypic features of Beckwith–Wiedemann and Temple syndromes. Am. J. Med. Genet. A 188, 1896–1903 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Begemann, M. et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J. Med. Genet. 55, 497–504 (2018).

    CAS  PubMed  Google Scholar 

  202. Docherty, L. E. et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat. Commun. 6, 8086 (2015).

    PubMed  Google Scholar 

  203. Qian, J. et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur. J. Hum. Genet. 26, 1007–1013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Nguyen, N. M. P. et al. The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod. Pathol. 31, 1116–1130 (2018).

    CAS  PubMed  Google Scholar 

  205. Mu, J. et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J. Med. Genet. 56, 471–480 (2019).

    CAS  PubMed  Google Scholar 

  206. Demond, H. et al. A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med. 11, 84 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Mahadevan, S. et al. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci. Rep. 7, 44667 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for the support of their research activity. The authors are supported by the following grants: Deutsche Forschungsgemeinschaft to T.E. (EG 115/13-1). Instituto de Salud Carlos III (ISCIIII) of the Ministry of Economy and Competitiveness (Spain) cofinanced by European Regional Development Fund (PI20/00950) and the Department of Health of the Basque Government (GV2021/111056) to G.P.d.N. J.M.K. is supported by a Damon Runyon Clinical Investigator Award supported by the Damon Runyon Cancer Research Foundation (105-19), Alex’s Lemonade Stand Foundation and the Lorenzo “Turtle” Sartini Jr Endowed Chair in Beckwith–Wiedemann Syndrome Research. A.R. is supported by Associazione Italiana per la Ricerca sul Cancro — AIRC IG 2020N. 24405. E.R.M. thanks the NIHR Cambridge Biomedical Research Centre (NIHR203312) and RoseTrees Trust for research support. The University of Cambridge has received salary support for E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. M.K. is funded by the Japan Agency for Medical Research and Development (AMED) (20ek0109373h0003, 22ek0109587).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.E., M.B. and M.E.); Epidemiology (T.E., M.B. and M.E.); Mechanisms/pathophysiology (D.M., A.R. and Z.T.); Diagnosis, screening and prevention (M.E., M.B., M.K., G.P.d.N., E.G., E.R.M. and R.W.); Management (E.G., E.R.M., R.W., M.T., J.D., J.M.K. and M.E.); Quality of life (T.E. and M.E.); Outlook (all); Overview of Primer (T.E.).

Corresponding author

Correspondence to Thomas Eggermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Disease Primers thanks J. LaSalle, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders: https://ern-ithaca.eu

European Reference Network on Rare Endocrine Conditions: https://endo-ern.eu

FACE2GENE: https://face2gene.com

GestaltMatcherDB: https://gestaltmatcher.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggermann, T., Monk, D., de Nanclares, G.P. et al. Imprinting disorders. Nat Rev Dis Primers 9, 33 (2023). https://doi.org/10.1038/s41572-023-00443-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00443-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing