Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Histiocytic disorders

Abstract

The historic term ‘histiocytosis’ meaning ‘tissue cell’ is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim–Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai–Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. ‘Inflammatory myeloproliferative neoplasm’ may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutations found in histiocytic disorders.
Fig. 2: Physiopathology of Langerhans cell histiocytosis7,61,73.
Fig. 3: Clinical presentations of LCH, ECD, JXG and RDD.
Fig. 4: Manifestations of LCH.
Fig. 5: Clinical presentations of ECD.
Fig. 6: Rashes in JXG.
Fig. 7: Clinical presentations in RDD.
Fig. 8: Diagnostic algorithm for HLH.
Fig. 9: Clinical presentations of HLH.
Fig. 10: Histological characteristics of LCH, JXG and RDD.
Fig. 11: Histology of HLH.

Similar content being viewed by others

References

  1. Favara, B. E. et al. Contemporary classification of histiocytic disorders. Med. Pediatr. Oncol. 29, 157–166 (1997).

    CAS  PubMed  Google Scholar 

  2. Emile, J. F. et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood 127, 2672–2681 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aschoff, L. & Kiyono, K. Frage der grossen Mononulearn. Folia Haematol. 15, 383–390 (1913).

    Google Scholar 

  4. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139, 380–397 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  7. Bigenwald, C., Chakraborty, R. & Chen, S. T. BRAFV600E-induced senescence in hematopoietic progenitors drives Langerhans cell histiocytosis pathophysiology. Nat. Med. 27, 851–861 (2021).

    CAS  PubMed  Google Scholar 

  8. Allen, C. E. et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J. Immunol. 184, 4557–4567 (2010).

    CAS  PubMed  Google Scholar 

  9. Allen, C. E., Merad, M. & McClain, K. L. Langerhans-cell histiocytosis. N. Engl. J. Med. 379, 856–868 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jordan, M. B., Allen, C. E., Weitzman, S., Filipovich, A. H. & McClain, K. L. How I treat hemophagocytic lymphohistiocytosis. Blood 118, 4041–4052 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gadner, H. et al. Improved outcome in multisystem Langerhans cell histiocytosis is associated with therapy intensification. Blood 111, 2556–2562 (2008).

    CAS  PubMed  Google Scholar 

  12. McClain, K. L. et al. CNS Langerhans cell histiocytosis: common hematopoietic origin for LCH-associated neurodegeneration and mass lesions. Cancer 124, 2607–2620 (2018).

    CAS  PubMed  Google Scholar 

  13. Yeh, E. A. et al. Clinical and radiographic improvement of neurodegenerative Langerhans cell histiocytosis (ND-LCH) following dabrafenib [abstract]. Neurology 86 (Suppl. 16), P3.266 (2016).

    Google Scholar 

  14. Haroche, J. et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J. Clin. Oncol. 33, 411–418 (2015).

    CAS  PubMed  Google Scholar 

  15. Hervier, B. et al. Treatment of Erdheim-Chester disease with long-term high-dose interferon-α. Semin. Arthritis Rheum. 41, 907–913 (2012).

    CAS  PubMed  Google Scholar 

  16. Ribeiro, K. B., Degar, B., Antoneli, C. B., Rollins, B. & Rodriguez-Galindo, C. Ethnicity, race, and socioeconomic status influence incidence of Langerhans cell histiocytosis. Pediatr. Blood Cancer 62, 982–987 (2015).

    PubMed  Google Scholar 

  17. Guyot-Goubin, A. et al. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000-2004. Pediatr. Blood Cancer 51, 71–75 (2008).

    PubMed  Google Scholar 

  18. Alston, R. D. et al. Incidence and survival of childhood Langerhans cell histiocytosis in Northwest England from 1954 to 1998. Pediatr. Blood Cancer 48, 555–560 (2007).

    CAS  PubMed  Google Scholar 

  19. Stalemark, H. et al. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr. Blood Cancer 51, 76–81 (2008).

    PubMed  Google Scholar 

  20. Weiss, L. M. & Facchetti, F. in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds Swerdlow, S. H. et al.) 470–472 (IARC, 2017).

  21. Bhatia, S. et al. Epidemiologic study of Langerhans cell histiocytosis in children. J. Pediatr. 130, 774–784 (1997).

    CAS  PubMed  Google Scholar 

  22. Venkatramani, R., Rosenberg, S., Indramohan, G., Jeng, M. & Jubran, R. An exploratory epidemiological study of Langerhans cell histiocytosis. Pediatr. Blood Cancer 59, 1324–1326 (2012).

    PubMed  Google Scholar 

  23. Peckham-Gregory, E. C., McClain, K. L., Allen, C. E., Scheurer, M. E. & Lupo, P. J. The role of parental and perinatal characteristics on Langerhans cell histiocytosis: characterizing increased risk among Hispanics. Ann. Epidemiol. 28, 521–528 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Peckham-Gregory, E. C. et al. A genome-wide association study of LCH identifies a variant in SMAD6 associated with susceptibility. Blood 130, 2229–2232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vassallo, R., Ryu, J. H., Colby, T. V., Hartman, T. & Limper, A. H. Pulmonary Langerhans’-cell histiocytosis. N. Engl. J. Med. 342, 1969–1978 (2000).

    CAS  PubMed  Google Scholar 

  26. Goyal, G. et al. Adult disseminated Langerhans cell histiocytosis: incidence, racial disparities and long-term outcomes. Br. J. Haematol. 182, 579–581 (2018).

    PubMed  Google Scholar 

  27. Tran, T. A. et al. Erdheim-Chester disease in childhood: a challenging diagnosis and treatment. J. Pediatr. Hematol. Oncol. 31, 782–786 (2009).

    PubMed  Google Scholar 

  28. Haroche, J., Cohen-Aubart, F. & Amoura, Z. Erdheim-Chester disease. Blood 135, 1311–1318 (2020).

    PubMed  Google Scholar 

  29. Janssen, D. & Harms, D. Juvenile xanthogranuloma in childhood and adolescence: a clinicopathologic study of 129 patients from the Kiel Pediatric Tumor Registry. Am. J. Surg. Pathol. 29, 21–28 (2005).

    PubMed  Google Scholar 

  30. Isaacs, H. Jr. Fetal and neonatal histiocytoses. Pediatr. Blood Cancer 47, 123–129 (2006).

    PubMed  Google Scholar 

  31. Cambiaghi, S., Restano, L. & Caputo, R. Juvenile xanthogranuloma associated with neurofibromatosis 1: 14 patients without evidence of hematologic malignancies. Pediatr. Dermatol. 21, 97–101 (2004).

    PubMed  Google Scholar 

  32. Destombes, P. Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases) [French]. Bull. Soc. Pathol. Exot. Filiales. 58, 1169–1175 (1965).

    CAS  PubMed  Google Scholar 

  33. Rosai, J. & Dorfman, R. F. Sinus histiocytosis with massive lymphadenopathy. A newly recognized benign clinicopathological entity. Arch. Pathol. 87, 63–70 (1969).

    CAS  PubMed  Google Scholar 

  34. Foucar, E., Rosai, J. & Dorfman, R. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): review of the entity. Semin. Diagn. Pathol. 7, 19–73 (1990).

    CAS  PubMed  Google Scholar 

  35. Elshikh, M. et al. Disease characteristics, radiologic patterns, comorbid diseases, and ethnic differences in 32 patients with Rosai-Dorfman disease. J. Comput. Assist. Tomogr. 44, 450–461 (2020).

    PubMed  Google Scholar 

  36. Wang, K. H. et al. Cutaneous Rosai-Dorfman disease: clinicopathological profiles, spectrum and evolution of 21 lesions in six patients. Br. J. Dermatol. 154, 277–286 (2006).

    PubMed  Google Scholar 

  37. Henter, J. I., Elinder, G., Soder, O. & Ost, A. Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Acta Paediatr. Scand. 80, 428–435 (1991).

    CAS  PubMed  Google Scholar 

  38. Meeths, M., Horne, A., Sabel, M., Bryceson, Y. T. & Henter, J. I. Incidence and clinical presentation of primary hemophagocytic lymphohistiocytosis in Sweden. Pediatr. Blood Cancer 62, 346–352 (2015).

    PubMed  Google Scholar 

  39. Allen, C. E., Yu, X., Kozinetz, C. A. & McClain, K. L. Highly elevated ferritin levels and the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 50, 1227–1235 (2008).

    PubMed  Google Scholar 

  40. Niece, J. A., Rogers, Z. R., Ahmad, N., Langevin, A. M. & McClain, K. L. Hemophagocytic lymphohistiocytosis in Texas: observations on ethnicity and race. Pediatr. Blood Cancer 54, 424–428 (2010).

    PubMed  Google Scholar 

  41. Ishii, E. et al. Nationwide survey of hemophagocytic lymphohistiocytosis in Japan. Int. J. Hematol. 86, 58–65 (2007).

    PubMed  Google Scholar 

  42. Marsh, R. A. Epstein-Barr virus and hemophagocytic lymphohistiocytosis. Front Immunol. 8, 1902 (2017).

    PubMed  Google Scholar 

  43. Xu, X. J. et al. Clinical presentation and outcome of pediatric patients with hemophagocytic lymphohistiocytosis in China: a retrospective multicenter study. Pediatr. Blood Cancer 64, e26264 (2017).

    Google Scholar 

  44. Shamriz, O. et al. T cell-Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (HLH) occurs in non-Asians and is associated with a T cell activation state that is comparable to primary HLH. J. Clin. Immunol. https://doi.org/10.1007/s10875-021-01073-9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chinn, I. K. et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 132, 89–100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schram, A. M. & Berliner, N. How I treat hemophagocytic lymphohistiocytosis in the adult patient. Blood 125, 2908–2914 (2015).

    CAS  PubMed  Google Scholar 

  47. Ramos-Casals, M., Brito-Zeron, P., Lopez-Guillermo, A., Khamashta, M. A. & Bosch, X. Adult haemophagocytic syndrome. Lancet 383, 1503–1516 (2014).

    PubMed  Google Scholar 

  48. Arceci, R. J., Brenner, M. K. & Pritchard, J. Controversies and new approaches to treatment of Langerhans cell histiocytosis. Hematol. Oncol. Clin. North Am. 12, 339–357 (1998).

    CAS  PubMed  Google Scholar 

  49. Willman, C. L. et al. Langerhans’-cell histiocytosis (histiocytosis X)–a clonal proliferative disease. N. Engl. J. Med. 331, 154–160 (1994).

    CAS  PubMed  Google Scholar 

  50. Yu, R. C., Chu, C., Buluwela, L. & Chu, A. C. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet 343, 767–768 (1994).

    CAS  PubMed  Google Scholar 

  51. Da Costa, C. E. et al. No genomic aberrations in Langerhans cell histiocytosis as assessed by diverse molecular technologies. Genes Chromosomes Cancer 48, 239–249 (2009).

    PubMed  Google Scholar 

  52. Badalian-Very, G. et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116, 1919–1923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Samatar, A. A. & Poulikakos, P. I. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov. 13, 928–942 (2014).

    CAS  PubMed  Google Scholar 

  54. Brown, N. A. et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 124, 1655–1658 (2014).

    CAS  PubMed  Google Scholar 

  55. Mourah, S. et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur. Respir. J. 47, 1785–1796 (2016).

    CAS  PubMed  Google Scholar 

  56. Nelson, D. S. et al. MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer 54, 361–368 (2015).

    CAS  PubMed  Google Scholar 

  57. Chakraborty, R. et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood 128, 2533–2537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chakraborty, R. et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124, 3007–3015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nezelof, C., Basset, F. & Rousseau, M. F. Histiocytosis X histogenetic arguments for a Langerhans cell origin. Biomedicine 18, 365–371 (1973).

    CAS  PubMed  Google Scholar 

  60. Birbeck, M. S., Breathnach, A. S. & Everall, J. D. An electron microscope study of basal melanocytes and high-level clear cells (Langerhans cells) in vitiligo. J. Invest. Dermatol. 37, 51–64 (1961).

    Google Scholar 

  61. Merad, M., Ginhoux, F. & Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8, 935–947 (2008).

    CAS  PubMed  Google Scholar 

  62. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    CAS  PubMed  Google Scholar 

  63. Berres, M. L. et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J. Exp. Med. 211, 669–683 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Heritier, S., Emile, J. F. & Barkaoui, M. BRAF mutation correlates with high-risk Langerhans cell histiocytosis and increased resistance to first line therapy. J. Clin. Oncol. 34, 3023–3030 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Durham, B. H. et al. Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells. Blood 130, 176–180 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Milne, P. et al. Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults. Blood 130, 167–175 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Halbritter, F. et al. Epigenomics and single-cell sequencing define a developmental hierarchy in langerhans cell histiocytosis. Cancer Discov. 9, 1406–1421 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Eckstein, O. S., Visser, J., Rodriguez-Galindo, C. & Allen, C. E. Clinical responses and persistent BRAF V600E(+) blood cells in children with LCH treated with MAPK pathway inhibition. Blood 133, 1691–1694 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Donadieu, J. et al. Vemurafenib for refractory multisystem langerhans cell histiocytosis in children: an international observational study. J. Clin. Oncol. 37, 2857–2865 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cohen, A. F. et al. High frequency of clonal hematopoiesis in Erdheim-Chester disease. Blood 137, 485–492 (2021).

    Google Scholar 

  71. Yokokawa, Y. et al. Unique clonal relationship between T-cell acute lymphoblastic leukemia and subsequent Langerhans cell histiocytosis with TCR rearrangement and NOTCH1 mutation. Genes Chromosomes Cancer 54, 409–417 (2015).

    CAS  PubMed  Google Scholar 

  72. Rodig, S. J. et al. Aggressive Langerhans cell histiocytosis following T-ALL: clonally related neoplasms with persistent expression of constitutively active NOTCH1. Am. J. Hematol. 83, 116–121 (2008).

    CAS  PubMed  Google Scholar 

  73. Hogstad, B. et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J. Exp. Med 215, 319–336 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sengal, A. et al. Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood 137, 1777–1791 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Senechal, B. et al. Expansion of regulatory T cells in patients with Langerhans cell histiocytosis. PLoS. Med. 4, e253 (2007).

    PubMed  PubMed Central  Google Scholar 

  76. Grois, N. et al. Central nervous system disease in Langerhans cell histiocytosis. J. Pediatr. 156, 873–881 (2010).

    PubMed  Google Scholar 

  77. Grois, N., Prayer, D., Prosch, H. & Lassmann, H. Neuropathology of CNS disease in Langerhans cell histiocytosis. Brain 128, 829–838 (2005).

    PubMed  Google Scholar 

  78. Mass, E. et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Haroche, J. et al. Histiocytoses: emerging neoplasia behind inflammation. Lancet Oncol. 18, e113–e125 (2017).

    PubMed  Google Scholar 

  80. Diamond, E. L. et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 6, 154–165 (2016).

    CAS  PubMed  Google Scholar 

  81. Durham, B. H. et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat. Med 25, 1839–1842 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Emile, J. F. et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 124, 3016–3019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rafiei, A. et al. BRAFV 600E or mutant MAP2K1 human CD34+ cells establish Langerhans cell-like histiocytosis in immune-deficient mice. Blood Adv. 4, 4912–4917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen-Aubart, F. et al. Phenotypes and survival in Erdheim-Chester disease: Results from a 165-patient cohort. Am. J. Hematol. 93, E114–E117 (2018).

    PubMed  Google Scholar 

  85. Picarsic, J. et al. BRAF V600E mutation in juvenile xanthogranuloma family neoplasms of the central nervous system (CNS-JXG): a revised diagnostic algorithm to include pediatric Erdheim-Chester disease. Acta Neuropathol. Commun. 7, 168 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Burgdorf, W. H. & Zelger, B. JXG, NF1, and JMML: alphabet soup or a clinical issue? Pediatr. Dermatol. 21, 174–176 (2004).

    PubMed  Google Scholar 

  87. Zvulunov, A., Barak, Y. & Metzker, A. Juvenile xanthogranuloma, neurofibromatosis, and juvenile chronic myelogenous leukemia. World statistical analysis. Arch. Dermatol. 131, 904–908 (1995).

    CAS  PubMed  Google Scholar 

  88. Chang, K. T. E. et al. ALK-positive histiocytosis: an expanded clinicopathologic spectrum and frequent presence of KIF5B-ALK fusion. Mod. Pathol. 32, 598–608 (2019).

    PubMed  Google Scholar 

  89. Garces, S. et al. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod. Pathol. 30, 1367–1377 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee, L. H. et al. Real-time genomic profiling of histiocytoses identifies early-kinase domain BRAF alterations while improving treatment outcomes. JCI Insight 2, e89473 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Avitan-Hersh, E. et al. A case of H syndrome showing immunophenotye similarities to Rosai-Dorfman disease. Am. J. Dermatopathol. 33, 47–51 (2011).

    PubMed  Google Scholar 

  92. Rossbach, H. C., Dalence, C., Wynn, T. & Tebbi, C. Faisalabad histiocytosis mimics Rosai-Dorfman disease: brothers with lymphadenopathy, intrauterine fractures, short stature, and sensorineural deafness. Pediatr. Blood Cancer 47, 629–632 (2006).

    PubMed  Google Scholar 

  93. Morgan, N. V. et al. Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease. PLoS Genet. 6, e1000833 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Picarsic, J. & Jaffe, R. Nosology and pathology of Langerhans cell histiocytosis. Hematol. Oncol. Clin. North Am. 29, 799–823 (2015).

    PubMed  Google Scholar 

  95. Ammann, S. et al. Effective immunological guidance of genetic analyses including exome sequencing in patients evaluated for hemophagocytic lymphohistiocytosis. J. Clin. Immunol. 37, 770–780 (2017).

    CAS  PubMed  Google Scholar 

  96. Meeths, M. et al. Pathophysiology and spectrum of diseases caused by defects in lymphocyte cytotoxicity. Exp. Cell Res. 325, 10–17 (2014).

    CAS  PubMed  Google Scholar 

  97. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    CAS  PubMed  Google Scholar 

  98. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    CAS  PubMed  Google Scholar 

  99. Zur, S. U. et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum. Mol. Genet. 14, 827–834 (2005).

    Google Scholar 

  100. Cote, M. et al. Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells. J. Clin. Invest. 119, 3765–3773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    CAS  PubMed  Google Scholar 

  102. Nagle, D. L. et al. Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome. Nat. Genet. 14, 307–311 (1996).

    CAS  PubMed  Google Scholar 

  103. de Saint, B. G. & Fischer, A. The role of cytotoxicity in lymphocyte homeostasis. Curr. Opin. Immunol. 13, 549–554 (2001).

    Google Scholar 

  104. Henter, J. I. et al. Hypercytokinemia in familial hemophagocytic lymphohistiocytosis. Blood 78, 2918–2922 (1991).

    CAS  PubMed  Google Scholar 

  105. Osugi, Y. et al. Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis. Blood 89, 4100–4103 (1997).

    CAS  PubMed  Google Scholar 

  106. Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 72, 1059–1063 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jordan, M. B., Hildeman, D., Kappler, J. & Marrack, P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood 104, 735–743 (2004).

    CAS  PubMed  Google Scholar 

  108. Pachlopnik, S. J. et al. A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH). Eur. J. Immunol. 38, 3219–3225 (2008).

    Google Scholar 

  109. Crozat, K. et al. Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. J. Exp. Med. 204, 853–863 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sepulveda, F. E. et al. Distinct severity of HLH in both human and murine mutants with complete loss of cytotoxic effector PRF1, RAB27A, and STX11. Blood 121, 595–603 (2013).

    CAS  PubMed  Google Scholar 

  111. Locatelli, F. et al. Emapalumab in children with Primary hemophagocytic lymphohistiocytosis. N. Engl. J. Med 382, 1811–1822 (2020).

    PubMed  Google Scholar 

  112. Sayos, J. et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395, 462–469 (1998).

    CAS  PubMed  Google Scholar 

  113. Coffey, A. J. et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat. Genet. 20, 129–135 (1998).

    CAS  PubMed  Google Scholar 

  114. Nichols, K. E. et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc. Natl Acad. Sci. USA 95, 13765–13770 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006).

    CAS  PubMed  Google Scholar 

  116. Huck, K. et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J. Clin. Invest. 119, 1350–1358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. van Montfrans, J. M. et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J. Allergy Clin. Immunol. 129, 787–793 (2012).

    PubMed  Google Scholar 

  118. Li, F. Y. et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475, 471–476 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lam, M. T. et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J. Exp. Med. 216, 2778–2799 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Romberg, N. et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46, 1135–1139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bode, S. F. et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica 100, 978–988 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Spinner, M. A. et al. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus-associated hemophagocytic lymphohistiocytosis. J. Allergy Clin. Immunol. 137, 638–640 (2016).

    CAS  PubMed  Google Scholar 

  124. Althonaian, N., Alsultan, A., Morava, E. & Alfadhel, M. Secondary hemophagocytic syndrome associated with COG6 gene defect: report and review. JIMD Rep. 42, 105–111 (2018).

    PubMed  PubMed Central  Google Scholar 

  125. Schulert, G. S. & Grom, A. A. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu. Rev. Med 66, 145–159 (2015).

    CAS  PubMed  Google Scholar 

  126. The French Langerhans’ Cell Histiocytosis Study Group A multicentre retrospective survey of Langerhans’ cell histiocytosis: 348 cases observed between 1983 and 1993. Arch. Dis. Child. 75, 17–24 (1996).

    Google Scholar 

  127. Allen, C. E., Ladisch, S. & McClain, K. L. How I treat Langerhans cell histiocytosis. Blood 126, 26–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rodriguez-Galindo, C. & Allen, C. E. Langerhans cell histiocytosis. Blood 135, 1319–1331 (2020).

    PubMed  Google Scholar 

  129. Simko, S. J. et al. Differentiating skin-limited and multisystem Langerhans cell histiocytosis. J. Pediatr. 165, 990–996 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chellapandian, D. et al. A multicenter study of patients with multisystem Langerhans cell histiocytosis who develop secondary hemophagocytic lymphohistiocytosis. Cancer 125, 963–971 (2019).

    CAS  PubMed  Google Scholar 

  131. Yeh, E. A. et al. Evaluation and treatment of Langerhans cell histiocytosis patients with central nervous system abnormalities: current views and new vistas. Pediatr. Blood Cancer 65, e26784 (2018).

    Google Scholar 

  132. Cohen-Aubart, F. Central nervous system involvement in Erdheim-Chester disease: an observational cohort study. Neurology 95, e2746–e2754 (2020).

    PubMed  Google Scholar 

  133. Freyer, D. R., Kennedy, R., Bostrom, B. C., Kohut, G. & Dehner, L. P. Juvenile xanthogranuloma: forms of systemic disease and their clinical implications. J. Pediatr. 129, 227–237 (1996).

    CAS  PubMed  Google Scholar 

  134. Collum, L. M., Power, W. J., Mullaney, J. & Farrell, M. Limbal xanthogranuloma. J. Pediatr. Ophthalmol. Strabismus 28, 157–159 (1991).

    CAS  PubMed  Google Scholar 

  135. Flaitz, C., Allen, C., Neville, B. & Hicks, J. Juvenile xanthogranuloma of the oral cavity in children: a clinicopathologic study. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 94, 345–352 (2002).

    PubMed  Google Scholar 

  136. Abla, O. et al. Consensus recommendations for the diagnosis and clinical management of Rosai-Dorfman-Destombes disease. Blood 131, 2877–2890 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cohen-Aubart, F. et al. La maladie de Rosai-Dorfman-Destombes est une histiocytose inflammatoire polymporphe: etude phenotypique multicentrique de 47 patients [French]. Med. Interne 36, A40–A41 (2015).

    Google Scholar 

  138. Juskevicius, R. & Finley, J. L. Rosai-Dorfman disease of the parotid gland: cytologic and histopathologic findings with immunohistochemical correlation. Arch. Pathol. Lab. Med. 125, 1348–1350 (2001).

    CAS  PubMed  Google Scholar 

  139. Sandoval-Sus, J. D. et al. Rosai-Dorfman disease of the central nervous system: report of 6 cases and review of the literature. Medicine (Baltimore) 93, 165–175 (2014).

    Google Scholar 

  140. Jordan, M. B. et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr. Blood Cancer 66, e27929 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Bergsten, E. et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood 130, 2728–2738 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Horne, A. et al. How to treat involvement of the central nervous system in hemophagocytic lymphohistiocytosis? Curr. Treat. Options Neurol. 19, 3 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Benson, L. A. et al. Pediatric CNS-isolated hemophagocytic lymphohistiocytosis. Neurol. Neuroimmunol. Neuroinflamm. 6, e560 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Palazzi, D. L., McClain, K. L. & Kaplan, S. L. Hemophagocytic syndrome in children: an important diagnostic consideration in fever of unknown origin. Clin. Infect. Dis. 36, 306–312 (2003).

    PubMed  Google Scholar 

  145. Phillips, M., Allen, C., Gerson, P. & McClain, K. Comparison of FDG-PET scans to conventional radiography and bone scans in management of Langerhans cell histiocytosis. Pediatr. Blood Cancer 52, 97–101 (2009).

    PubMed  Google Scholar 

  146. Ferrell, J. et al. Discrepancies between F-18-FDG PET/CT findings and conventional imaging in Langerhans cell histiocytosis. Pediatr. Blood Cancer 68, e28891 (2021).

    PubMed  Google Scholar 

  147. Ballester, L. Y. et al. The use of BRAF V600E mutation-specific immunohistochemistry in pediatric Langerhans cell histiocytosis. Hematol. Oncol. 36, 307–315 (2018).

    CAS  PubMed  Google Scholar 

  148. Tsuji, M. et al. Solitary myofibromatosis of the skull: a case report and review of literature. Childs Nerv. Syst. 20, 366–369 (2004).

    PubMed  Google Scholar 

  149. DiCaprio, M. R. & Enneking, W. F. Fibrous dysplasia. Pathophysiology, evaluation, and treatment. J. Bone Jt. Surg. Am. 87, 1848–1864 (2005).

    Google Scholar 

  150. Adler, R. & Wong, C. A. Cranial fasciitis simulating histiocytosis. J. Pediatr. 109, 85–88 (1986).

    CAS  PubMed  Google Scholar 

  151. Goyal, G. et al. Erdheim-Chester disease: consensus recommendations for the evaluation, diagnosis, and treatment in the molecular era. Blood 135, 1929–1945 (2020).

    CAS  PubMed  Google Scholar 

  152. Arnaud, L. et al. 18F-fluorodeoxyglucose-positron emission tomography scanning is more useful in followup than in the initial assessment of patients with Erdheim-Chester disease. Arthritis Rheum. 60, 3128–3138 (2009).

    PubMed  Google Scholar 

  153. Diamond, E. L. et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood 124, 483–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Haroche, J. et al. Images in cardiovascular medicine. Cardiac involvement in Erdheim-Chester disease: magnetic resonance and computed tomographic scan imaging in a monocentric series of 37 patients. Circulation 119, e597–e598 (2009).

    PubMed  Google Scholar 

  155. Haroche, J. et al. Cardiovascular involvement, an overlooked feature of Erdheim-Chester disease: report of 6 new cases and a literature review. Medicine (Baltimore) 83, 371–392 (2004).

    Google Scholar 

  156. Kamisawa, T., Zen, Y., Pillai, S. & Stone, J. H. IgG4-related disease. Lancet 385, 1460–1471 (2015).

    CAS  PubMed  Google Scholar 

  157. Morier, P. et al. Juvenile xanthogranuloma and urticaria pigmentosa. Arch. Dermatol. 111, 365–366 (1975).

    Google Scholar 

  158. Maric, I. et al. Histologic features of sinus histiocytosis with massive lymphadenopathy in patients with autoimmune lymphoproliferative syndrome. Am. J. Surg. Pathol. 29, 903–911 (2005).

    PubMed  Google Scholar 

  159. Vaiselbuh, S. R., Bryceson, Y. T., Allen, C. E., Whitlock, J. A. & Abla, O. Updates on histiocytic disorders. Pediatr. Blood Cancer 61, 1329–1335 (2014).

    PubMed  Google Scholar 

  160. Zhang, X., Hyjek, E. & Vardiman, J. A subset of Rosai-Dorfman disease exhibits features of IgG4-related disease. Am. J. Clin. Pathol. 139, 622–632 (2013).

    CAS  PubMed  Google Scholar 

  161. Gupta, A. et al. The role of the initial bone marrow aspirate in the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 51, 402–404 (2008).

    PubMed  Google Scholar 

  162. Ho, C. et al. Marrow assessment for hemophagocytic lymphohistiocytosis demonstrates poor correlation with disease probability. Am. J. Clin. Pathol. 141, 62–71 (2014).

    PubMed  Google Scholar 

  163. Goel, S., Polski, J. M. & Imran, H. Sensitivity and specificity of bone marrow hemophagocytosis in hemophagocytic lymphohistiocytosis. Ann. Clin. Lab Sci. 42, 21–25 (2012).

    PubMed  Google Scholar 

  164. Lehmberg, K., McClain, K. L., Janka, G. E. & Allen, C. E. Determination of an appropriate cut-off value for ferritin in the diagnosis of hemophagocytic lymphohistiocytosis. Pediatr. Blood Cancer 61, 2101–2103 (2014).

    CAS  PubMed  Google Scholar 

  165. Hayden, A. et al. Soluble interleukin-2 receptor is a sensitive diagnostic test in adult HLH. Blood Adv. 1, 2529–2534 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Rubin, T. S. et al. Perforin and CD107a testing is superior to NK cell function testing for screening patients for genetic HLH. Blood 129, 2993–2999 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442–1455 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lin, H. et al. IFN-γ signature in the plasma proteome distinguishes pediatric hemophagocytic lymphohistiocytosis from sepsis and SIRS. Blood Adv. 5, 3457–3467 (2021).

    PubMed  PubMed Central  Google Scholar 

  170. Riviere, S. et al. Reactive hemophagocytic syndrome in adults: a retrospective analysis of 162 patients. Am. J. Med. 127, 1118–1125 (2014).

    PubMed  Google Scholar 

  171. Parikh, S. A., Kapoor, P., Letendre, L., Kumar, S. & Wolanskyj, A. P. Prognostic factors and outcomes of adults with hemophagocytic lymphohistiocytosis. Mayo Clin. Proc. 89, 484–492 (2014).

    PubMed  Google Scholar 

  172. Daver, N. et al. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer 123, 3229–3240 (2017).

    PubMed  Google Scholar 

  173. Lehmberg, K. et al. Malignancy-associated haemophagocytic lymphohistiocytosis in children and adolescents. Br. J. Haematol. 170, 539–549 (2015).

    PubMed  Google Scholar 

  174. Abdalgani, M. et al. Accuracy of flow cytometric perforin screening for detecting patients with FHL due to PRF1 mutations. Blood 126, 1858–1860 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Gifford, C. E. et al. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. Cytom. B Clin. Cytom. 86, 263–271 (2014).

    Google Scholar 

  176. Ammann, S. et al. A new functional assay for the diagnosis of X-linked inhibitor of apoptosis (XIAP) deficiency. Clin. Exp. Immunol. 176, 394–400 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Bryceson, Y. T. et al. A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood 119, 2754–2763 (2012).

    CAS  PubMed  Google Scholar 

  178. Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wada, T. et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine 65, 74–78 (2014).

    CAS  PubMed  Google Scholar 

  180. Gadoury-Levesque, V. et al. Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders. Blood Adv. 4, 2578–2594 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ravelli, A. et al. 2016 classification criteria for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: a European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann. Rheum. Dis. 75, 481–489 (2016).

    CAS  PubMed  Google Scholar 

  182. Chikwava, K. & Jaffe, R. Langerin (CD207) staining in normal pediatric tissues, reactive lymph nodes, and childhood histiocytic disorders. Pediatr. Dev. Pathol. 7, 607–614 (2004).

    CAS  PubMed  Google Scholar 

  183. Picarsic, J., Egeler, R. M., Chikwava, K., Patterson, K. & Jaffe, R. Histologic patterns of thymic involvement in Langerhans cell proliferations: a clinicopathologic study and review of the literature. Pediatr. Dev. Pathol. 18, 127–138 (2015).

    PubMed  Google Scholar 

  184. Picarsic, J. & Jaffe, R. in Histiocytic Disorders (eds Abla, O. & Janka, G.) 3–50 (Springer, 2018).

  185. Zelger, B. W., Sidoroff, A., Orchard, G. & Cerio, R. Non-Langerhans cell histiocytoses. A new unifying concept. Am. J. Dermatopathol. 18, 490–504 (1996).

    CAS  PubMed  Google Scholar 

  186. Paulli, M. et al. Immunophenotypic characterization of the cell infiltrate in five cases of sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease). Hum. Pathol. 23, 647–654 (1992).

    CAS  PubMed  Google Scholar 

  187. Ost, A., Nilsson-Ardnor, S. & Henter, J. I. Autopsy findings in 27 children with haemophagocytic lymphohistiocytosis. Histopathology 32, 310–316 (1998).

    CAS  PubMed  Google Scholar 

  188. Diamond, E. L. et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature 567, 521–524 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cohen, A. F. et al. Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study). Blood 130, 1377–1380 (2017).

    Google Scholar 

  190. Egeler, R. M., Thompson, R. C. Jr., Voute, P. A. & Nesbit, M. E. Jr. Intralesional infiltration of corticosteroids in localized Langerhans’ cell histiocytosis. J. Pediatr. Orthop. 12, 811–814 (1992).

    CAS  PubMed  Google Scholar 

  191. Tazi, A. et al. Relapsing nodular lesions in the course of adult pulmonary Langerhans cell histiocytosis. Am. J. Respir. Crit. Care Med. 157, 2007–2010 (1998).

    CAS  PubMed  Google Scholar 

  192. Eckstein, O. S. et al. Management of severe pulmonary Langerhans cell histiocytosis in children. Pediatr. Pulmonol. 55, 2074–2081 (2020).

    PubMed  PubMed Central  Google Scholar 

  193. Zinn, D. J. et al. Hydroxyurea: a new old therapy for Langerhans cell histiocytosis. Blood 128, 2462–2465 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Minkov, M. et al. Treatment of multisystem Langerhans cell histiocytosis. Results of the DAL-HX 83 and DAL-HX 90 studies. Klin. Padiatr. 212, 139–144 (2000).

    CAS  PubMed  Google Scholar 

  195. McClain, K. L. & Kozinetz, C. A. A phase II trial using thalidomide for Langerhans cell histiocytosis. Pediatr. Blood Cancer 48, 44–49 (2007).

    PubMed  Google Scholar 

  196. Donadieu, J. et al. Endocrine involvement in pediatric-onset Langerhans’ cell histiocytosis: a population-based study. J. Pediatr. 144, 344–350 (2004).

    PubMed  Google Scholar 

  197. Simko, S. J., McClain, K. L. & Allen, C. E. Up-front therapy for LCH: is it time to test an alternative to vinblastine/prednisone? Br. J. Haematol. 169, 299–301 (2015).

    CAS  PubMed  Google Scholar 

  198. Weitzman, S. et al. 2′-Chlorodeoxyadenosine (2-CdA) as salvage therapy for Langerhans cell histiocytosis (LCH). Results of the LCH-S-98 protocol of the Histiocyte Society. Pediatr. Blood Cancer 53, 1271–1276 (2009).

    PubMed  Google Scholar 

  199. Allen, C. E. et al. Neurodegenerative central nervous system Langerhans cell histiocytosis and coincident hydrocephalus treated with vincristine/cytosine arabinoside. Pediatr. Blood Cancer 54, 416–423 (2010).

    PubMed  PubMed Central  Google Scholar 

  200. Morimoto, A. et al. Intensified and prolonged therapy comprising cytarabine, vincristine and prednisolone improves outcome in patients with multisystem Langerhans cell histiocytosis: results of the Japan Langerhans Cell Histiocytosis Study Group-02 Protocol Study. Int. J. Hematol. 104, 99–109 (2016).

    CAS  PubMed  Google Scholar 

  201. Simko, S. J. et al. Clofarabine salvage therapy in refractory multifocal histiocytic disorders, including Langerhans cell histiocytosis, juvenile xanthogranuloma and Rosai-Dorfman disease. Pediatr. Blood Cancer 61, 479–487 (2014).

    CAS  PubMed  Google Scholar 

  202. Goyal, G. et al. Single-agent cladribine as an effective front-line therapy for adults with Langerhans cell histiocytosis. Am. J. Hematol. 96, E146–E150 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Lorillon, G., Meignin, V. & Tazi, A. Adult pulmonary Langerhans cell histiocytosis [French]. Presse Med. 46, 70–78 (2017).

    PubMed  Google Scholar 

  204. Cantu, M. A. et al. Optimal therapy for adults with Langerhans cell histiocytosis bone lesions. PLoS ONE 7, e43257 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tazi, A. et al. Vinblastine chemotherapy in adult patients with Langerhans cell histiocytosis: a multicenter retrospective study. Orphanet. J. Rare. Dis. 12, 95 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Derenzini, E. et al. High efficacy of the MACOP-B regimen in the treatment of adult Langerhans cell histiocytosis, a 20 year experience. BMC Cancer 15, 879 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Sivendran, S., Harvey, H., Lipton, A. & Drabick, J. Treatment of Langerhans cell histiocytosis bone lesions with zoledronic acid: a case series. Int. J. Hematol. 93, 782–786 (2011).

    PubMed  Google Scholar 

  208. Barkaoui, M. A. et al. Long-term follow-up of children with risk organ-negative Langerhans cell histiocytosis after 2-chlorodeoxyadenosine treatment. Br. J. Haematol. 191, 825–834 (2020).

    CAS  PubMed  Google Scholar 

  209. Donadieu, J. et al. Cladribine and cytarabine in refractory multisystem Langerhans cell histiocytosis: results of an international phase 2 study. Blood 126, 1415–1423 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Diamond, E. L. et al. Vemurafenib for BRAF V600-mutant Erdheim-Chester disease and Langerhans cell histiocytosis: analysis of data from the histology-independent, phase 2, open-label VE-BASKET study. JAMA Oncol. 4, 384–388 (2018).

    PubMed  Google Scholar 

  211. Hyman, D. M. et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N. Engl. J. Med. 373, 726–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Arnaud, L. et al. CNS involvement and treatment with interferon-α are independent prognostic factors in Erdheim-Chester disease: a multicenter survival analysis of 53 patients. Blood 117, 2778–2782 (2011).

    CAS  PubMed  Google Scholar 

  213. Haroche, J. et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 121, 1495–1500 (2013).

    CAS  PubMed  Google Scholar 

  214. Cohen-Aubart, F. et al. Variability in the efficacy of the IL1 receptor antagonist anakinra for treating Erdheim-Chester disease. Blood 127, 1509–1512 (2016).

    CAS  PubMed  Google Scholar 

  215. Cohen-Aubart, F. et al. Efficacy of infliximab in the treatment of Erdheim-Chester disease. Ann. Rheum. Dis. 77, 1387–1390 (2018).

    CAS  PubMed  Google Scholar 

  216. Pegoraro, F. et al. Long-term follow-up of mTOR inhibition for Erdheim-Chester disease. Blood 135, 1994–1997 (2020).

    PubMed  Google Scholar 

  217. Ruan, G. J. et al. Acute pancreatitis from treatment with BRAF inhibitors in Erdheim-Chester disease: a report from 2 tertiary referral centers. Pancreas 50, e6–e8 (2021).

    PubMed  Google Scholar 

  218. Estrada-Veras, J. I. et al. The clinical spectrum of Erdheim-Chester disease: an observational cohort study. Blood Adv. 1, 357–366 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Cohen, A. F. et al. Efficacy of the MEK inhibitor cobimetinib for wild-type BRAF Erdheim-Chester disease. Br. J. Haematol. 180, 150–153 (2018).

    Google Scholar 

  220. Stover, D. G., Alapati, S., Regueira, O., Turner, C. & Whitlock, J. A. Treatment of juvenile xanthogranuloma. Pediatr. Blood Cancer 51, 130–133 (2008).

    PubMed  Google Scholar 

  221. Blouin, P. et al. Juvenile xanthogranuloma with hematological dysfunction treated with 2CDA-AraC. Pediatr. Blood Cancer 55, 757–760 (2010).

    PubMed  Google Scholar 

  222. Pulsoni, A. et al. Treatment of sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): report of a case and literature review. Am. J. Hematol. 69, 67–71 (2002).

    PubMed  Google Scholar 

  223. Horneff, G., Jurgens, H., Hort, W., Karitzky, D. & Gobel, U. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): response to methotrexate and mercaptopurine. Med. Pediatr. Oncol. 27, 187–192 (1996).

    CAS  PubMed  Google Scholar 

  224. Scheel, M. M., Rady, P. L., Tyring, S. K. & Pandya, A. G. Sinus histiocytosis with massive lymphadenopathy: presentation as giant granuloma annulare and detection of human herpesvirus 6. J. Am. Acad. Dermatol. 37, 643–646 (1997).

    CAS  PubMed  Google Scholar 

  225. Palomera, L., Domingo, J. M., Olave, T., Romero, S. & Gutierrez, M. Sinus histiocytosis with massive lymphadenopathy: complete response to low-dose interferon-alpha. J. Clin. Oncol. 15, 2176 (1997).

    CAS  PubMed  Google Scholar 

  226. Baildam, E. M., Ewing, C. I., D’Souza, S. W. & Stevens, R. F. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): response to acyclovir. J. R. Soc. Med. 85, 179–180 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Chen, E., Pavlidakey, P. & Sami, N. Rosai-Dorfman disease successfully treated with thalidomide. JAAD Case. Rep. 2, 369–372 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Utikal, J. et al. Imatinib as a treatment option for systemic non-Langerhans cell histiocytoses. Arch. Dermatol. 143, 736–740 (2007).

    CAS  PubMed  Google Scholar 

  229. Rodriguez-Galindo, C. et al. Extranodal Rosai-Dorfman disease in children. J. Pediatr. Hematol. Oncol. 26, 19–24 (2004).

    PubMed  Google Scholar 

  230. Namoglu, E. C. et al. Management and outcomes of sinus histiocytosis with massive lymphadenopathy (Rosai Dorfman Disease). Leuk. Lymphoma 61, 905–911 (2020).

    PubMed  Google Scholar 

  231. Moyon, Q. et al. Lung involvement in Destombes-Rosai-Dorfman disease: clinical and radiological features and response to the MEK inhibitor cobimetinib. Chest 157, 323–333 (2020).

    CAS  PubMed  Google Scholar 

  232. Ehl, S. et al. Recommendations for the use of etoposide-based therapy and bone marrow transplantation for the treatment of HLH: consensus statements by the HLH steering committee of the Histiocyte Society. J. Allergy Clin. Immunol. Pract. 6, 1508–1517 (2018).

    PubMed  Google Scholar 

  233. Johnson, T. S. et al. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J. Immunol. 192, 84–91 (2014).

    CAS  PubMed  Google Scholar 

  234. Mahlaoui, N. et al. Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients. Pediatrics 120, e622–e628 (2007).

    PubMed  Google Scholar 

  235. Henter, J. I. et al. Treatment of hemophagocytic lymphohistiocytosis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood 100, 2367–2373 (2002).

    CAS  PubMed  Google Scholar 

  236. Chellapandian, D. et al. Treatment of Epstein Barr virus-induced haemophagocytic lymphohistiocytosis with rituximab-containing chemo-immunotherapeutic regimens. Br. J. Haematol. 162, 376–382 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Ravelli, A., Grom, A. A., Behrens, E. M. & Cron, R. Q. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: diagnosis, genetics, pathophysiology and treatment. Genes Immun. 13, 289–298 (2012).

    CAS  PubMed  Google Scholar 

  238. Ehl, S. et al. Is neutralization of IFN-γ sufficient to control inflammation in HLH? Pediatr. Blood Cancer 68, e28886 (2021).

    PubMed  Google Scholar 

  239. Strout, M. P., Seropian, S. & Berliner, N. Alemtuzumab as a bridge to allogeneic SCT in atypical hemophagocytic lymphohistiocytosis. Nat. Rev. Clin. Oncol. 7, 415–420 (2010).

    PubMed  Google Scholar 

  240. Marsh, R. A. et al. Salvage therapy of refractory hemophagocytic lymphohistiocytosis with alemtuzumab. Pediatr. Blood Cancer 60, 101–109 (2013).

    CAS  PubMed  Google Scholar 

  241. Das, R. et al. Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood 127, 1666–1675 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Maschalidi, S., Sepulveda, F. E., Garrigue, A., Fischer, A. & de Saint, B. G. Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood 128, 60–71 (2016).

    CAS  PubMed  Google Scholar 

  243. Sin, J. H. & Zangardi, M. L. Ruxolitinib for secondary hemophagocytic lymphohistiocytosis: first case report. Hematol. Oncol. Stem Cell Ther. 12, 166–170 (2019).

    CAS  PubMed  Google Scholar 

  244. Broglie, L. et al. Ruxolitinib for treatment of refractory hemophagocytic lymphohistiocytosis. Blood Adv. 1, 1533–1536 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Ahmed, A. et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 6, e630–e637 (2019).

    PubMed  PubMed Central  Google Scholar 

  246. Eloseily, E. M. et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 72, 326–334 (2020).

    CAS  PubMed  Google Scholar 

  247. Gabay, C. et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann. Rheum. Dis. 77, 840–847 (2018).

    CAS  PubMed  Google Scholar 

  248. Allen, C. E. et al. Reduced-intensity conditioning for hematopoietic cell transplant for HLH and primary immune deficiencies. Blood 132, 1438–1451 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Hartz, B. et al. The minimum required level of donor chimerism in hereditary hemophagocytic lymphohistiocytosis. Blood 127, 3281–3290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Felber, M. et al. Targeted busulfan-based reduced-intensity conditioning and HLA-matched HSCT cure hemophagocytic lymphohistiocytosis. Blood Adv. 4, 1998–2010 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Naik, S. H. et al. Incorporation of thiotepa in a reduced intensity conditioning regimen may improve engraftment after transplant for HLH. Br. J. Haematol. 188, e84–e87 (2020).

    PubMed  Google Scholar 

  252. Marsh, R. A. et al. A comparison of hematopoietic cell transplant conditioning regimens for hemophagocytic lymphohistiocytosis disorders. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2021.07.031 (2021).

    Article  PubMed  Google Scholar 

  253. Haupt, R. et al. Permanent consequences in Langerhans cell histiocytosis patients: a pilot study from the Histiocyte Society–Late Effects Study Group. Pediatr. Blood Cancer 42, 438–444 (2004).

    PubMed  Google Scholar 

  254. Nanduri, V. R., Pritchard, J., Levitt, G. & Glaser, A. W. Long term morbidity and health related quality of life after multi-system Langerhans cell histiocytosis. Eur. J. Cancer 42, 2563–2569 (2006).

    PubMed  Google Scholar 

  255. Vrijmoet-Wiersma, C. M. et al. Health-related quality of life, cognitive functioning and behaviour problems in children with Langerhans cell histiocytosis. Pediatr. Blood Cancer 52, 116–122 (2009).

    PubMed  Google Scholar 

  256. Bugnet, E. et al. Psychological features of adult patients with langerhans cell histiocytosis. PLoS ONE 16, e0246604 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Mammano, S., Candiotto, S. & Balsano, M. Cast and brace treatment of eosinophilic granuloma of the spine: long-term follow-up. J. Pediatr. Orthop. 17, 821–827 (1997).

    CAS  PubMed  Google Scholar 

  258. Ronceray, L., Potschger, U., Janka, G., Gadner, H. & Minkov, M. Pulmonary involvement in pediatric-onset multisystem Langerhans cell histiocytosis: effect on course and outcome. J. Pediatr. 161, 129–133 (2012).

    PubMed  Google Scholar 

  259. Delobbe, A., Durieu, J., Duhamel, A. & Wallaert, B. Determinants of survival in pulmonary Langerhans’ cell granulomatosis (histiocytosis X). Groupe d’Etude en Pathologie Interstitielle de la Societe de Pathologie Thoracique du Nord. Eur. Respir. J. 9, 2002–2006 (1996).

    CAS  PubMed  Google Scholar 

  260. McClain, K. L., Gonzalez, J. M., Jonkers, R., De, J. E. & Egeler, M. Need for a cooperative study: pulmonary Langerhans cell histiocytosis and its management in adults. Med. Pediatr. Oncol. 39, 35–39 (2002).

    PubMed  Google Scholar 

  261. Braier, J. et al. Langerhans cell histiocytosis: retrospective evaluation of 123 patients at a single institution. Pediatr. Hematol. Oncol. 16, 377–385 (1999).

    CAS  PubMed  Google Scholar 

  262. Diamond, E. L. et al. A scale for patient-reported symptom assessment for patients with Erdheim-Chester disease. Blood Adv. 3, 934–938 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Maeda, M. et al. Long-term outcomes of children with extracutaneous juvenile xanthogranulomas in Japan. Pediatr. Blood Cancer 67, e28381 (2020).

    PubMed  Google Scholar 

  264. Marsh, R. A. et al. Practice pattern changes and improvements in hematopoietic cell transplantation for primary immunodeficiencies. J. Allergy Clin. Immunol. 142, 2004–2007 (2018).

    PubMed  PubMed Central  Google Scholar 

  265. Peyret, V. et al. Functional toll-like receptor 4 overexpression in papillary thyroid cancer by MAPK/ERK-induced ETS1 transcriptional activity. Mol. Cancer Res. 16, 833–845 (2018).

    CAS  PubMed  Google Scholar 

  266. Minkov, M. et al. Reactivations in multisystem Langerhans cell histiocytosis: data of the international LCH registry. J. Pediatr. 153, 700–705 (2008).

    PubMed  Google Scholar 

  267. Egeler, R. M., de, K. J. & Voute, P. A. Cytosine-arabinoside, vincristine, and prednisolone in the treatment of children with disseminated Langerhans cell histiocytosis with organ dysfunction: experience at a single institution. Med. Pediatr. Oncol. 21, 265–270 (1993).

    CAS  PubMed  Google Scholar 

  268. Canna, S. W. & Marsh, R. A. Pediatric hemophagocytic lymphohistiocytosis. Blood 135, 1332–1343 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The TXCH Histiocytosis Program is supported by a research grant from the HistioCure Foundation (C.E.A. and K.L.M.). The North American Consortium for Histiocytosis is supported by a Consortium grant from St. Baldrick’s Foundation (C.E.A. and K.L.M.). Additional support was received from: National Institutes of Health (NIH) grants CA154947 (M.M. and C.E.A.) and NCI SPORE in Lymphoma P50CA126752 (C.E.A.); Cancer Research UK (CRUK) grant C30484/A21025 (to M.C.); a St. Baldrick’s Foundation Innovation grant (C.E.A.); and the Leukaemia and Lymphoma Society TRP (C.E.A.)

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the review concept and finalized the manuscript. Specific areas of focus: Introduction (C.E.A. and K.L.M.); Epidemiology (K.B.R. and K.L.M.); Mechanisms/pathophysiology (C.B., J.H., R.A.M., M.M., J.P., C.E.A. and K.L.M.); Diagnosis, screening and prevention (J.H., R.A.M., J.P., C.E.A. and K.L.M.); Management (J.H., R.A.M., C.E.A. and K.L.M.); Quality of life (J.H., R.M., C.E.A. and K.L.M.); Outlook (M.C. and C.E.A.); Overview of Primer (K.L.M.).

Corresponding author

Correspondence to Kenneth L. McClain.

Ethics declarations

Competing interests

K.L.M. and C.E.A. have served on advisory committees for SOBI Corporation. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks B. Durham, A. Fischer, C. Hutter, T. Imamura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClain, K.L., Bigenwald, C., Collin, M. et al. Histiocytic disorders. Nat Rev Dis Primers 7, 73 (2021). https://doi.org/10.1038/s41572-021-00307-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00307-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing