Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hepatic encephalopathy

Abstract

Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model for the pathogenesis of HE.
Fig. 2: Mechanisms and consequences of oxidative/nitrosative stress in astrocytes in HE.
Fig. 3: Glutamine formation triggers oxidative stress in astrocytes through protein O-GlcNAcylation.
Fig. 4: Steps involved in the process by which liver damage leads to cognitive and motor impairment in MHE and HE.
Fig. 5: Classification of severity of HE.
Fig. 6: Algorithms for assessment of HE and treatment in stable outpatients and hospitalized patients with cirrhosis.

Similar content being viewed by others

References

  1. Vilstrup, H. et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 60, 715–735 (2014).

    Article  PubMed  Google Scholar 

  2. Riggio, O. et al. High prevalence of spontaneous portal-systemic shunts in persistent hepatic encephalopathy: a case-control study. Hepatology 42, 1158–1165 (2005).

    Article  PubMed  Google Scholar 

  3. Cordoba, J. et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure (ACLF). J. Hepatol. 60, 275–281 (2014).

    Article  PubMed  Google Scholar 

  4. Sawhney, R. et al. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients: Brain Dysfunction and ACLF. Liver Transpl. 22, 732–742 (2016).

    Article  PubMed  Google Scholar 

  5. Wright, G., Sharifi, Y., Jover-Cobos, M. & Jalan, R. The brain in acute on chronic liver failure. Metab. Brain Dis. 29, 965–973 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jalan, R., Moreau, R. & Arroyo, V. Acute-on-chronic liver failure. Reply. N. Engl. J. Med. 383, 893–894 (2020).

    PubMed  Google Scholar 

  7. Lauridsen, M. M. et al. Validation of a simple quality-of-life score for identification of minimal and prediction of overt hepatic encephalopathy. Hepatol. Commun. 4, 1353–1361 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ladegaard Grønkjær, L., Hoppe Sehstedt, T., Norlyk, A. & Vilstrup, H. Overt hepatic encephalopathy experienced by individuals with cirrhosis: a qualitative interview study. Gastroenterol. Nurs. 41, 468–476 (2018).

    PubMed  Google Scholar 

  9. Fabrellas, N. et al. Psychological burden of hepatic encephalopathy on patients and caregivers. Clin. Transl. Gastroenterol. 11, e00159 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Shrestha, D. et al. Factors affecting psychological burden on the informal caregiver of patients with cirrhosis: looking beyond the patient. J. Clin. Exp. Hepatol. 10, 9–16 (2020).

    Article  PubMed  Google Scholar 

  11. Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).

    Article  PubMed  Google Scholar 

  12. Wendon, J. et al. EASL clinical practical guidelines on the management of acute (fulminant) liver failure. J. Hepatol. 66, 1047–1081 (2017).

    Article  PubMed  Google Scholar 

  13. Nicoletti, V. et al. Hepatic encephalopathy in patients with non-cirrhotic portal hypertension: description, prevalence and risk factors. Dig. Liver Dis. 48, 1072–1077 (2016).

    Article  PubMed  Google Scholar 

  14. Kraglund, F., Jepsen, P., Amanavicius, N. & Aagaard, N. K. Long-term effects and complications of the transjugular intrahepatic portosystemic shunt: a single-centre experience. Scand. J. Gastroenterol. 54, 899–904 (2019).

    Article  PubMed  Google Scholar 

  15. Sepanlou, S. G. et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 245–266 (2020).

    Article  Google Scholar 

  16. Lauridsen, M. M., Jepsen, P. & Vilstrup, H. Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy. A comparative study of 154 patients with liver disease. Metab. Brain Dis. 26, 135–139 (2011).

    Article  PubMed  Google Scholar 

  17. Rathi, S. et al. Prevalence of minimal hepatic encephalopathy in patients with liver cirrhosis: a cross-sectional, clinicoepidemiological, multicenter, nationwide study in India: the PREDICT study. J. Clin. Exp. Hepatol. 9, 476–483 (2019).

    Article  PubMed  Google Scholar 

  18. Tapper, E. B., Henderson, J. B., Parikh, N. D., Ioannou, G. N. & Lok, A. S. Incidence of and risk factors for hepatic encephalopathy in a population-based cohort of Americans with cirrhosis. Hepatol. Commun. 3, 1510–1519 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jepsen, P., Ott, P., Andersen, P. K., Sørensen, H. T. & Vilstrup, H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 51, 1675–1682 (2009).

    Article  Google Scholar 

  20. Moreau, R. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    Article  PubMed  Google Scholar 

  21. Hirode, G., Vittinghoff, E. & Wong, R. J. Increasing burden of hepatic encephalopathy among hospitalized adults: an analysis of the 2010–2014 national inpatient sample. Dig. Dis. Sci. 64, 1448–1457 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Di Pascoli, M. et al. Hospitalizations due to cirrhosis: clinical aspects in a large cohort of italian patients and cost analysis report. Dig. Dis. 35, 433–438 (2017).

    Article  PubMed  Google Scholar 

  23. Riggio, O. et al. A Model for predicting development of overt hepatic encephalopathy in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 13, 1346–1352 (2015).

    Article  PubMed  Google Scholar 

  24. Guevara, M. et al. Hyponatremia is a risk factor of hepatic encephalopathy in patients with cirrhosis: a prospective study with time-dependent analysis. Am. J. Gastroenterol. 104, 1382–1389 (2009).

    Article  PubMed  Google Scholar 

  25. Gil-Gómez, A. et al. Development and validation of a clinical-genetic risk score to predict hepatic encephalopathy in patients with liver cirrhosis. Am. J. Gastroenterol. 116, 1238–1247 (2021).

    Article  PubMed  Google Scholar 

  26. Yoo, H. Y., Edwin, D. & Thuluvath, P. J. Relationship of the model for end-stage liver disease (MELD) scale to hepatic encephalopathy, as defined by electroencephalography and neuropsychometric testing, and ascites. Am. J. Gastroenterol. 98, 1395–1399 (2003).

    Article  PubMed  Google Scholar 

  27. Praktiknjo, M. et al. Total area of spontaneous portosystemic shunts independently predicts hepatic encephalopathy and mortality in liver cirrhosis. J. Hepatol. 72, 1140–1150 (2020).

    Article  PubMed  Google Scholar 

  28. Yin, X. et al. A nomogram to predict the risk of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt in cirrhotic patients. Sci. Rep. 10, 9381 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhou, Y. et al. PTFE-covered TIPS is an effective treatment for secondary preventing variceal rebleeding in cirrhotic patients with high risks. Eur. J. Gastroenterol. Hepatol. 32, 1235–1243 (2020).

    CAS  Google Scholar 

  30. Qi, X., Tian, Y., Zhang, W., Yang, Z. & Guo, X. Covered versus bare stents for transjugular intrahepatic portosystemic shunt: an updated meta-analysis of randomized controlled trials. Ther. Adv. Gastroenterol. 10, 32–41 (2016).

    Article  Google Scholar 

  31. Nicoară-Farcău, O. et al. Preemptive TIPS Individual Data Metanalysis, International Variceal Bleeding Study and Baveno Cooperation Study groups. Effects of early placement of transjugular portosystemic shunts in patients with high-risk acute variceal bleeding: a meta-analysis of individual patient data. Gastroenterology 160, 193–205 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Jepsen, P., Watson, H., Andersen, P. K. & Vilstrup, H. Diabetes as a risk factor for hepatic encephalopathy in cirrhosis patients. J. Hepatol. 63, 1133–1138 (2015).

    Article  PubMed  Google Scholar 

  33. Ampuero, J. et al. Role of diabetes mellitus on hepatic encephalopathy. Metab. Brain Dis. 28, 277–279 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Vilar-Gomez, E. et al. Type 2 diabetes and metformin use associate with outcomes of patients with nonalcoholic steatohepatitis-related, child-pugh a cirrhosis. Clin. Gastroenterol. Hepatol. 19, 136–145.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Elkrief, L. et al. Diabetes mellitus is an independent prognostic factor for major liver-related outcomes in patients with cirrhosis and chronic hepatitis C. Hepatology 60, 823–831 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Jepsen, P., Christensen, J., Weissenborn, K., Watson, H. & Vilstrup, H. Epilepsy as a risk factor for hepatic encephalopathy in patients with cirrhosis: a cohort study. BMC Gastroenterol. 16, 77–77 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nardelli, S. et al. Muscle alterations are associated with minimal and overt hepatic encephalopathy in patients with liver cirrhosis. Hepatology 70, 1704–1713 (2019).

    Article  PubMed  Google Scholar 

  38. Shawcross, D. L., Davies, N. A., Williams, R. & Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40, 247–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Merli, M. et al. Increased risk of cognitive impairment in cirrhotic patients with bacterial infections. J. Hepatol. 59, 243–250 (2013).

    Article  PubMed  Google Scholar 

  40. Yuan, L.-T. et al. Multiple bacterial infections increase the risk of hepatic encephalopathy in patients with cirrhosis. PLoS ONE 13, e0197127 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Gupta, A. et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J. Hepatol. 53, 849–855 (2010).

    Article  PubMed  Google Scholar 

  44. Dam, G., Vilstrup, H., Watson, H. & Jepsen, P. Proton pump inhibitors as a risk factor for hepatic encephalopathy and spontaneous bacterial peritonitis in patients with cirrhosis with ascites. Hepatology 64, 1265–1272 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Nardelli, S. et al. Proton pump inhibitors are associated with minimal and overt hepatic encephalopathy and increased mortality in patients with cirrhosis. Hepatology 70, 640–649 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Verma, N. et al. Dynamic assessments of hepatic encephalopathy and ammonia levels predict mortality in acute-on-chronic liver failure. Hepatol. Int. 15, 970–982 (2021).

    Article  PubMed  Google Scholar 

  47. Qvartskhava, N. et al. Hyperammonemia in gene-targeted mice lacking functional hepatic glutamine synthetase. Proc. Natl Acad. Sci. 112, 5521–5526 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. DeMorrow, S., Cudalbu, C., Davies, N., Jayakumar, A. R. & Rose, C. F. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int. 41, 1474–1488 (2021).

    Article  PubMed  Google Scholar 

  49. Häussinger, D., Kircheis, G., Fischer, R., Schliess, F. & vom Dahl, S. Hepatic encephalopathy in chronic liver disease: a clinical manifestation of astrocyte swelling and low-grade cerebral edema? J. Hepatol. 32, 1035–1038 (2000).

    Article  PubMed  Google Scholar 

  50. Cudalbu, C. & Taylor-Robinson, S. D. Brain edema in chronic hepatic encephalopathy. J. Clin. Exp. Hepatol. 9, 362–382 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  51. Córdoba, J. et al. The development of low-grade cerebral edema in cirrhosis is supported by the evolution of 1H-magnetic resonance abnormalities after liver transplantation. J. Hepatol. 35, 598–604 (2001).

    Article  PubMed  Google Scholar 

  52. Llansola, M. et al. NMDA receptors in hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 22, 321–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ott, P. & Larsen, F. S. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem. Int. 44, 185–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Häussinger, D. & Blei, A. in Textbook of Hepatology 728–760 (Wiley-Blackwell Oxford, 2007).

  55. Palomero-Gallagher, N. & Zilles, K. Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch. Biochem. Biophys. 536, 109–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Williams, E., Chu, C. & DeMorrow, S. A critical review of bile acids and their receptors in hepatic encephalopathy. Anal. Biochem. 643, 114436 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Butterworth, R. F. Hepatic encephalopathy in cirrhosis: pathology and pathophysiology. Drugs 79, 17–21 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Butterworth, R. F. Neurosteroids in hepatic encephalopathy: novel insights and new therapeutic opportunities. J. Steroid Biochem. Mol. Biol. 160, 94–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Butterworth, R. F. Role of circulating neurotoxins in the pathogenesis of hepatic encephalopathy: potential for improvement following their removal by liver assist devices. Liver Int. 23 (Suppl. 3), 5–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Rivera-Mancía, S., Ríos, C. & Montes, S. Manganese accumulation in the CNS and associated pathologies. Biometals 24, 811–825 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Dejong, C. H. C., van de Poll, M. C. G., Soeters, P. B., Jalan, R. & Olde Damink, S. W. M. Aromatic amino acid metabolism during liver failure. J. Nutr. 137, 1579S–1585S (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Bernardini, P. & Fischer, J. E. Amino acid imbalance and hepatic encephalopathy. Annu. Rev. Nutr. 2, 419–454 (1982).

    Article  CAS  PubMed  Google Scholar 

  63. Frieg, B., Görg, B., Gohlke, H. & Häussinger, D. Glutamine synthetase as a central element in hepatic glutamine and ammonia metabolism: novel aspects. Biol. Chem. 402, 1063–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Häussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Stoll, B., McNelly, S., Buscher, H. P. & Häussinger, D. Functional hepatocyte heterogeneity in glutamate, aspartate and alpha-ketoglutarate uptake: a histoautoradiographical study. Hepatology 13, 247–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Norenberg, M. D. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6, 13–33 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Häussinger, D. et al. Proton magnetic resonance spectroscopy studies on human brain Myo-inositol in hypo-osmolarity and hepatic encephalopathy. Gastroenterology 107, 1475–1480 (1994).

    Article  PubMed  Google Scholar 

  68. Shah, N. J. et al. Quantitative cerebral water content mapping in hepatic encephalopathy. NeuroImage 41, 706–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Winterdahl, M. et al. Cerebral water content mapping in cirrhosis patients with and without manifest HE. Metab. Brain Dis. 34, 1071–1076 (2019).

    Article  PubMed  Google Scholar 

  70. Görg, B. et al. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology 52, 256–265 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Häussinger, D. & Görg, B. in Oxidative Stress: Eustress and Distress 669–693 (Elsevier, 2019).

  72. Häussinger, D., Butz, M., Schnitzler, A. & Görg, B. Pathomechanisms in hepatic encephalopathy. Biol. Chem. 402, 1087–1102 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Lachmann, V., Görg, B., Bidmon, H. J., Keitel, V. & Häussinger, D. Precipitants of hepatic encephalopathy induce rapid astrocyte swelling in an oxidative stress dependent manner. Arch. Biochem. Biophys. 536, 143–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Schliess, F., Görg, B. & Häussinger, D. Pathogenetic interplay between osmotic and oxidative stress: the hepatic encephalopathy paradigm. Biol. Chem. 387, 1363–1370 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Görg, B. et al. Inflammatory cytokines induce protein tyrosine nitration in rat astrocytes. Arch. Biochem. Biophys. 449, 104–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Görg, B. Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37, 334–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Schliess, F., Foster, N., Görg, B., Reinehr, R. & Häussinger, D. Hypoosmotic swelling increases protein tyrosine nitration in cultured rat astrocytes. Glia 47, 21–29 (2004).

    Article  PubMed  Google Scholar 

  78. Häussinger, D. & Schliess, F. Pathogenetic mechanisms of hepatic encephalopathy. Gut 57, 1156–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Rama Rao, K. V., Jayakumar, A. R., Tong, X., Alvarez, V. M. & Norenberg, M. D. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J. Neuroinflammation 7, 66 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Jayakumar, A. R., Tong, X. Y., Ospel, J. & Norenberg, M. D. Role of cerebral endothelial cells in the astrocyte swelling and brain edema associated with acute hepatic encephalopathy. Neuroscience 218, 305–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Rama Rao, K. V. & Norenberg, M. D. Glutamine in the pathogenesis of hepatic encephalopathy: the trojan horse hypothesis revisited. Neurochem. Res. 39, 593–598 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Zemtsova, I. et al. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 54, 204–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Bosoi, C. R. et al. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic. Biol. Med. 52, 1228–1235 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Nikolov, P. et al. Altered motor cortical plasticity in patients with hepatic encephalopathy: a paired associative stimulation study. Clin. Neurophysiol. 132, 2332–2341 (2021).

    Article  PubMed  Google Scholar 

  85. Butz, M. et al. Motor impairment in liver cirrhosis without and with minimal hepatic encephalopathy. Acta Neurol. Scand. 122, 27–35 (2009).

    Article  PubMed  Google Scholar 

  86. Schliess, F. et al. Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 16, 739–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  PubMed  Google Scholar 

  88. Kloda, A., Lua, L., Hall, R., Adams, D. J. & Martinac, B. Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proc. Natl Acad. Sci. USA 104, 1540–1545 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Görg, B. et al. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia 6, 691–705 (2010).

    Google Scholar 

  90. Reinehr, R. et al. Hypoosmotic swelling and ammonia increase oxidative stress by NADPH oxidase in cultured astrocytes and vital brain slices. Glia 55, 758–771 (2007).

    Article  PubMed  Google Scholar 

  91. Kruczek, C. et al. Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 57, 79–92 (2009).

    Article  PubMed  Google Scholar 

  92. Chastre, A., Jiang, W., Desjardins, P. & Butterworth, R. F. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab. Brain Dis. 25, 17–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Sinke, A. P. et al. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J. Neurochem. 106, 2302–2311 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Brück, J. et al. Locomotor impairment and cerebrocortical oxidative stress in portal vein ligated rats in vivo. J. Hepatol. 54, 251–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Suárez, I., Bodega, G., Rubio, M., Felipo, V. & Fernández, B. Neuronal and inducible nitric oxide synthase expression in the rat cerebellum following portacaval anastomosis. Brain Res. 1047, 205–213 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Suárez, I., Bodega, G., Arilla, E., Felipo, V. & Fernández, B. The expression of nNOS, iNOS and nitrotyrosine is increased in the rat cerebral cortex in experimental hepatic encephalopathy. Neuropathol. Appl. Neurobiol. 32, 594–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Görg, B., Bidmon, H.-J. & Häussinger, D. Gene expression profiling in the cerebral cortex of patients with cirrhosis with and without hepatic encephalopathy. Hepatology 57, 2436–2447 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Kosenko, E. A. et al. Portacaval shunting causes differential mitochondrial superoxide production in brain regions. Free Radic. Biol. Med. 113, 109–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Widmer, R., Kaiser, B., Engels, M., Jung, T. & Grune, T. Hyperammonemia causes protein oxidation and enhanced proteasomal activity in response to mitochondria-mediated oxidative stress in rat primary astrocytes. Arch. Biochem. Biophys. 464, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Cardona, C. et al. Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia 63, 365–382 (2014).

    Article  PubMed  Google Scholar 

  101. Jördens, M. S. et al. Multidrug resistance-associated protein 4 expression in ammonia-treated cultured rat astrocytes and cerebral cortex of cirrhotic patients with hepatic encephalopathy. Glia 63, 2092–2105 (2015).

    Article  PubMed  Google Scholar 

  102. Kruczek, C. et al. Ammonia increases nitric oxide, free Zn2+, and metallothionein mRNA expression in cultured rat astrocytes. Biol. Chem. 392, 1155–1165 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Lavoie, J., Layrargues, G. P. & Butterworth, R. F. Increased densities of peripheral-type benzodiazepine receptors in brain autopsy samples from cirrhotic patients with hepatic encephalopathy. Hepatology 11, 874–878 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Ahboucha, S. et al. Indomethacin improves locomotor deficit and reduces brain concentrations of neuroinhibitory steroids in rats following portacaval anastomosis. Neurogastroenterol. Motil. 20, 949–957 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Ahboucha, S., Pomier-Layrargues, G., Mamer, O. & Butterworth, R. F. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem. Int. 49, 372–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Keitel, V. et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58, 1794–1805 (2010).

    Article  PubMed  Google Scholar 

  107. Oenarto, J. et al. Ammonia-induced miRNA expression changes in cultured rat astrocytes. Sci. Rep. 6, 18493–18493 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Görg, B. et al. O-GlcNAcylation-dependent upregulation of HO1 triggers ammonia-induced oxidative stress and senescence in hepatic encephalopathy. J. Hepatol. 71, 930–941 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Jayakumar, A. R. et al. Na-K-Cl Cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J. Biol. Chem. 283, 33874–33882 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Vaquero, J., Chung, C., Cahill, M. & Blei, A. Pathogenesis of hepatic encephalopathy in acute liver failure. Semin. Liver Dis. 23, 259–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Carbonero-Aguilar, P. et al. Brain biomolecules oxidation in portacaval-shunted rats. Liver Int. 31, 964–969 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Bai, Y., Wang, Y. & Yang, Y. Hepatic encephalopathy changes mitochondrial dynamics and autophagy in the substantia nigra. Metab. Brain Dis. 33, 1669–1678 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Lu, K. et al. Hepatic encephalopathy is linked to alterations of autophagic flux in astrocytes. EBioMedicine 48, 539–553 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Luo, S., Au Yeung, S. L., Zhao, J. V., Burgess, S. & Schooling, C. M. Association of genetically predicted testosterone with thromboembolism, heart failure, and myocardial infarction: mendelian randomisation study in UK Biobank. BMJ https://doi.org/10.1136/bmj.l476 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  115. Gelpi, E. et al. The autophagic marker p62 highlights Alzheimer type II astrocytes in metabolic/hepatic encephalopathy. Neuropathology 40, 358–366 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Frank, M. et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 1823, 2297–2310 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Görg, B., Karababa, A., Shafigullina, A., Bidmon, H. J. & Häussinger, D. Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia 63, 37–50 (2014).

    Article  PubMed  Google Scholar 

  118. Drews, L. et al. Ammonia inhibits energy metabolism in astrocytes in a rapid and glutamate dehydrogenase 2-dependent manner. Dis. Model. Mech. 13, dmm047134 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Rama Rao, K. V. & Norenberg, M. D. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem. Int. 60, 697–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Zimmermann, M. & Reichert, A. S. Rapid metabolic and bioenergetic adaptations of astrocytes under hyperammonemia – a novel perspective on hepatic encephalopathy. Biol. Chem. 402, 1103–1113 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Görg, B. et al. Ammonia induces RNA oxidation in cultured astrocytes and brain in vivo. Hepatology 48, 567–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Chan, H. Effects of ammonia on glutamate transporter (GLAST) protein and mRNA in cultured rat cortical astrocytes. Neurochem. Int. 37, 243–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Zhou, B.-G. & Norenberg, M. D. Ammonia downregulates GLAST mRNA glutamate transporter in rat astrocyte cultures. Neurosci. Lett. 276, 145–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Limbad, C. et al. Astrocyte senescence promotes glutamate toxicity in cortical neurons. PLoS ONE 15, e0227887–e0227887 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Bajaj, J. S. et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology 138, 2332–2340 (2010).

    Article  PubMed  Google Scholar 

  126. Riggio, O. et al. Evidence of persistent cognitive impairment after resolution of overt hepatic encephalopathy. Clin. Gastroenterol. Hepatol. 9, 181–183 (2011).

    Article  PubMed  Google Scholar 

  127. Sobczyk, K., Jördens, M. S., Karababa, A., Görg, B. & Häussinger, D. Ephrin/ephrin receptor expression in ammonia-treated rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Neurochem. Res. 40, 274–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Schrimpf, A. et al. Hyperammonemia-induced changes in the cerebral transcriptome and proteome. Anal. Biochem. 641, 114548 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Cabrera-Pastor, A. et al. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol. 226, e13270 (2019).

    Article  CAS  Google Scholar 

  130. Coltart, I., Tranah, T. H. & Shawcross, D. L. Inflammation and hepatic encephalopathy. Arch. Biochem. Biophys. 536, 189–196 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Felipo, V. et al. Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab. Brain Dis. 27, 51–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Pozdeev, V. I. et al. TNFα induced up-regulation of Na+,K+,2Cl cotransporter NKCC1 in hepatic ammonia clearance and cerebral ammonia toxicity. Sci. Rep. 7, 7938 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Rodrigo, R. et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139, 675–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Balzano, T. et al. Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: reversed by anti-TNF-α treatment. J. Hepatol. 73, 582–592 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Görg, B., Wettstein, M., Metzger, S., Schliess, F. & Häussinger, D. Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology 41, 1065–1073 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Bajaj, J. S. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675–G685 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Dhiman, R. K. Gut microbiota, inflammation and hepatic encephalopathy: a puzzle with a solution in sight. J. Clin. Exp. Hepatol. 2, 207–210 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  138. Acharya, C. & Bajaj, J. S. Altered microbiome in patients with cirrhosis and complications. Clin. Gastroenterol. Hepatol. 17, 307–321 (2019).

    Article  PubMed  Google Scholar 

  139. Iebba, V. et al. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci. Rep. 8, 8210–8210 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Montoliu, C. et al. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J. Clin. Gastroenterol. 43, 272–279 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Azhari, H. & Swain, M. G. Role of peripheral inflammation in hepatic encephalopathy. J. Clin. Exp. Hepatol. 8, 281–285 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  142. Dadsetan, S. et al. Reducing peripheral inflammation with infliximab reduces neuroinflammation and improves cognition in rats with hepatic encephalopathy. Front. Mol. Neurosci. 9, 106–106 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Mangas-Losada, A. et al. Minimal hepatic encephalopathy is associated with expansion and activation of CD4+CD28, Th22 and Tfh and B lymphocytes. Sci. Rep. 7, 6683–6683 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Shen, J. et al. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J. Cell. Mol. Med. 21, 986–992 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Thietart, S. & Rautou, P.-E. Extracellular vesicles as biomarkers in liver diseases: a clinician’s point of view. J. Hepatol. 73, 1507–1525 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Eguchi, A. & Feldstein, A. E. Extracellular vesicles in non-alcoholic and alcoholic fatty liver diseases. Liver Res. 2, 30–34 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  147. Izquierdo-Altarejos, P., Cabrera-Pastor, A., Gonzalez-King, H., Montoliu, C. & Felipo, V. Extracellular vesicles from hyperammonemic rats induce neuroinflammation and motor incoordination in control rats. Cells 9, 572 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  148. McMillin, M. et al. Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front. Cell. Neurosci. 11, 191–191 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Balzano, T. et al. Rifaximin prevents T-lymphocytes and macrophages infiltration in cerebellum and restores motor incoordination in rats with mild liver damage. Biomedicines 9, 1002 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Dennis, C. V. et al. Microglial proliferation in the brain of chronic alcoholics with hepatic encephalopathy. Metab. Brain Dis. 29, 1027–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Balzano, T. et al. The cerebellum of patients with steatohepatitis shows lymphocyte infiltration, microglial activation and loss of purkinje and granular neurons. Sci. Rep. 8, 3004–3004 (2018).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Cauli, O., Mansouri, M. T., Agusti, A. & Felipo, V. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136, 1359–1367.e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Arenas, Y. M., Cabrera-Pastor, A., Juciute, N., Mora-Navarro, E. & Felipo, V. Blocking glycine receptors reduces neuroinflammation and restores neurotransmission in cerebellum through ADAM17-TNFR1-NF-κβ pathway. J. Neuroinflammation 17, 269 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Yurdaydin, C. et al. Increased serotoninergic and noradrenergic activity in hepatic encephalopathy in rats with thioacetamide-induced acute liver failure. Hepatology 12, 695–700 (1990).

    Article  CAS  PubMed  Google Scholar 

  156. García-Ayllón, M.-S. et al. Brain cholinergic impairment in liver failure. Brain J. Neurol. 131, 2946–2956 (2008).

    Article  Google Scholar 

  157. Chen, B. et al. The critical role of hippocampal dopamine in the pathogenesis of hepatic encephalopathy. Physiol. Res. 70, 101–110 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Hassan, S. S. et al. Cerebellar inhibition in hepatic encephalopathy. Clin. Neurophysiol. 130, 886–892 (2019).

    Article  PubMed  Google Scholar 

  159. Groiss, S. J. et al. GABA-ergic tone hypothesis in hepatic encephalopathy–revisited. Clin. Neurophysiol. 130, 911–916 (2019).

    Article  PubMed  Google Scholar 

  160. Nardone, R. et al. Intracortical inhibitory and excitatory circuits in subjects with minimal hepatic encephalopathy: a TMS study. Metab. Brain Dis. 31, 1065–1070 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Montagnese, S. et al. A pilot study of golexanolone, a new GABA-A receptor-modulating steroid antagonist, in patients with covert hepatic encephalopathy. J. Hepatol. 75, 98–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Taoro-González, L. et al. Differential role of interleukin-1β in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats. FASEB J. 33, 9913–9928 (2019).

    Article  PubMed  Google Scholar 

  163. Schnitzler, A. & Gross, J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Butz, M., May, E. S., Häussinger, D. & Schnitzler, A. The slowed brain: cortical oscillatory activity in hepatic encephalopathy. Arch. Biochem. Biophys. 536, 197–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  165. Timmermann, L., Gross, J., Kircheis, G., Häussinger, D. & Schnitzler, A. Cortical origin of mini-asterixis in hepatic encephalopathy. Neurology 58, 295–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Timmermann, L. et al. Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61, 689–692 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Timmermann, L. et al. Impaired cerebral oscillatory processing in hepatic encephalopathy. Clin. Neurophysiol. 119, 265–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Kahlbrock, N. et al. Lowered frequency and impaired modulation of gamma band oscillations in a bimodal attention task are associated with reduced critical flicker frequency. NeuroImage 61, 216–227 (2012).

    Article  PubMed  Google Scholar 

  169. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. May, E. S. et al. Hepatic encephalopathy is associated with slowed and delayed stimulus-associated somatosensory alpha activity. Clin. Neurophysiol. 125, 2427–2435 (2014).

    Article  PubMed  Google Scholar 

  171. Lazar, M. et al. Impaired tactile temporal discrimination in patients with hepatic encephalopathy. Front. Psychol. 9, 2059 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  172. Baumgarten, T. J., Schnitzler, A. & Lange, J. Beta oscillations define discrete perceptual cycles in the somatosensory domain. Proc. Natl Acad. Sci. USA 112, 12187–12192 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Kullmann, F. et al. Brain electrical activity mapping of EEG for the diagnosis of (sub)clinical hepatic encephalopathy in chronic liver disease. Eur. J. Gastroenterol. Hepatol. 13, 513–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Baumgarten, T. J. et al. Connecting occipital alpha band peak frequency, visual temporal resolution, and occipital GABA levels in healthy participants and hepatic encephalopathy patients. NeuroImage Clin. 20, 347–356 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  175. VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).

    Article  PubMed  Google Scholar 

  176. Hadjihambi, A. et al. Impaired brain glymphatic flow in experimental hepatic encephalopathy. J. Hepatol. 70, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Claeys, W. et al. The neurogliovascular unit in hepatic encephalopathy. JHEP Rep. Innov. Hepatol. 3, 100352 (2021).

    Article  Google Scholar 

  178. Costa, R. & Montagnese, S. The role of astrocytes in generating circadian rhythmicity in health and disease. J. Neurochem. 157, 42–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Jindal, A. & Jagdish, R. K. Sarcopenia: ammonia metabolism and hepatic encephalopathy. Clin. Mol. Hepatol. 25, 270–279 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  180. García, P. S., Cabbabe, A., Kambadur, R., Nicholas, G. & Csete, M. Brief-reports: elevated myostatin levels in patients with liver disease: a potential contributor to skeletal muscle wasting. Anesth. Analg. 111, 707–709 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Conn, H. O. et al. Comparison of lactulose and neomycin in the treatment of chronic portal-systemic encephalopathy. Gastroenterology 72, 573–583 (1977).

    Article  CAS  PubMed  Google Scholar 

  182. Conn, H. & Lieberthal, M. in The Hepatic Coma Syndromes and Lactulose 5–8 (Williams & Wilkins, 1979).

  183. Reuter, B. et al. Assessment of the spectrum of hepatic encephalopathy: a multicenter study. Liver Transpl. 24, 587–594 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  184. Bajaj, J. S. et al. Review article: the design of clinical trials in hepatic encephalopathy-an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment. Pharmacol. Ther. 33, 739–747 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Montagnese, S. et al. Hepatic encephalopathy 2018: a clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig. Liver Dis. 51, 190–205 (2019).

    Article  PubMed  Google Scholar 

  186. Montagnese, S. et al. Covert hepatic encephalopathy: agreement and predictive validity of different indices. World J. Gastroenterol. 20, 15756–15762 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  187. Thomsen, K. L., Macnaughtan, J., Tritto, G., Mookerjee, R. P. & Jalan, R. Clinical and pathophysiological characteristics of cirrhotic patients with grade 1 and minimal hepatic encephalopathy. PLoS ONE 11, e0146076 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Romero-Gómez, M., Boza, F., García-Valdecasas, M. S., García, E. & Aguilar-Reina, J. Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am. J. Gastroenterol. 96, 2718–2723 (2001).

    Article  PubMed  Google Scholar 

  189. Schomerus, H. & Hamster, W. Quality of life in cirrhotics with minimal hepatic encephalopathy. Metab. Brain Dis. 16, 37–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Kircheis, G. et al. Hepatic encephalopathy and fitness to drive. Gastroenterology 137, 1706–1715.e9 (2009).

    Article  PubMed  Google Scholar 

  191. Kircheis, G., Hilger, N. & Häussinger, D. Value of critical flicker frequency and psychometric hepatic encephalopathy score in diagnosis of low-grade hepatic encephalopathy. Gastroenterology 146, 961–969.e11 (2014).

    Article  PubMed  Google Scholar 

  192. Häussinger, D. et al. in Hepatic Encephalopathy and Nitrogen Metabolism 423–432 (Springer Dordrecht, 2006).

  193. Weissenborn, K., Heidenreich, S., Ennen, J., Rückert, N. & Hecker, H. Attention deficits in minimal hepatic encephalopathy. Metab. Brain Dis. 16, 13–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Campagna, F. et al. The animal naming test: an easy tool for the assessment of hepatic encephalopathy. Hepatology 66, 198–208 (2017).

    Article  PubMed  Google Scholar 

  195. Lauridsen, M. M., Grønbæk, H., Næser, E. B., Leth, S. T. & Vilstrup, H. Gender and age effects on the continuous reaction times method in volunteers and patients with cirrhosis. Metab. Brain Dis. 27, 559–565 (2012).

    Article  PubMed  Google Scholar 

  196. Lauridsen, M. M., Thiele, M., Kimer, N. & Vilstrup, H. The continuous reaction times method for diagnosing, grading, and monitoring minimal/covert hepatic encephalopathy. Metab. Brain Dis. 28, 231–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Bajaj, J. S. et al. Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am. J. Gastroenterol. 102, 754–760 (2007).

    Article  PubMed  Google Scholar 

  198. Amodio, P. et al. Improving the inhibitory control task to detect minimal hepatic encephalopathy. Gastroenterology 139, 510–518.e2 (2010).

    Article  PubMed  Google Scholar 

  199. Bajaj, J. S. et al. The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. Hepatology 58, 1122–1132 (2013).

    Article  PubMed  Google Scholar 

  200. Amodio, P. et al. Clinical features and survivial of cirrhotic patients with subclinical cognitive alterations detected by the number connection test and computerized psychometric tests. Hepatology 29, 1662–1667 (1999).

    Article  CAS  PubMed  Google Scholar 

  201. Amodio, P. et al. Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin. Neurophysiol. 110, 1334–1344 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Schiff, S. et al. A low-cost, user-friendly electroencephalographic recording system for the assessment of hepatic encephalopathy. Hepatology 63, 1651–1659 (2016).

    Article  PubMed  Google Scholar 

  203. Kircheis, G., Wettstein, M., Timmermann, L., Schnitzler, A. & Häussinger, D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35, 357–366 (2002).

    Article  PubMed  Google Scholar 

  204. Romero-Gómez, M. Critical flicker frequency: it is time to break down barriers surrounding minimal hepatic encephalopathy. J. Hepatol. 47, 10–11 (2007).

    Article  PubMed  Google Scholar 

  205. Kircheis, G. et al. Diagnostic and prognostic values of critical flicker frequency determination as new diagnostic tool for objective HE evaluation in patients undergoing TIPS implantation. Eur. J. Gastroenterol. Hepatol. 21, 1383–1394 (2009).

    Article  PubMed  Google Scholar 

  206. Berlioux, P. et al. Pre-transjugular intrahepatic portosystemic shunts (TIPS) prediction of post-TIPS overt hepatic encephalopathy: the critical flicker frequency is more accurate than psychometric tests. Hepatology 59, 622–629 (2013).

    Article  Google Scholar 

  207. Romero-Gómez, M. et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology 45, 879–885 (2007).

    Article  PubMed  Google Scholar 

  208. Ampuero, J. et al. Minimal hepatic encephalopathy and critical flicker frequency are associated with survival of patients with cirrhosis. Gastroenterology 149, 1483–1489 (2015).

    Article  PubMed  Google Scholar 

  209. Bandookwala, M. & Sengupta, P. 3-Nitrotyrosine: a versatile oxidative stress biomarker for major neurodegenerative diseases. Int. J. Neurosci. 130, 1047–1062 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Montoliu, C. et al. 3-nitro-tyrosine as a peripheral biomarker of minimal hepatic encephalopathy in patients with liver cirrhosis. Am. J. Gastroenterol. 106, 1629–1637 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Gairing, S. J. et al. Evaluation of IL-6 for stepwise diagnosis of minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol. Commun. https://doi.org/10.1002/hep4.1883 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  212. Labenz, C. et al. Raised serum interleukin-6 identifies patients with liver cirrhosis at high risk for overt hepatic encephalopathy. Aliment. Pharmacol. Ther. 50, 1112–1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Quero Guillén, J. C. & Herrerías Gutiérrez, J. M. Diagnostic methods in hepatic encephalopathy. Clin. Chim. Acta 365, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Grover, V. B. Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy. World J. Gastroenterol. 12, 2969 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Pagani, E., Bizzi, A., Di Salle, F., De Stefano, N. & Filippi, M. Basic concepts of advanced MRI techniques. Neurol. Sci. 29, 290–295 (2008).

    Article  PubMed  Google Scholar 

  216. Berding, G. et al. Radiotracer imaging studies in hepatic encephalopathy: ISHEN practice guidelines. Liver Int. 29, 621–628 (2009).

    Article  CAS  PubMed  Google Scholar 

  217. Smith, S. M. et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17, 479–489 (2002).

    Article  PubMed  Google Scholar 

  218. Patel, N., White, S., Dhanjal, N. S., Oatridge, A. & Taylor-Robinson, S. D. Changes in brain size in hepatic encephalopathy: a coregistered MRI study. Metab. Brain Dis. 19, 431–445 (2004).

    Article  PubMed  Google Scholar 

  219. Taylor-Robinson, S. D. et al. MR imaging of the basal ganglia in chronic liver disease: correlation of T1-weighted and magnetisation transfer contrast measurements with liver dysfunction and neuropsychiatric status. Metab. Brain Dis. 10, 175–188 (1995).

    Article  CAS  PubMed  Google Scholar 

  220. Kumar, R. et al. Voxel-based diffusion tensor magnetic resonance imaging evaluation of low-grade hepatic encephalopathy. J. Magn. Reson. Imaging 27, 1061–1068 (2008).

    Article  PubMed  Google Scholar 

  221. Miese, F. et al. 1H-MR spectroscopy, magnetization transfer, and diffusion-weighted imaging in alcoholic and nonalcoholic patients with cirrhosis with hepatic encephalopathy. AJNR Am. J. Neuroradiol. 27, 1019–1026 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  222. McPhail, M. J. W. & Taylor-Robinson, S. D. The role of magnetic resonance imaging and spectroscopy in hepatic encephalopathy. Metab. Brain Dis. 25, 65–72 (2010).

    Article  PubMed  Google Scholar 

  223. Zafiris, O. et al. Neural mechanism underlying impaired visual judgement in the dysmetabolic brain: an fMRI study. NeuroImage 22, 541–552 (2004).

    Article  PubMed  Google Scholar 

  224. Cox, I. J. Development and applications of in vivo clinical magnetic resonance spectroscopy. Prog. Biophys. Mol. Biol. 65, 45–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, L. J., Yang, G., Yin, J., Liu, Y. & Qi, J. Neural mechanism of cognitive control impairment in patients with hepatic cirrhosis: a functional magnetic resonance imaging study. Acta Radiol. 48, 577–587 (2007).

    Article  CAS  PubMed  Google Scholar 

  226. Broyd, S. J. et al. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci. Biobehav. Rev. 33, 279–296 (2009).

    Article  PubMed  Google Scholar 

  227. Rovira, A., Grivé, E., Pedraza, S., Rovira, A. & Alonso, J. Magnetization transfer ratio values and proton MR spectroscopy of normal-appearing cerebral white matter in patients with liver cirrhosis. AJNR Am. J. Neuroradiol. 22, 1137–1142 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Laubenberger, J. et al. Proton magnetic resonance spectroscopy of the brain in symptomatic and asymptomatic patients with liver cirrhosis. Gastroenterology 112, 1610–1616 (1997).

    Article  CAS  PubMed  Google Scholar 

  229. McPhail, M. J. W., Patel, N. R. & Taylor-Robinson, S. D. Brain imaging and hepatic encephalopathy. Clin. Liver Dis. 16, 57–72 (2012).

    Article  PubMed  Google Scholar 

  230. Grover, V. P. B. et al. A longitudinal study of patients with cirrhosis treated with L-ornithine L-aspartate, examined with magnetization transfer, diffusion-weighted imaging and magnetic resonance spectroscopy. Metab. Brain Dis. 32, 77–86 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Taylor-Robinson, S. D., Buckley, C., Changani, K. K., Hodgson, H. J. F. & Bell, J. D. Cerebral proton and phosphorus-31 magnetic resonance spectroscopy in patients with subclinical hepatic encephalopathy. Liver Int. 19, 389–398 (1999).

    Article  CAS  Google Scholar 

  232. Patwardhan, V. R. et al. Serum ammonia is associated with transplant-free survival in hospitalized patients with acutely decompensated cirrhosis [corrected]. J. Clin. Gastroenterol. 50, 345–350 (2016).

    Article  PubMed  Google Scholar 

  233. Vierling, J. M. et al. Fasting blood ammonia predicts risk and frequency of hepatic encephalopathy episodes in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 14, 903–906.e1 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Shalimar et al. Prognostic role of ammonia in patients with cirrhosis. Hepatology 70, 982–994 (2019).

    Article  CAS  PubMed  Google Scholar 

  235. Clemmesen, J. O. et al. Hepatic blood flow and splanchnic oxygen consumption in patients with liver failure. Effect of high-volume plasmapheresis. Hepatology 29, 347–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  236. Bhatia, V., Singh, R. & Acharya, S. K. Predictive value of arterial ammonia for complications and outcome in acute liver failure. Gut 55, 98–104 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  237. Rose, C. F., Jalan, R. & Shawcross, D. L. Erroneous ammonia measurement is not synonymous with a lack of efficacy of ammonia-lowering therapies in hepatic encephalopathy. Clin. Gastroenterol. Hepatol. 19, 2456–2457 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Kramer, L. et al. Partial pressure of ammonia versus ammonia in hepatic encephalopathy. Hepatology 31, 30–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Drolz, A. et al. Clinical impact of arterial ammonia levels in ICU patients with different liver diseases. Intensive Care Med. 39, 1227–1237 (2013).

    Article  CAS  PubMed  Google Scholar 

  240. Huizenga, J. R., Gips, C. H., Conn, H. O. & Jansen, P. L. Determination of ammonia in ear-lobe capillary blood is an alternative to arterial blood ammonia. Clin. Chim. Acta Int. J. Clin. Chem. 239, 65–70 (1995).

    Article  CAS  Google Scholar 

  241. Bersagliere, A. et al. Ammonia-related changes in cerebral electrogenesis in healthy subjects and patients with cirrhosis. Clin. Neurophysiol. 124, 492–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Hartmann, I. J. C. et al. The prognostic significance of subclinical hepatic encephalopathy. Am. J. Gastroenterol. 95, 2029–2034 (2000).

    Article  CAS  PubMed  Google Scholar 

  243. Patidar, K. R. et al. Covert hepatic encephalopathy is independently associated with poor survival and increased risk of hospitalization. Am. J. Gastroenterol. 109, 1757–1763 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  244. Flud, C. R. & Duarte-Rojo, A. Prognostic implications of minimal/covert hepatic encephalopathy: large-scale validation cohort studies. J. Clin. Exp. Hepatol. 9, 112–116 (2019).

    Article  PubMed  Google Scholar 

  245. Bustamante, J. et al. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 30, 890–895 (1999).

    Article  CAS  PubMed  Google Scholar 

  246. D’Amico, G., Garcia-Tsao, G. & Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J. Hepatol. 44, 217–231 (2006).

    Article  PubMed  Google Scholar 

  247. Lucidi, C. et al. Hepatic encephalopathy expands the predictivity of model for end-stage liver disease in liver transplant setting: evidence by means of 2 independent cohorts. Liver Transpl. 22, 1333–1342 (2016).

    Article  PubMed  Google Scholar 

  248. López-Franco, Ó. et al. Cognitive impairment after resolution of hepatic encephalopathy: a systematic review and meta-analysis. Front. Neurosci. 15, 579263 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  249. Matsumoto, S. et al. Urea cycle disorders-update. J. Hum. Genet. 64, 833–847 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Häberle, J. et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J. Inherit. Metab. Dis. 42, 1192–1230 (2019).

    Article  PubMed  Google Scholar 

  251. Plauth, M. et al. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 38, 485–521 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  252. Amodio, P. et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International society for hepatic encephalopathy and nitrogen metabolism consensus. Hepatology 58, 325–336 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Yoshiji, H. et al. Evidence-based clinical practice guidelines for liver cirrhosis 2020. J. Gastroenterol. 56, 593–619 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  254. European Association for the Study of the Liver. EASL clinical practice guidelines on nutrition in chronic liver disease. J. Hepatol. 70, 172–193 (2019).

    Article  Google Scholar 

  255. Tsien, C. D., McCullough, A. J. & Dasarathy, S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J. Gastroenterol. Hepatol. 27, 430–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  256. Maharshi, S., Sharma, B. C., Sachdeva, S., Srivastava, S. & Sharma, P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin. Gastroenterol. Hepatol. 14, 454–460.e3 (2016).

    Article  PubMed  Google Scholar 

  257. Takuma, Y., Nouso, K., Makino, Y., Hayashi, M. & Takahashi, H. Clinical trial: oral zinc in hepatic encephalopathy. Aliment. Pharmacol. Ther. 32, 1080–1090 (2010).

    Article  CAS  PubMed  Google Scholar 

  258. Bruyneel, M. & Sersté, T. Sleep disturbances in patients with liver cirrhosis: prevalence, impact, and management challenges. Nat. Sci. Sleep 10, 369–375 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  259. Riggio, O., Nardelli, S., Gioia, S., Lucidi, C. & Merli, M. Management of hepatic encephalopathy as an inpatient. Clin. Liver Dis. 5, 79–82 (2015).

    Article  Google Scholar 

  260. Davuluri, G. et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J. Physiol. 594, 7341–7360 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. Dasarathy, S. & Hatzoglou, M. Hyperammonemia and proteostasis in cirrhosis. Curr. Opin. Clin. Nutr. Metab. Care 21, 30–36 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  262. Dam, G., Aamann, L., Vistrup, H. & Gluud, L. L. The role of branched chain amino acids in the treatment of hepatic encephalopathy. J. Clin. Exp. Hepatol. 8, 448–451 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  263. Gluud, L. L. et al. in Cochrane Database of Systematic Reviews (John Wiley & Sons, Ltd., 2015).

  264. Lai, J. C. & Tandon, P. Improving nutritional status in patients with cirrhosis. Am. J. Gastroenterol. 113, 1574–1576 (2018).

    Article  PubMed  Google Scholar 

  265. Sharma, B. C., Sharma, P., Agrawal, A. & Sarin, S. K. Secondary prophylaxis of hepatic encephalopathy: an open-label randomized controlled trial of lactulose versus placebo. Gastroenterology 137, 885–891, 891.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  266. Agrawal, A., Sharma, B. C., Sharma, P. & Sarin, S. K. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: an open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am. J. Gastroenterol. 107, 1043–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  267. Dhiman, R. K. et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 147, 1327–1337.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  268. Bass, N. M. et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 362, 1071–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Mullen, K. D. et al. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin. Gastroenterol. Hepatol. 12, 1390–1397.e2 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Gluud, L. L., Vilstrup, H. & Morgan, M. Y. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis.Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.cd003044.pub3 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  271. Kimer, N., Krag, A., Møller, S., Bendtsen, F. & Gluud, L. L. Systematic review with meta-analysis: the effects of rifaximin in hepatic encephalopathy. Aliment. Pharmacol. Ther. 40, 123–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  272. Bajaj, J. S. et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE 8, e60042–e60042 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  273. DuPont, H. L. Review article: the antimicrobial effects of rifaximin on the gut microbiota. Aliment. Pharmacol. Ther. 43, 3–10 (2015).

    Article  CAS  Google Scholar 

  274. Goh, E. T. et al. L-ornithine L-aspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst. Rev. 5, CD012410 (2018).

    PubMed  Google Scholar 

  275. Butterworth, R. F. & McPhail, M. J. W. L-Ornithine L-aspartate (LOLA) for hepatic encephalopathy in cirrhosis: results of randomized controlled trials and meta-analyses. Drugs 79, 31–37 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Naeshiro, N. et al. Percutaneous transvenous embolization for portosystemic shunts associated with encephalopathy: long-term outcomes in 14 patients. Hepatol. Res. 44, 740–749 (2014).

    Article  PubMed  Google Scholar 

  277. Lv, Y. et al. Concurrent large spontaneous portosystemic shunt embolization for the prevention of overt hepatic encephalopathy after TIPS: a randomized controlled trial. Hepatology https://doi.org/10.1002/hep.32453 (2022).

    Article  PubMed  Google Scholar 

  278. Álvarez-López, P. et al. Spontaneous portosystemic shunt embolization in liver transplant recipients with recurrent hepatic encephalopathy. Ann. Hepatol. 27, 100687 (2022).

    Article  CAS  PubMed  Google Scholar 

  279. Temmerman, F., Laleman, W., Maleux, G. & Nevens, F. Treatment of recurrent severe hepatic encephalopathy in patients with large porto-collaterals shunts or transjugular portosystemic shunt. Acta Gastroenterol. Belg. 83, 67–71 (2020).

    CAS  PubMed  Google Scholar 

  280. Laleman, W. et al. Embolization of large spontaneous portosystemic shunts for refractory hepatic encephalopathy: a multicenter survey on safety and efficacy. Hepatology 57, 2448–2457 (2013).

    Article  PubMed  Google Scholar 

  281. Rahimi, R. S., Singal, A. G., Cuthbert, J. A. & Rockey, D. C. Lactulose vs polyethylene Glycol 3350-electrolyte solution for treatment of overt hepatic encephalopathy. JAMA Intern. Med. 174, 1727 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  282. Bajaj, J. S. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1727–1738 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Mullish, B. H., McDonald, J. A. K., Thursz, M. R. & Marchesi, J. R. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1354–1355 (2017).

    Article  PubMed  Google Scholar 

  284. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  CAS  PubMed  Google Scholar 

  285. Synlogic. Synlogic discontinues development of SYNB1020 to treat hyperammonemia. Synlogic https://investor.synlogictx.com/news-releases/news-release-details/synlogic-discontinues-development-synb1020-treat-hyperammonemia (2019).

  286. Dalal, R., McGee, R. G., Riordan, S. M. & Webster, A. C. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2, CD008716 (2017).

    PubMed  Google Scholar 

  287. Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut-liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    Article  CAS  PubMed  Google Scholar 

  288. Jalan, R., Wright, G., Davies, N. A. & Hodges, S. J. l-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med. Hypotheses 69, 1064–1069 (2007).

    Article  CAS  PubMed  Google Scholar 

  289. Rahimi, R. S. et al. Efficacy and safety of ornithine phenylacetate for treating overt hepatic encephalopathy in a randomized trial. Clin. Gastroenterol. Hepatol. 19, 2626–2635.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  290. Safadi, R. et al. Pharmacokinetics/pharmacodynamics of L-ornithine phenylacetate in overt hepatic encephalopathy and the effect of plasma ammonia concentration reduction on clinical outcomes. Clin. Transl. Sci. https://doi.org/10.1111/cts.13257 (2022).

    Article  PubMed  Google Scholar 

  291. Maestri, N. E., Brusilow, S. W., Clissold, D. B. & Bassett, S. S. Long-term treatment of girls with ornithine transcarbamylase deficiency. N. Engl. J. Med. 335, 855–859 (1996).

    Article  CAS  PubMed  Google Scholar 

  292. Butterworth, R. F. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs R. D. 21, 123–132 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  293. Rockey, D. C. et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology 59, 1073–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  294. Uschner, F. et al. Safety and preliminary efficacy and pharmocokinetics of intraperitoneal VS-01 infusions in patients with decompensated liver cirrhosis: a first in human open label phase 1b clinical trial. Hepatology 74, 139A (2021).

    Google Scholar 

  295. Hassanein, T. I. et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 46, 1853–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  296. Agarwal, B., Saliba, F. & Tomescu, D. A multi-centre, randomized controlled study, to evaluate the safety and performance of the DIALIVE liver dialysis device in patients with acute on chronic liver failure (ACLF) versus standard of care (SOC) (ALIVER Consortium). Gut 70 (Suppl. 3), A54 (2021).

    Google Scholar 

  297. Simón-Talero, M. et al. Effects of intravenous albumin in patients with cirrhosis and episodic hepatic encephalopathy: a randomized double-blind study. J. Hepatol. 59, 1184–1192 (2013).

    Article  CAS  PubMed  Google Scholar 

  298. Sharma, B. C. et al. Randomized controlled trial comparing lactulose plus albuminversuslactulose alone for treatment of hepatic encephalopathy. J. Gastroenterol. Hepatol. 32, 1234–1239 (2017).

    Article  CAS  PubMed  Google Scholar 

  299. Ventura-Cots, M. et al. Effects of albumin on survival after a hepatic encephalopathy episode: randomized double-blind trial and meta-analysis. J. Clin. Med. 10, 4885 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  300. Sundaram, V. et al. Longterm outcomes of patients undergoing liver transplantation for acute-on-chronic liver failure. Liver Transplant. 26, 1594–1602 (2020).

    Article  Google Scholar 

  301. European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. J. Hepatol. 64, 433–485 (2016).

    Article  Google Scholar 

  302. Kamath, P. S. et al. A model to predict survival in patients with end-stage liver disease. Hepatology 33, 464–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  303. Sundaram, V. et al. Patients with severe acute-on-chronic liver failure are disadvantaged by model for end-stage liver disease-based organ allocation policy. Aliment. Pharmacol. Ther. 52, 1204–1213 (2020).

    PubMed  Google Scholar 

  304. Sotil, E. U., Gottstein, J., Ayala, E., Randolph, C. & Blei, A. T. Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transplant. 15, 184–192 (2009).

    Article  Google Scholar 

  305. Garcia-Martinez, R. et al. Hepatic encephalopathy is associated with posttransplant cognitive function and brain volume. Liver Transplant. 17, 38–46 (2011).

    Article  Google Scholar 

  306. Ochoa-Sanchez, R., Tamnanloo, F. & Rose, C. F. Hepatic encephalopathy: from metabolic to neurodegenerative. Neurochem. Res. 46, 2612–2625 (2021).

    Article  CAS  PubMed  Google Scholar 

  307. Younossi, Z. M. et al. Health-related quality of life in chronic liver disease: the impact of type and severity of disease. Am. J. Gastroenterol. 96, 2199–2205 (2001).

    Article  CAS  PubMed  Google Scholar 

  308. Afendy, A. et al. Predictors of health-related quality of life in patients with chronic liver disease. Aliment. Pharmacol. Ther. 30, 469–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  309. Montagnese, S. & Bajaj, J. S. Impact of hepatic encephalopathy in cirrhosis on quality-of-life issues. Drugs 79, 11–16 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  310. Rabiee, A. et al. Factors associated with health-related quality of life in patients with cirrhosis: a systematic review. Liver Int. 41, 6–15 (2020).

    Article  PubMed  Google Scholar 

  311. Prasad, S. et al. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45, 549–559 (2007).

    Article  PubMed  Google Scholar 

  312. Agrawal, S., Umapathy, S. & Dhiman, R. K. Minimal hepatic encephalopathy impairs quality of life. J. Clin. Exp. Hepatol. 5, S42–S48 (2015).

    Article  PubMed  Google Scholar 

  313. Groeneweg, M. et al. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 28, 45–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  314. Sidhu, S. S. et al. Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (The RIME Trial). Am. J. Gastroenterol. 106, 307–316 (2011).

    Article  CAS  PubMed  Google Scholar 

  315. De Rui, M. et al. Excessive daytime sleepiness and hepatic encephalopathy: it is worth asking. Metab. Brain Dis. 28, 245–248 (2012).

    Article  PubMed  Google Scholar 

  316. Montagnese, S., Middleton, B., Skene, D. J. & Morgan, M. Y. Night-time sleep disturbance does not correlate with neuropsychiatric impairment in patients with cirrhosis. Liver Int. 29, 1372–1382 (2009).

    Article  PubMed  Google Scholar 

  317. Montagnese, S. et al. Sleep-wake abnormalities in patients with cirrhosis. Hepatology 59, 705–712 (2013).

    Article  PubMed  Google Scholar 

  318. Samanta, J. et al. Correlation between degree and quality of sleep disturbance and the level of neuropsychiatric impairment in patients with liver cirrhosis. Metab. Brain Dis. 28, 249–259 (2013).

    Article  PubMed  Google Scholar 

  319. Román, E. et al. Minimal hepatic encephalopathy is associated with falls. Am. J. Gastroenterol. 106, 476–482 (2011).

    Article  PubMed  Google Scholar 

  320. Soriano, G. et al. Cognitive dysfunction in cirrhosis is associated with falls: a prospective study. Hepatology 55, 1922–1930 (2012).

    Article  PubMed  Google Scholar 

  321. Diamond, T. et al. Osteoporosis and skeletal fractures in chronic liver disease. Gut 31, 82–87 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  322. Bajaj, J. S. et al. Minimal hepatic encephalopathy and mild cognitive impairment worsen quality of life in elderly patients with cirrhosis. Clin. Gastroenterol. Hepatol. 18, 3008–3016.e2 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  323. Wang, J. Y. et al. Lactulose improves cognition, quality of life, and gut microbiota in minimal hepatic encephalopathy: a multicenter, randomized controlled trial. J. Dig. Dis. 20, 547–556 (2019).

    Article  CAS  PubMed  Google Scholar 

  324. Bruyneel, M. et al. Improvement of sleep architecture parameters in cirrhotic patients with recurrent hepatic encephalopathy with the use of rifaximin. Eur. J. Gastroenterol. Hepatol. 29, 302–308 (2017).

    Article  CAS  PubMed  Google Scholar 

  325. Sack, J. & Hashemi, N. Smartphone-based remote health monitoring-implications for healthcare delivery in patients with cirrhosis. J. Gen. Intern. Med. 34, 2726–2727 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  326. Romero-Gómez, M. Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis. Ann. Intern. Med. 153, 281 (2010).

    Article  PubMed  Google Scholar 

  327. Yokoyama, K. et al. Hydrogen-producing small intestinal bacterial overgrowth is associated with hepatic encephalopathy and liver function. PLoS ONE 17, e0264459 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  328. Rush, B. et al. Lower 90-day hospital readmission rates for esophageal variceal bleeding after TIPS: a nationwide linked analysis. J. Clin. Gastroenterol. 54, 90–95 (2020).

    Article  PubMed  Google Scholar 

  329. Labenz, C. et al. Association between diabetes mellitus and hepatic encephalopathy in patients with cirrhosis. Aliment. Pharmacol. Ther. 52, 527–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  330. Häussinger, D., Görg, B., Reinehr, R. & Schliess, F. Protein tyrosine nitration in hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 20, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  331. Brenner, M. et al. Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol. Scand. 132, 156–163 (2015).

    Article  CAS  PubMed  Google Scholar 

  332. Götz, T. et al. Impaired evoked and resting-state brain oscillations in patients with liver cirrhosis as revealed by magnetoencephalography. NeuroImage Clin. 2, 873–882 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  333. Oeltzschner, G. et al. Low visual cortex GABA levels in hepatic encephalopathy: links to blood ammonia, critical flicker frequency, and brain osmolytes. Metab. Brain Dis. 30, 1429–1438 (2015).

    Article  CAS  PubMed  Google Scholar 

  334. Zöllner, H. J. et al. Chemical exchange saturation transfer imaging in hepatic encephalopathy. NeuroImage Clin. 22, 101743 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  335. Schomerus, H. et al. Latent portasystemic encephalopathy. Dig. Dis. Sci. 26, 622–630 (1981).

    Article  CAS  PubMed  Google Scholar 

  336. Watanabe, A., Tuchida, T., Yata, Y. & Kuwabara, Y. Evaluation of neuropsychological function in patients with liver cirrhosis with special reference to their driving ability. Metab. Brain Dis. 10, 239–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  337. Wein, C., Koch, H., Popp, B., Oehler, G. & Schauder, P. Minimal hepatic encephalopathy impairs fitness to drive. Hepatology 39, 739–745 (2004).

    Article  PubMed  Google Scholar 

  338. Marottoli, R. A. Predictors of automobile crashes and moving violations among elderly drivers. Ann. Intern. Med. 121, 842 (1994).

    Article  CAS  PubMed  Google Scholar 

  339. Bajaj, J. S., Hafeezullah, M., Hoffmann, R. G. & Saeian, K. Minimal hepatic encephalopathy: a vehicle for accidents and traffic violations. Am. J. Gastroenterol. 102, 1903–1909 (2007).

    Article  PubMed  Google Scholar 

  340. Bajaj, J. S., Saeian, K., Hafeezullah, M., Hoffmann, R. G. & Hammeke, T. A. Patients with minimal hepatic encephalopathy have poor insight into their driving skills. Clin. Gastroenterol. Hepatol. 6, 1135–1139 (2008).

    Article  PubMed  Google Scholar 

  341. Srivastava, A., Mehta, R., Rothke, S. P., Rademaker, A. W. & Blei, A. T. Fitness to drive in patients with cirrhosis and portal-systemic shunting: a pilot study evaluating driving performance. J. Hepatol. 21, 1023–1028 (1994).

    Article  CAS  PubMed  Google Scholar 

  342. Subasinghe, S. K. C. E. et al. Association between road accidents and low-grade hepatic encephalopathy among Sri Lankan drivers with cirrhosis: a prospective case control study. BMC Res. Notes 9, 303 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  343. Bajaj, J. S. et al. Important unresolved questions in the management of hepatic encephalopathy: an ISHEN consensus. Am. J. Gastroenterol. 115, 989–1002 (2020).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.H.); Epidemiology (D.H. and H.V.); Mechanisms/pathophysiology (D.H., B.G., V.F. and A.S.); Diagnosis, screening and prevention (D.H., S.M., G.K., S.D.T.-R. and M.R.-G.); Management (D.H., H.V., S.M., M.M. and R.J.); Quality of life (D.H., H.V., G.K. and R.K.D.); Outlook (D.H. and R.J.); Overview of Primer (D.H.).

Corresponding author

Correspondence to Dieter Häussinger.

Ethics declarations

Competing interests

D.H. and G.K. are members of the “Flicker Diagnostics GbR”. The S.M. group has received research funding from AlfaSigma S.p.a., Norgine Ltd., Merz Pharmaceuticals GmbH, Umecrine Cognition AB and Versantis AG. R.J. has research collaborations with Yaqrit Ltd. and Takeda. R.J. is the inventor of OPA, which has been patented by University College London and licensed to Mallinckrodt Pharma. He is also the founder of Yaqrit Ltd., a spin-out company from University College London, Cyberliver Ltd. and Hepyx Ltd. S.D.T.-R., B.G., M.R.-G., M.M., R.K.D., H.V., A.S. and V.F. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Patrick Kamath, Naveen Nasser-Ghodsi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Häussinger, D., Dhiman, R.K., Felipo, V. et al. Hepatic encephalopathy. Nat Rev Dis Primers 8, 43 (2022). https://doi.org/10.1038/s41572-022-00366-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-022-00366-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing