Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Primary central nervous system lymphoma

Abstract

Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15–25% of patients do not respond to chemotherapy and 25–50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological and molecular properties of neoplastic cells in PCNSL.
Fig. 2: PCNSL histopathology.
Fig. 3: Biological and molecular properties of the microenvironment in PCNSL.
Fig. 4: Intraocular infiltration.
Fig. 5: MRI findings in a patient with primary central nervous system lymphoma.
Fig. 6: Therapeutic flowchart for patients with newly diagnosed PCNSL.

Similar content being viewed by others

References

  1. Kluin, P. M., Deckert, M. & Ferry, J. A. In WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 300–302 (IARC, 2017).

  2. Alaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 36, 1720–1748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campo, E. et al. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 140, 1229–1253 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Shiels, M. S. et al. Trends in primary central nervous system lymphoma incidence and survival in the U.S. Br. J. Haematol. 174, 417–424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ferreri, A. J. et al. Summary statement on primary central nervous system lymphomas from the Eighth International Conference on Malignant Lymphoma, Lugano, Switzerland, June 12 to 15, 2002. J. Clin. Oncol. 21, 2407–2414 (2003).

    Article  PubMed  Google Scholar 

  6. Velasco, R. et al. Diagnostic delay and outcome in immunocompetent patients with primary central nervous system lymphoma in Spain: a multicentric study. J. Neurooncol. https://doi.org/10.1007/s11060-020-03547-z (2020).

    Article  PubMed  Google Scholar 

  7. Barajas, R. F. et al. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG). Neuro. Oncol. 23, 1056–1071 (2021). Consensus recommendations for neuroimaging of the International PCNSL Collaborative Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baraniskin, A. & Schroers, R. Liquid biopsy and other non-invasive diagnostic measures in PCNSL. Cancers 13, 2665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Houillier, C. et al. Management and outcome of primary CNS lymphoma in the modern era: an LOC network study. Neurology 94, e1027–e1039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dandachi, D. et al. Primary central nervous system lymphoma in patients with and without HIV infection: a multicenter study and comparison with U.S national data. Cancer Causes Control 30, 477–488 (2019).

    Article  PubMed  Google Scholar 

  11. Haldorsen, I. S. et al. Increasing incidence and continued dismal outcome of primary central nervous system lymphoma in Norway 1989–2003: time trends in a 15-year national survey. Cancer 110, 1803–1814 (2007).

    Article  PubMed  Google Scholar 

  12. Ostrom, Q. T. et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro. Oncol. 19, v1–v88 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van der Meulen, M., Dinmohamed, A. G., Visser, O., Doorduijn, J. K. & Bromberg, J. E. C. Improved survival in primary central nervous system lymphoma up to age 70 only: a population-based study on incidence, primary treatment and survival in the Netherlands, 1989-2015. Leukemia 31, 1822–1825 (2017).

    Article  PubMed  Google Scholar 

  14. Eloranta, S. et al. Increasing incidence of primary central nervous system lymphoma but no improvement in survival in Sweden 2000–2013. Eur. J. Haematol. 100, 61–68 (2018).

    Article  PubMed  Google Scholar 

  15. Makino, K., Nakamura, H., Kino, T., Takeshima, H. & Kuratsu, J. Rising incidence of primary central nervous system lymphoma in Kumamoto, Japan. Surg. Neurol. 66, 503–506 (2006).

    Article  PubMed  Google Scholar 

  16. Farrall, A. L. & Smith, J. R. Changing incidence and survival of primary central nervous system lymphoma in Australia: a 33-year national population-based study. Cancers 13, 403 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Puhakka, I. et al. Primary central nervous system lymphoma high incidence and poor survival in Finnish population-based analysis. BMC Cancer 22, 236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mendez, J. S. et al. The elderly left behind-changes in survival trends of primary central nervous system lymphoma over the past 4 decades. Neuro. Oncol. 20, 687–694 (2018).

    Article  PubMed  Google Scholar 

  19. Villano, J. L., Koshy, M., Shaikh, H., Dolecek, T. A. & McCarthy, B. J. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br. J. Cancer 105, 1414–1418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Attarbaschi, A. et al. Primary central nervous system lymphoma: initial features, outcome, and late effects in 75 children and adolescents. Blood Adv. 3, 4291–4297 (2019). The largest series of PCNSL in adolescents and children.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Engels, E. A. et al. Trends in cancer risk among people with AIDS in the United States 1980-2002. AIDS 20, 1645–1654 (2006).

    Article  PubMed  Google Scholar 

  22. Wolf, T. et al. Changing incidence and prognostic factors of survival in AIDS-related non-Hodgkin’s lymphoma in the era of highly active antiretroviral therapy (HAART). Leuk. Lymphoma 46, 207–215 (2005).

    Article  PubMed  Google Scholar 

  23. Franca, R. A. et al. HIV prevalence in primary central nervous system lymphoma: a systematic review and meta-analysis. Pathol. Res. Pract. 216, 153192 (2020).

    Article  PubMed  Google Scholar 

  24. Mahale, P., Shiels, M. S., Lynch, C. F. & Engels, E. A. Incidence and outcomes of primary central nervous system lymphoma in solid organ transplant recipients. Am. J. Transplant. 18, 453–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Schiff, D., Suman, V. J., Yang, P., Rocca, W. A. & O’Neill, B. P. Risk factors for primary central nervous system lymphoma: a case-control study. Cancer 82, 975–982 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Montesinos-Rongen, M. et al. Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment. Am. J. Pathol. 155, 2077–2086 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vater, I. et al. The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 29, 677–685 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Montesinos-Rongen, M. et al. Primary central nervous system (CNS) lymphoma B cell receptors recognize CNS proteins. J. Immunol. 195, 1312–1319 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Montesinos-Rongen, M., Purschke, F., Küppers, R. & Deckert, M. Immunoglobulin repertoire of primary lymphomas of the central nervous system. J. Neuropathol. Exp. Neurol. 73, 1116–1125 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Thurner, L. et al. Hyper-N-glycosylated SAMD14 and neurabin-I as driver autoantigens of primary central nervous system lymphoma. Blood 132, 2744–2753 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hernandez-Verdin, I. et al. Molecular and clinical diversity in primary central nervous system lymphoma. Ann. Oncol. 34, 186–199 (2022).

    Article  PubMed  Google Scholar 

  32. Montesinos-Rongen, M., Van Roost, D., Schaller, C., Wiestler, O. D. & Deckert, M. Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 103, 1869–1875 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Fukumura, K. et al. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol. 131, 865–875 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Tateishi, K. et al. A hyperactive RelA/p65-hexokinase 2 signaling axis drives primary central nervous system lymphoma. Cancer Res. 80, 5330–5343 (2020).

    Article  PubMed  Google Scholar 

  35. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Chapuy, B. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24, 679–690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wright, G. W. et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 37, 551–568.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chapuy, B. et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127, 869–881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Camilleri-Broet, S. et al. A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymphomas: analysis of 83 cases. Blood 107, 190–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bödör, C. et al. Molecular subtypes and genomic profile of primary central nervous system lymphoma. J. Neuropathol. Exp. Neurol. 79, 176–183 (2020).

    Article  PubMed  Google Scholar 

  41. Preusser, M. et al. Primary central nervous system lymphoma: a clinicopathological study of 75 cases. Pathology 42, 547–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, R., Zhou, D., Wang, L., Zhu, L. & Ye, X. MYD88L265P and CD79B double mutations type (MCD type) of diffuse large B-cell lymphoma: mechanism, clinical characteristics, and targeted therapy. Ther. Adv. Hematol. 13, 20406207211072839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, J. et al. Regulation of B cell receptor-dependent NF-κB signaling by the tumor suppressor KLHL14. Proc. Natl Acad. Sci. USA 117, 6092–6102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Montesinos-Rongen, M. et al. Mutations of CARD11 but not TNFAIP3 may activate the NF-κB pathway in primary CNS lymphoma. Acta Neuropathol. 120, 529–535 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Barakat, M., Albitar, M., Whitney, R. & Abdulhaq, H. Diversity of genetic alterations of primary central nervous system lymphoma in Hispanic versus non-Hispanic patients. Cancer Treat. Res. Commun. 27, 100310 (2021).

    Article  PubMed  Google Scholar 

  46. Brault, L. et al. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95, 1004–1015 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kaulen, L. D. et al. Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. Br. J. Haematol. 193, 375–379 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Bruno, A. et al. TERT promoter mutations in primary central nervous system lymphoma are associated with spatial distribution in the splenium. Acta Neuropathol. 130, 439–440 (2015).

    Article  PubMed  Google Scholar 

  49. Muta, H. et al. Expression of the ghrelin/growth hormone secretagogue receptor axis and its functional role in promoting tumor growth in primary central nervous system lymphomas. Neuropathology 40, 232–239 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez-Aguilar, A. et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin. Cancer Res. 18, 5203–5211 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sung, C. O. et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood 117, 1291–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Braggio, E. et al. Primary central nervous system lymphomas: a validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. Clin. Cancer Res. 17, 4245–4253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rubenstein, J. L. et al. Gene expression and angiotropism in primary CNS lymphoma. Blood 107, 3716–3723 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nayyar, N. et al. MYD88 L265P mutation and CDKN2A loss are early mutational events in primary central nervous system diffuse large B-cell lymphomas. Blood Adv. 3, 375–383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez-Gomez, P. et al. CpG island methylation of tumor-related genes in three primary central nervous system lymphomas in immunocompetent patients. Cancer Genet. Cytogenet. 142, 21–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Zhou, Y. et al. Analysis of genomic alteration in primary central nervous system lymphoma and the expression of some related genes. Neoplasia 20, 1059–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zorofchian, S., El-Achi, H., Yan, Y., Esquenazi, Y. & Ballester, L. Y. Characterization of genomic alterations in primary central nervous system lymphomas. J. Neurooncol. 140, 509–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Cobbers, J. M. et al. Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol. 8, 263–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Villa, D. et al. Molecular features of a large cohort of primary central nervous system lymphoma using tissue microarray. Blood Adv. 3, 3953–3961 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yin, W. et al. The impact of BCL-2/MYC protein expression and gene abnormality on primary central nervous system diffuse large B-cell lymphoma. Int. J. Clin. Exp. Pathol. 12, 2215–2223 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cady, F. M. et al. Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J. Clin. Oncol. 26, 4814–4819 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brunn, A. et al. Frequent triple-hit expression of MYC, BCL2, and BCL6 in primary lymphoma of the central nervous system and absence of a favorable MYC(low)BCL2 (low) subgroup may underlie the inferior prognosis as compared to systemic diffuse large B cell lymphomas. Acta Neuropathol. 126, 603–605 (2013).

    Article  PubMed  Google Scholar 

  63. Nosrati, A. et al. MYC, BCL2, and BCL6 rearrangements in primary central nervous system lymphoma of large B cell type. Ann. Hematol. 98, 169–173 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Bruno, A. et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget 5, 5065–5075 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bruno, A. et al. Identification of novel recurrent ETV6-IgH fusions in primary central nervous system lymphoma. Neuro. Oncol. 20, 1092–1100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fangazio, M. et al. Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 118, e2104504118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwindt, H. et al. Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia 23, 1875–1884 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Grommes, G. et al. Updated results of single-agent ibrutinib in recurrent/refractory primary (PCNSL) and secondary CNS lymphoma (SCNSL). J. Clin. Oncol. 35 (Suppl. 15), 7515 (2017).

    Article  Google Scholar 

  69. Weber, T. et al. Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol. 10, 73–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Booman, M. et al. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J. Pathol. 216, 209–217 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Baraniskin, A. et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117, 3140–3146 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Robertus, J. L. et al. Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod. Pathol. 22, 547–555 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Baraniskin, A. et al. MicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphoma. J. Neurooncol. 109, 239–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Baraniskin, A. et al. MicroRNA-30c as a novel diagnostic biomarker for primary and secondary B-cell lymphoma of the CNS. J. Neurooncol. 137, 463–468 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Takashima, Y. et al. Differential expression of N-linked oligosaccharides in methotrexate-resistant primary central nervous system lymphoma cells. BMC Cancer 19, 910 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ponzoni, M. et al. Reactive perivascular T-cell infiltrate predicts survival in primary central nervous system B-cell lymphomas. Br. J. Haematol. 138, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Marcelis, L. et al. In-depth characterization of the tumor microenvironment in central nervous system lymphoma reveals implications for immune-checkpoint therapy. Cancer Immunol. Immunother. 69, 1751–1766 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Cho, H. et al. The prognostic role of CD68 and FoxP3 expression in patients with primary central nervous system lymphoma. Ann. Hematol. 96, 1163–1173 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Venetz, D. et al. Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int. J. Cancer 127, 2300–2312 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Berghoff, A. S. et al. PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL). Clin. Neuropathol. 33, 42–49 (2014).

    Article  PubMed  Google Scholar 

  81. Sugita, Y. et al. The perivascular microenvironment in Epstein-Barr virus positive primary central nervous system lymphoma: the role of programmed cell death 1 and programmed cell death ligand 1. Neuropathology 38, 125–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Furuse, M. et al. PD-L1 and PD-L2 expression in the tumor microenvironment including peritumoral tissue in primary central nervous system lymphoma. BMC Cancer 20, 277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hayano, A. et al. Programmed cell death ligand 1 expression in primary central nervous system lymphomas: a clinicopathological study. Anticancer. Res. 37, 5655–5666 (2017).

    CAS  PubMed  Google Scholar 

  84. Jimenez, I. et al. Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition. J. Neurooncol. 149, 13–25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kamper, P. et al. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 96, 269–276 (2011).

    Article  PubMed  Google Scholar 

  86. Miyasato, Y. et al. The expression of PD-1 ligands and IDO1 by macrophage/microglia in primary central nervous system lymphoma. J. Clin. Exp. Hematop. 58, 95–101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tsang, M., Cleveland, J. & Rubenstein, J. L. On point in primary CNS lymphoma. Hematol. Oncol. 38, 640–647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nico, B. et al. Aquaporin-4 expression in primary human central nervous system lymphomas correlates with tumour cell proliferation and phenotypic heterogeneity of the vessel wall. Eur. J. Cancer 48, 772–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Birnbaum, T., Langer, S., Roeber, S., von Baumgarten, L. & Straube, A. Expression of B-cell activating factor, a proliferating inducing ligand and its receptors in primary central nervous system lymphoma. Neurol. Int. 5, e4 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ferreri, A. J. M. et al. MYD88 L265P mutation and interleukin-10 detection in cerebrospinal fluid are highly specific discriminating markers in patients with primary central nervous system lymphoma: results from a prospective study. Br. J. Haematol. 193, 497–505 (2021). One of the studies promoting the diagnostic role of biomarkers in CSF.

    Article  CAS  PubMed  Google Scholar 

  91. Sugita, Y. et al. Perivascular microenvironment in primary central nervous system lymphomas: the role of chemokines and the endothelin B receptor. Brain Tumor Pathol. 32, 41–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Grommes, C., Rubenstein, J. L., DeAngelis, L. M., Ferreri, A. J. M. & Batchelor, T. T. Comprehensive approach to diagnosis and treatment of newly diagnosed primary CNS lymphoma. Neuro. Oncol. 21, 296–305 (2019).

    Article  PubMed  Google Scholar 

  93. Bataille, B. et al. Primary intracerebral malignant lymphoma: report of 248 cases. J. Neurosurg. 92, 261–266 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Hochberg, F. H. & Miller, D. C. Primary central nervous system lymphoma. J. Neurosurg. 68, 835–853 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Kuker, W. et al. Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients. J. Neurooncol. 72, 169–177 (2005).

    Article  PubMed  Google Scholar 

  96. Helle, T. L., Britt, R. H. & Colby, T. V. Primary lymphoma of the central nervous system. Clinicopathological study of experience at Stanford. J. Neurosurg. 60, 94–103 (1984).

    Article  CAS  PubMed  Google Scholar 

  97. Ferreri, A. J. et al. A multicenter study of treatment of primary CNS lymphoma. Neurology 58, 1513–1520 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Kiewe, P., Fischer, L., Martus, P., Thiel, E. & Korfel, A. Meningeal dissemination in primary CNS lymphoma: diagnosis, treatment, and survival in a large monocenter cohort. Neuro. Oncol. 12, 409–417 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fischer, L. et al. Meningeal dissemination in primary CNS lymphoma: prospective evaluation of 282 patients. Neurology 71, 1102–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Giannini, C., Dogan, A. & Salomão, D. R. CNS lymphoma: a practical diagnostic approach. J. Neuropathol. Exp. Neurol. 73, 478–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Coupland, S. E. & Heimann, H. Primary intraocular lymphoma. Ophthalmologie 101, 87–98 (2004).

    Article  CAS  Google Scholar 

  102. Park, S. et al. Pseudouveitis: a clue to the diagnosis of primary central nervous system lymphoma in immunocompetent patients. Medicine 83, 223–232 (2004).

    Article  PubMed  Google Scholar 

  103. Hormigo, A., Abrey, L., Heinemann, M. H. & DeAngelis, L. M. Ocular presentation of primary central nervous system lymphoma: diagnosis and treatment. Br. J. Haematol. 126, 202–208 (2004).

    Article  PubMed  Google Scholar 

  104. Grimm, S. A. et al. Primary CNS lymphoma with intraocular involvement: International PCNSL Collaborative Group Report. Neurology 71, 1355–1360 (2008). The largest retrospective series of primary intraocular lymphoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Soussain, C., Malaise, D. & Cassoux, N. Primary vitreoretinal lymphoma: a diagnostic and management challenge. Blood 138, 1519–1534 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Peterson, K., Gordon, K. B., Heinemann, M. H. & DeAngelis, L. M. The clinical spectrum of ocular lymphoma. Cancer 72, 843–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Grimm, S. A. et al. Primary intraocular lymphoma: an International Primary Central Nervous System Lymphoma Collaborative Group Report. Ann. Oncol. 18, 1851–1855 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Faia, L. J. & Chan, C. C. Primary intraocular lymphoma. Arch. Pathol. Lab. Med. 133, 1228–1232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fardeau, C. et al. Retinal fluorescein, indocyanine green angiography, and optic coherence tomography in non-Hodgkin primary intraocular lymphoma. Am. J. Ophthalmol. 147, 886–894.e1 (2009).

    Article  PubMed  Google Scholar 

  110. Farrall, A. L. & Smith, J. R. Eye involvement in primary central nervous system lymphoma. Surv. Ophthalmol. 65, 548–561 (2020).

    Article  PubMed  Google Scholar 

  111. Kreher, S. et al. Prognostic impact of B-cell lymphoma 6 in primary CNS lymphoma. Neuro. Oncol. 17, 1016–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hong, J. T., Chae, J. B., Lee, J. Y., Kim, J. G. & Yoon, Y. H. Ocular involvement in patients with primary CNS lymphoma. J. Neurooncol. 102, 139–145 (2011).

    Article  PubMed  Google Scholar 

  113. Ponzoni, M. et al. A reappraisal of the diagnostic and therapeutic management of uncommon histologies of primary ocular adnexal lymphoma. Oncologist 18, 876–884 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Flanagan, E. P. et al. Primary intramedullary spinal cord lymphoma. Neurology 77, 784–791 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Ellingson, B. M. et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro. Oncol. 17, 1188–1198 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Kaufmann, T. J. et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro. Oncol. 22, 757–772 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Boxerman, J. L. et al. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro. Oncol. 22, 1262–1275 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Barajas, R. F. Jr. et al. Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro. Oncol. 14, 942–954 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu, L. S. et al. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am. J. Neuroradiol. 33, 69–76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bao, S. et al. Differentiating between glioblastoma and primary CNS lymphoma using combined whole-tumor histogram analysis of the normalized cerebral blood volume and the apparent diffusion coefficient. Magn. Reson. Med. Sci. 18, 53–61 (2019).

    Article  PubMed  Google Scholar 

  121. Barajas, R. F. Jr, Rubenstein, J. L., Chang, J. S., Hwang, J. & Cha, S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am. J. Neuroradiol. 31, 60–66 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wieduwilt, M. J. et al. Immunochemotherapy with intensive consolidation for primary CNS lymphoma: a pilot study and prognostic assessment by diffusion-weighted MRI. Clin. Cancer Res. 18, 1146–1155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Valles, F. E. et al. Combined diffusion and perfusion MR imaging as biomarkers of prognosis in immunocompetent patients with primary central nervous system lymphoma. AJNR Am. J. Neuroradiol. 34, 35–40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takeuchi, H., Matsuda, K., Kitai, R., Sato, K. & Kubota, T. Angiogenesis in primary central nervous system lymphoma (PCNSL). J. Neurooncol. 84, 141–145 (2007).

    Article  PubMed  Google Scholar 

  125. Sugahara, T. et al. Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J. Comput. Assist. Tomogr. 23, 232–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Palmedo, H. et al. FDG-PET in immunocompetent patients with primary central nervous system lymphoma: correlation with MRI and clinical follow-up. Eur. J. Nucl. Med. Mol. Imaging 33, 164–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Hatzoglou, V. et al. Pretreatment dynamic contrast-enhanced MRI biomarkers correlate with progression-free survival in primary central nervous system lymphoma. J. Neurooncol. 140, 351–358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Montesinos-Rongen, M. et al. Gene expression profiling suggests primary central nervous system lymphomas to be derived from a late germinal center B cell. Leukemia 22, 400–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Deckert, M. In World Health Organization Classification of Tumours of the Central Nervous System 5th edn (ed. WHO Classification of Tumours Editorial Board) 351–355 (IARC, 2021).

  130. Montesinos-Rongen, M. et al. Absence of immunoglobulin class switch in primary lymphomas of the central nervous system. Am. J. Pathol. 166, 1773–1779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bromberg, J. E. C. et al. CSF flow cytometry greatly improves diagnostic accuracy in CNS hematologic malignancies. Neurology 68, 1674–1679 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Chan, C. C. et al. Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist 16, 1589–1599 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bonzheim, I. et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: a valuable tool to improve diagnostic yield of vitreous aspirates. Blood 126, 76–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Miserocchi, E. et al. Myd88 L265p mutation detection in the aqueous humor of patients with vitreoretinal lymphoma. Retina 39, 679–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Abrey, L. E. et al. Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J. Clin. Oncol. 23, 5034–5043 (2005). Standardized response and report criteria from the International PCNSL Collaborative Group.

    Article  PubMed  Google Scholar 

  136. Rubenstein, J. L. et al. CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood 121, 4740–4748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ferreri, A. J. M. et al. MATRix-RICE therapy and autologous haematopoietic stem-cell transplantation in diffuse large B-cell lymphoma with secondary CNS involvement (MARIETTA): an international, single-arm, phase 2 trial. Lancet Haematol. 8, e110–e121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bertaux, M. et al. Use of FDG-PET/CT for systemic assessment of suspected primary central nervous system lymphoma: a LOC study. J. Neurooncol. 148, 343–352 (2020).

    Article  PubMed  Google Scholar 

  139. Ferreri, A. J. et al. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. J. Clin. Oncol. 21, 266–272 (2003).

    Article  PubMed  Google Scholar 

  140. Abrey, L. E. et al. Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. J. Clin. Oncol. 24, 5711–5715 (2006). Together with Ferreri et al. (J. Clin. Oncol. 21, 266–272; 2003), this paper discusses the most commonly used prognostic scores to stratify PCNSL patients according to the baseline risk.

    Article  PubMed  Google Scholar 

  141. Ferreri, A. J. & Illerhaus, G. The role of autologous stem cell transplantation in primary central nervous system lymphoma. Blood 127, 1642–1649 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Ferreri, A. J. M. et al. Long-term efficacy, safety and neurotolerability of MATRix regimen followed by autologous transplant in primary CNS lymphoma: 7-year results of the IELSG32 randomized trial. Leukemia 36, 1870–1878 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Houillier, C. et al. Radiotherapy or autologous stem-cell transplantation for primary CNS lymphoma in patients age 60 years and younger: long-term results of the randomized phase II PRECIS study. J. Clin. Oncol. 40, 3692–3698 (2022). Together with Ferreri et al. (2022), this paper discusses two randomized trials that have established the superiority of ASCT over WBRT as consolidation therapy both in terms of efficacy and reduced risk of neurotoxicity.

    Article  CAS  PubMed  Google Scholar 

  144. Batchelor, T. et al. Myeloablative versus non-myeloablative consolidative chemotherapy for newly diagnosed primary central nervous system lymphoma: results of CALGB 51101 (Alliance). J. Clin. Oncol. 39 (Suppl. 15), 7506 (2021).

    Article  Google Scholar 

  145. Illerhaus, G. et al. Effects on survival of non-myeloablative chemoimmunotherapy compared to high-dose chemotherapy followed by autologous stem cell transplantation (HDC-ASCT) as consolidation therapy in patients with primary CNS lymphoma — results of an international randomized phase III trial (MATRix/IELSG43). Blood 140 (Suppl. 2), LBA-3 (2022). Together with Batchelor et al. (2021), this paper discusses two randomized trials that have established the superiority of ASCT over non-myeloablative chemotherapy as consolidation therapy.

    Article  Google Scholar 

  146. Ferreri, A. J. et al. High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. Lancet 374, 1512–1520 (2009). To our knowledge, the first randomized trial with completed accrual addressing induction chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  147. Zheng, X., Yang, S., Chen, F., Wu, S. & Li, W. The efficacy and safety of cytarabine on newly diagnosed primary central nervous system lymphoma: a systematic review and meta-analysis. Front. Oncol. 10, 1213 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ferreri, A. J. et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 3, e217–e227 (2016). This randomized trial has established the role of thiotepa and rituximab and of MATRix combination as the most effective induction chemoimmunotherapy.

    Article  PubMed  Google Scholar 

  149. Schorb, E. et al. Induction therapy with the MATRix regimen in patients with newly diagnosed primary diffuse large B-cell lymphoma of the central nervous system — an international study of feasibility and efficacy in routine clinical practice. Br. J. Haematol. 189, 879–887 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Schorb, E. et al. High-dose chemotherapy and autologous stem cell transplant in elderly patients with primary CNS lymphoma: a pilot study. Blood Adv. 4, 3378–3381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fox, C. P. et al. Guidelines for the diagnosis and management of primary central nervous system diffuse large B-cell lymphoma. Br. J. Haematol. 184, 348–363 (2019).

    Article  PubMed  Google Scholar 

  152. Rubenstein, J. L. et al. Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). J. Clin. Oncol. 31, 3061–3068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Morris, P. G. et al. Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. J. Clin. Oncol. 31, 3971–3979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bromberg, J. E. C. et al. Rituximab in patients with primary CNS lymphoma (HOVON 105/ALLG NHL 24): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 20, 216–228 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Schmitt, A. M. et al. Rituximab in primary central nervous system lymphoma — a systematic review and meta-analysis. Hematol. Oncol. 37, 548–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Khan, R. B., Shi, W., Thaler, H. T., DeAngelis, L. M. & Abrey, L. E. Is intrathecal methotrexate necessary in the treatment of primary CNS lymphoma? J. Neurooncol. 58, 175–178 (2002).

    Article  PubMed  Google Scholar 

  157. Batchelor, T. T., Kolak, G., Ciordia, R., Foster, C. S. & Henson, J. W. High-dose methotrexate for intraocular lymphoma. Clin. Cancer Res. 9, 711–715 (2003).

    CAS  PubMed  Google Scholar 

  158. Pels, H. et al. Primary central nervous system lymphoma: results of a pilot and phase II study of systemic and intraventricular chemotherapy with deferred radiotherapy. J. Clin. Oncol. 21, 4489–4495 (2003).

    Article  CAS  PubMed  Google Scholar 

  159. Pels, H. et al. Early relapses in primary CNS lymphoma after response to polychemotherapy without intraventricular treatment: results of a phase II study. J. Neurooncol. 91, 299–305 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Frenkel, S., Hendler, K., Siegal, T., Shalom, E. & Pe’er, J. Intravitreal methotrexate for treating vitreoretinal lymphoma: 10 years of experience. Br. J. Ophthalmol. 92, 383–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Brevet, M. et al. First-line autologous stem cell transplantation in primary CNS lymphoma. Eur. J. Haematol. 75, 288–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Abrey, L. E. et al. Intensive methotrexate and cytarabine followed by high-dose chemotherapy with autologous stem-cell rescue in patients with newly diagnosed primary CNS lymphoma: an intent-to-treat analysis. J. Clin. Oncol. 21, 4151–4156 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Houillier, C. et al. Radiotherapy or autologous stem-cell transplantation for primary CNS lymphoma in patients 60 years of age and younger: results of the Intergroup ANOCEF-GOELAMS randomized phase II PRECIS study. J. Clin. Oncol. 37, 823–833 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Ferreri, A. J. M. et al. Whole-brain radiotherapy or autologous stem-cell transplantation as consolidation strategies after high-dose methotrexate-based chemoimmunotherapy in patients with primary CNS lymphoma: results of the second randomisation of the International Extranodal Lymphoma Study Group-32 phase 2 trial. Lancet Haematol. 4, e510–e523 (2017).

    Article  PubMed  Google Scholar 

  165. Illerhaus, G. et al. High-dose chemotherapy with autologous haemopoietic stem cell transplantation for newly diagnosed primary CNS lymphoma: a prospective, single-arm, phase 2 trial. Lancet Haematol. 3, e388–e397 (2016).

    Article  PubMed  Google Scholar 

  166. Omuro, A. et al. R-MPV followed by high-dose chemotherapy with TBC and autologous stem-cell transplant for newly diagnosed primary CNS lymphoma. Blood 125, 1403–1410 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Scordo, M. et al. Outcomes associated with thiotepa-based conditioning in patients with primary central nervous system lymphoma after autologous hematopoietic cell transplant. JAMA Oncol. 7, 993–1003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kasenda, B. et al. The role of whole brain radiation in primary CNS lymphoma. Blood 128, 32–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thiel, E. et al. High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. Lancet Oncol. 11, 1036–1047 (2010). The largest available randomized trial addressing the role of consolidative brain irradiation.

    Article  CAS  PubMed  Google Scholar 

  170. Ferreri, A. J. et al. Whole-brain radiotherapy in primary CNS lymphoma. Lancet Oncol. 12, 118–119 (2011).

    Article  PubMed  Google Scholar 

  171. Abrey, L. E., DeAngelis, L. M. & Yahalom, J. Long-term survival in primary CNS lymphoma. J. Clin. Oncol. 16, 859–863 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Omuro, A. M. et al. Delayed neurotoxicity in primary central nervous system lymphoma. Arch. Neurol. 62, 1595–1600 (2005).

    Article  PubMed  Google Scholar 

  173. Omuro, A. M. P. et al. Randomized phase II study of rituximab, methotrexate (MTX), procarbazine, vincristine, and cytarabine (R-MPV-A) with and without low-dose whole-brain radiotherapy (LD-WBRT) for newly diagnosed primary CNS lymphoma (PCNSL). J. Clin. Oncol. 38 (Suppl. 15), 2501 (2020). Initial results of, to our knowledge, the first randomized trial addressing reduced-dose WBRT as an option to reduce the risk of neurotoxicity.

    Article  Google Scholar 

  174. Schorb, E. et al. High-dose chemotherapy and autologous stem cell transplant compared with conventional chemotherapy for consolidation in newly diagnosed primary CNS lymphoma — a randomized phase III trial (MATRix). BMC Cancer 16, 282 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kasenda, B. et al. First-line treatment and outcome of elderly patients with primary central nervous system lymphoma (PCNSL) — a systematic review and individual patient data meta-analysis. Ann. Oncol. 26, 1305–1313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Welch, M. R., Omuro, A. & Deangelis, L. M. Outcomes of the oldest patients with primary CNS lymphoma treated at Memorial Sloan-Kettering Cancer Center. Neuro. Oncol. 14, 1304–1311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Jahnke, K. et al. High-dose methotrexate toxicity in elderly patients with primary central nervous system lymphoma. Ann. Oncol. 16, 445–449 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Martinez-Calle, N. et al. Outcomes of older patients with primary central nervous system lymphoma treated in routine clinical practice in the UK: methotrexate dose intensity correlates with response and survival. Br. J. Haematol. 190, 394–404 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Omuro, A. et al. Methotrexate and temozolomide versus methotrexate, procarbazine, vincristine, and cytarabine for primary CNS lymphoma in an elderly population: an intergroup ANOCEF-GOELAMS randomised phase 2 trial. Lancet Haematol. 2, e251–e259 (2015). The single published randomized trial of PCNSL in elderly patients.

    Article  PubMed  Google Scholar 

  180. Hoang-Xuan, K. et al. Chemotherapy alone as initial treatment for primary CNS lymphoma in patients older than 60 years: a multicenter phase II study (26952) of the European Organization for Research and Treatment of Cancer Brain Tumor Group. J. Clin. Oncol. 21, 2726–2731 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Fritsch, K. et al. High-dose methotrexate-based immuno-chemotherapy for elderly primary CNS lymphoma patients (PRIMAIN study). Leukemia 31, 846–852 (2017). The largest single-arm phase II trial performed on elderly patients with newly diagnosed PCNSL.

    Article  CAS  PubMed  Google Scholar 

  182. Omuro, A. M. et al. Temozolomide and methotrexate for primary central nervous system lymphoma in the elderly. J. Neurooncol. 85, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Pulczynski, E. J. et al. Successful change of treatment strategy in elderly patients with primary central nervous system lymphoma by de-escalating induction and introducing temozolomide maintenance: results from a phase II study by the Nordic Lymphoma Group. Haematologica 100, 534–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vu, K., Mannis, G., Hwang, J., Geng, H. & Rubenstein, J. L. Low-dose lenalidomide maintenance after induction therapy in older patients with primary central nervous system lymphoma. Br. J. Haematol. 186, 180–183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Grommes, C. et al. Ibrutinib unmasks critical role of bruton tyrosine kinase in primary CNS lymphoma. Cancer Discov. 7, 1018–1029 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ney, D. E. & Abrey, L. E. Maintenance therapy for central nervous system lymphoma with rituximab. Leuk. Lymphoma 50, 1548–1551 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Ambady, P. et al. Impact of maintenance rituximab on duration of response in primary central nervous system lymphoma. J. Neurooncol. 147, 171–176 (2020).

    Article  CAS  PubMed  Google Scholar 

  188. Faivre, G., Butler, M. J., Le, I. & Brenner, A. Temozolomide as a single agent maintenance therapy in elderly patients with primary CNS lymphoma. Clin. Lymphoma Myeloma Leuk. 19, 665–669 (2019).

    Article  PubMed  Google Scholar 

  189. Ambady, P., Holdhoff, M., Bonekamp, D., Wong, F. & Grossman, S. A. Late relapses in primary CNS lymphoma after complete remissions with high-dose methotrexate monotherapy. CNS Oncol. 4, 393–398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Langner-Lemercier, S. et al. Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro. Oncol. 18, 1297–1303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jahnke, K. et al. Relapse of primary central nervous system lymphoma: clinical features, outcome and prognostic factors. J. Neurooncol. 80, 159–165 (2006).

    Article  PubMed  Google Scholar 

  192. Nguyen, P. L. et al. Results of whole-brain radiation as salvage of methotrexate failure for immunocompetent patients with primary CNS lymphoma. J. Clin. Oncol. 23, 1507–1513 (2005).

    Article  PubMed  Google Scholar 

  193. Nabors, L. B. et al. NCCN Guidelines® Insights: central nervous system cancers, version 2.2022. J. Natl Compr. Canc. Netw. 21, 12–20 (2023).

    Article  PubMed  Google Scholar 

  194. Grommes, C. et al. Phase 1b trial of an ibrutinib-based combination therapy in recurrent/refractory CNS lymphoma. Blood 133, 436–445 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lionakis, M. S. et al. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell. 31, 833–843.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Roschewski, M. Phase 1 study of escalating doses of ibrutinib and temozolomide, etoposide, liposomal doxorubicin, dexamethasone, rituximab (TEDDI-R) with isavuconazole for relapsed and refractory primary CNS lymphoma. Blood 138 (Suppl. 1), 12–13 (2020).

    Article  Google Scholar 

  197. Narita, Y. et al. Phase I/II study of tirabrutinib, a second-generation Bruton’s tyrosine kinase inhibitor, in relapsed/refractory primary central nervous system lymphoma. Neuro. Oncol. 23, 122–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Tun, H. W. et al. Phase 1 study of pomalidomide and dexamethasone for relapsed/refractory primary CNS or vitreoretinal lymphoma. Blood 132, 2240–2248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Correa, D. D. et al. Cognitive functions in primary central nervous system lymphoma: literature review and assessment guidelines. Ann. Oncol. 18, 1145–1151 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. van der Meulen, M. et al. Cognitive functioning and health-related quality of life in patients with newly diagnosed primary CNS lymphoma: a systematic review. Lancet Oncol. 19, e407–e418 (2018).

    Article  PubMed  Google Scholar 

  201. Bairey, O., Shargian-Alon, L. & Siegal, T. Consolidation treatment for primary central nervous system lymphoma: which modality for whom? Acta Haematol. 144, 389–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Jones, D. et al. Acute cognitive impairment in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplant. Cancer 119, 4188–4195 (2013).

    Article  PubMed  Google Scholar 

  203. Wu, N. L. et al. Long-term patient-reported neurocognitive outcomes in adult survivors of hematopoietic cell transplant. Blood Adv. 6, 4347–4356 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bobillo, S. et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 106, 513–521 (2020). To our knowledge, the first study on the putative role of cell-free circulating tumour DNA in CSF of patients with PCNSL.

    Article  PubMed Central  Google Scholar 

  205. Nayak, L. et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129, 3071–3073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hoang-Xuan, K. et al. First results of the Acsé pembrolizumab phase II in the primary CNS lymphoma (PCNSL) cohort. Blood 138, 3018 (2021).

    Google Scholar 

  207. Frigault, M. J. et al. Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase I/II clinical trial. Blood 139, 2306–2315 (2022). To our knowledge, the first prospective trial addressing the safety and activity of anti-CD19 CAR T cell therapy in patients with R/R PCNSL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Alcantara, M. et al. CAR-T cell therapy in primary central nervous system lymphoma (PCNSL): the clinical experience of the French LOC network. Blood 139, 792–796 (2021).

    Article  Google Scholar 

  209. Tu, S. et al. CD19 and CD70 dual-target chimeric antigen receptor T-cell therapy for the treatment of relapsed and refractory primary central nervous system diffuse large B-cell lymphoma. Front. Oncol. 9, 1350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ferreri, A. J. M. et al. Improving the antitumor activity of R-CHOP with NGR-hTNF in primary CNS lymphoma: final results of a phase 2 trial. Blood Adv. 4, 3648–3658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Ferreri, A. J. M. et al. R-CHOP preceded by blood-brain barrier permeabilization with engineered tumor necrosis factor-alpha in primary CNS lymphoma. Blood 134, 252–262 (2019). Together with Ferreri et al. (2020), this paper discusses, to our knowledge, the first prospective trial addressing a non-surgical strategy of BBB permeabilization to improve chemotherapy penetrance in the CNS.

    Article  CAS  PubMed  Google Scholar 

  212. Marcucci, F., Corti, A. & Ferreri, A. J. M. Breaching the blood-brain tumor barrier for tumor therapy. Cancers 13, 2391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Takashima, Y., Hayano, A. & Yamanaka, R. Metabolome analysis reveals excessive glycolysis via PI3K/AKT/mTOR and RAS/MAPK signaling in methotrexate-resistant primary CNS lymphoma-derived cells. Clin. Cancer Res. 26, 2754–2766 (2020).

    CAS  PubMed  Google Scholar 

  214. Pouzoulet, F. et al. Primary CNS lymphoma patient-derived orthotopic xenograft model capture the biological and molecular characteristics of the disease. Blood Cell Mol. Dis. 75, 1–10 (2019).

    Article  CAS  Google Scholar 

  215. Kadoch, C. et al. Pathologic correlates of primary central nervous system lymphoma defined in an orthotopic xenograft model. Clin. Cancer Res. 15, 1989–1997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Montesinos-Rongen, M. et al. Expression of Cas9 in a syngeneic model of primary central nervous system lymphoma induces intracerebral NK and CD8 T cell-mediated lymphoma cell lysis via perforin. CRISPR J. 5, 726–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  217. Babst, N. et al. CXCR4, CXCR5 and CD44 may be involved in homing of lymphoma cells into the eye in a patient derived xenograft homing mouse model for primary vitreoretinal lymphoma. Int. J. Mol. Sci. 23, 11757 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. O’Connor, T. et al. Age-related gliosis promotes central nervous system lymphoma through CCL19-mediated tumor cell retention. Cancer Cell. 36, 250–267.e9 (2019).

    Article  PubMed  Google Scholar 

  219. Qiu, Y. et al. Immune checkpoint inhibition by anti-PDCD1 (anti-PD1) monoclonal antibody has significant therapeutic activity against central nervous system lymphoma in an immunocompetent preclinical model. Br. J. Haematol. 183, 674–678 (2018).

    Article  PubMed  Google Scholar 

  220. Mulazzani, M. et al. Long-term in vivo microscopy of CAR T cell dynamics during eradication of CNS lymphoma in mice. Proc. Natl Acad. Sci. USA 116, 24275–24284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Evens, A. M. et al. Primary CNS posttransplant lymphoproliferative disease (PTLD): an international report of 84 cases in the modern era. Am. J. Transplant. 13, 1512–1522 (2013).

    Article  CAS  PubMed  Google Scholar 

  222. Gandhi, M. K. et al. EBV-associated primary CNS lymphoma occurring after immunosuppression is a distinct immunobiological entity. Blood 137, 1468–1477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Correa, D. D. et al. Longitudinal cognitive assessment in patients with primary CNS lymphoma treated with induction chemotherapy followed by reduced-dose whole-brain radiotherapy or autologous stem cell transplantation. J. Neurooncol. 144, 553–562 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lai, R., Abrey, L. E., Rosenblum, M. K. & DeAngelis, L. M. Treatment-induced leukoencephalopathy in primary CNS lymphoma: a clinical and autopsy study. Neurology 62, 451–456 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.J.M.F.); Epidemiology (A.J.M.F. and K.H.-X.); Mechanisms/pathophysiology (A.J.M.F., C.G. and M.P.); Diagnosis, screening and prevention (A.J.M.F., T.C., L.S.H., M.P. and T.T.B.); Management (A.J.M.F., T.C., K.C., K.H.-X., G.I., L.N. and T.T.B.); Quality of life (A.J.M.F. and J.D.); Outlook (A.J.M.F.); Overview of Primer (A.J.M.F.).

Corresponding author

Correspondence to Andrés J. M. Ferreri.

Ethics declarations

Competing interests

A.J.M.F. has received speaker fees from Adienne, AstraZeneca, Bristol Myers Squibb, Gilead, Novartis and Roche; was a member of advisory boards of Abbvie, AstraZeneca, Bristol Myers Squibb, Genmab, Gilead, Incyte, Juno, Novartis, PletixaPharm and Roche; currently receives research grants from Abbvie, Amgen, ADC Therapeutics, Bayer HealthCare Pharmaceuticals, Beigene, Bristol Myers Squibb, Genmab, Gilead, Hutchison Medipharma, Incyte, Janssen Research & Development, MEI Pharma, Novartis, Pfizer, Pharmacyclics, PletixaPharm, Protherics, Roche and Takeda; and holds patents on NGR-hTNF-α in brain tumours and NGR-hTNF/R-CHOP in relapsed or refractory PCNSL and SNGR-hTNF in brain tumours. K.C. has received speaker fees from Roche, Takeda, Kite, Gilead, Incyte and Celgene/BMS as well as consulting fees from Roche, Takeda, Celgene, Atara, Gilead, KITE, Janssen and Incyte. J.D. has been a consultant for Blue Earth Diagnostics, Magnolia and Unum Therapeutics; has received research support from Beacon Biosignals, Boehringer Ingelheim, Bristol Myers Squibb, Medimmune, Acerta Pharma and Orbus Therapeutics; and has received royalties from Wolters Kluwer for serving as an author for UpToDate. C.G. has received research support from Pharmacyclics, Bayer, and Bristol Myers Squibb and has acted as a consultant for Kite, BTG and ONO. K.H.-X. has received consulting fees from BTG. L.S.H. is co-founder of Precision Oncology Insights. G.I. has received speaker fees from Roche and Gilead; was a member of advisory boards of Gilead, Incyte, and Roche and received research fundings from the German Ministry of Science. L.N. has consulted for Ono Pharmaceutical, Genmab and BraveBio, has received clinical trial research support from Merck, Kazia and AstraZeneca, and delivered Continuing Medical Education lectures for Oakstone Medical Publishing and Neurology Audio Digest. T.C. has received consulting fees from Janssen-Cilag. M.P. and T.T.B. declare no competing interests.

Peer review

Peer reviewer information

Nature Reviews Disease Primers thanks M. Deckert, M. Holdhoff, R. Yamanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreri, A.J.M., Calimeri, T., Cwynarski, K. et al. Primary central nervous system lymphoma. Nat Rev Dis Primers 9, 29 (2023). https://doi.org/10.1038/s41572-023-00439-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00439-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer