Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Microscopic colitis

Abstract

Microscopic colitis (MC) is an inflammatory disease of the large intestine associated with urgent watery diarrhoea. MC may occur in people of all ages, although the disease primarily affects older women. Once believed to be rare, MC is now known to be a common cause of chronic watery diarrhoea in high-income countries, affecting 1 in 115 women and 1 in 286 men during their lifetime in Swedish population-based estimates. An inappropriate immune response to disturbances in the gut microenvironment is implicated in the pathogenesis of MC. Evidence also supports an underlying genetic basis for disease. The diagnosis of MC relies on clinical symptoms and microscopic assessment of colonic biopsy samples. MC is categorized histologically into collagenous colitis, lymphocytic colitis and their incomplete forms. The mainstay of treatment includes the use of budesonide, with or without adjunctive therapies, and withdrawal of offending drugs. Emerging studies suggest a role for biologicals and immunosuppressive therapies for the management of budesonide-refractory or budesonide-dependent disease. MC can have a substantial negative effect on patient quality of life. The outlook for MC includes a better understanding of the immune response, genetics and the microbiome in disease pathogenesis along with progress in disease management through robust clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence of collagenous colitis and lymphocytic colitis.
Fig. 2: Incidence of microscopic colitis by age and sex.
Fig. 3: Pathogenesis of MC.
Fig. 4: Histological criteria for MC.
Fig. 5: Management algorithm for MC.

Similar content being viewed by others

References

  1. Bai, S., Siegal, G. P. & Jhala, N. C. Foxp3 expression patterns in microscopic colitides: a clinicopathologic study of 69 patients. Am. J. Clin. Pathol. 137, 931–936 (2012).

    CAS  PubMed  Google Scholar 

  2. Carrasco, A. et al. Immunological differences between lymphocytic and collagenous colitis. J. Crohns Colitis 10, 1055–1066 (2016).

    PubMed  Google Scholar 

  3. Weimers, P. et al. Incidence and prevalence of microscopic colitis between 2001 and 2016: a Danish nationwide cohort study. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjaa108 (2020).

    Article  PubMed  Google Scholar 

  4. Windon, A. L. et al. Lymphocytic and collagenous colitis in children and adolescents: comprehensive clinicopathologic analysis with long-term follow up. Hum. Pathol. 106, 13–22 (2020).

    PubMed  Google Scholar 

  5. Mellander, M. R. et al. Microscopic colitis: a descriptive clinical cohort study of 795 patients with collagenous and lymphocytic colitis. Scand. J. Gastroenterol. 51, 556–562 (2016).

    PubMed  Google Scholar 

  6. Pardi, D. S. & Kelly, C. P. Microscopic colitis. Gastroenterology 140, 1155–1165 (2011).

    PubMed  Google Scholar 

  7. Verhaegh, B. P. M. et al. Course of disease in patients with microscopic colitis — a European prospective incident cohort study. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab007 (2021).

    Article  PubMed  Google Scholar 

  8. Bjornbak, C., Engel, P. J., Nielsen, P. L. & Munck, L. K. Microscopic colitis: clinical findings, topography and persistence of histopathological subgroups. Alimen. Pharmacol. Ther. 34, 1225–1234 (2011).

    CAS  Google Scholar 

  9. Nyhlin, N., Wickbom, A., Montgomery, S. M., Tysk, C. & Bohr, J. Long-term prognosis of clinical symptoms and health-related quality of life in microscopic colitis: a case-control study. Alimen. Pharmacol. Ther. 39, 963–972 (2014).

    CAS  Google Scholar 

  10. Langner, C. et al. Histology of microscopic colitis-review with a practical approach for pathologists. Histopathology 66, 613–626 (2015). This paper is a comprehensive review of the histological findings in MC.

    PubMed  Google Scholar 

  11. Engel, P. J. H., Fiehn, A. K., Munck, L. K. & Kristensson, M. The subtypes of microscopic colitis from a pathologist’s perspective: past, present and future. Ann. Transl Med. 6, 69 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Lindstrom, C. G. ‘Collagenous colitis’ with watery diarrhoea–a new entity? Pathol. Eur. 11, 87–89 (1976).

    CAS  PubMed  Google Scholar 

  13. Read, N. W. et al. Chronic diarrhea of unknown origin. Gastroenterology 78, 264–271 (1980).

    CAS  PubMed  Google Scholar 

  14. Bonderup, O. K., Wigh, T., Nielsen, G. L., Pedersen, L. & Fenger-Gron, M. The epidemiology of microscopic colitis: a 10-year pathology-based nationwide Danish cohort study. Scand. J. Gastroenterol. 50, 393–398 (2015).

    PubMed  Google Scholar 

  15. Bergman, D. et al. A nationwide cohort study of the incidence of microscopic colitis in Sweden. Alimen. Pharmacol. Ther. 49, 1395–1400 (2019). A nationwide cohort study demonstrating the incidence of MC by calendar year, sex and disease subtype. This study provides the most recent estimates of the lifetime prevalence of the disease.

    Google Scholar 

  16. Verhaegh, B. P. et al. Incidence of microscopic colitis in the Netherlands. A nationwide population-based study from 2000 to 2012. Dig. Liver Dis. 47, 30–36 (2015).

    PubMed  Google Scholar 

  17. Pardi, D. S. et al. The epidemiology of microscopic colitis: a population based study in Olmsted County, Minnesota. Gut 56, 504–508 (2007).

    PubMed  Google Scholar 

  18. Fernandez-Banares, F. et al. Incidence of collagenous and lymphocytic colitis: a 5-year population-based study. Am. J. Gastroenterol. 94, 418–423 (1999).

    CAS  PubMed  Google Scholar 

  19. Fernandez-Banares, F. et al. Evolution of the incidence of collagenous colitis and lymphocytic colitis in Terrassa, Spain: a population-based study. Inflamm. Bowel Dis. 17, 1015–1020 (2011).

    PubMed  Google Scholar 

  20. Fumery, M. et al. Incidence, clinical presentation, and associated factors of microscopic colitis in Northern France: a population-based study. Dig. Dis. Sci. 62, 1571–1579 (2017).

    PubMed  Google Scholar 

  21. Gentile, N. M. et al. The epidemiology of microscopic colitis in Olmsted County from 2002 to 2010: a population-based study. Clin. Gastroenterol. Hepatol. 12, 838–842 (2014).

    PubMed  Google Scholar 

  22. Kane, J. S., Rotimi, O. & Ford, A. C. Macroscopic findings, incidence and characteristics of microscopic colitis in a large cohort of patients from the United Kingdom. Scand. J. Gastroenterol. 52, 988–994 (2017).

    PubMed  Google Scholar 

  23. Agnarsdottir, M. et al. Collagenous and lymphocytic colitis in Iceland. Dig. Dis. Sci. 47, 1122–1128 (2002).

    PubMed  Google Scholar 

  24. Miehlke, S. et al. European guidelines on microscopic colitis: United European Gastroenterology (UEG) and European Microscopic Colitis Group (EMCG) statements and recommendations. United European Gastroenterol. J. https://doi.org/10.1177/2050640620951905 (2021). This paper describes the European guidelines for diagnosis and management of MC.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burke, K. E. et al. Smoking is associated with an increased risk of microscopic colitis: results from two large prospective cohort studies of US Women. J. Crohns Colitis 12, 559–567 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Davidson, S. et al. Microscopic colitis in Denmark and Sweden: incidence, putative risk factors, histological assessment and endoscopic activity. Scand. J. Gastroenterol. 53, 818–824 (2018).

    PubMed  Google Scholar 

  27. Gado, A. S., Ebeid, B. A., El Hindawi, A. A., Akl, M. M. & Axon, A. T. Prevalence of microscopic colitis in patients with chronic diarrhea in Egypt: a single-center study. Saudi J. Gastroenterol. 17, 383–386 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. Valle Mansilla, J. L., Leon Barua, R., Recavarren Arce, S., Berendson Seminario, R. & Biber Poillevard, M. Microscopic colitis in patients with chronic diarrhea. Rev. Gastroenterol. Peru 22, 275–278 (2002).

    CAS  PubMed  Google Scholar 

  29. Essid, M., Kallel, S., Ben Brahim, E., Chatti, S. & Azzouz, M. M. Prevalence of the microscopic colitis to the course of the chronic diarrhea: about 150 cases. Tunis. Med. 83, 284–287 (2005).

    PubMed  Google Scholar 

  30. Erdem, L. et al. Prevalence of microscopic colitis in patients with diarrhea of unknown etiology in Turkey. World J. Gastroenterol. 14, 4319–4323 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Olesen, M., Eriksson, S., Bohr, J., Jarnerot, G. & Tysk, C. Microscopic colitis: a common diarrhoeal disease. An epidemiological study in Orebro, Sweden, 1993-1998. Gut 53, 346–350 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Verhaegh, B. P. et al. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment. Pharmacol. Ther. 43, 1004–1013 (2016).

    CAS  PubMed  Google Scholar 

  33. Masclee, G. M., Coloma, P. M., Kuipers, E. J. & Sturkenboom, M. C. Increased risk of microscopic colitis with use of proton pump inhibitors and non-steroidal anti-inflammatory drugs. Am. J. Gastroenterol. 110, 749–759 (2015).

    CAS  PubMed  Google Scholar 

  34. Bonderup, O. K., Fenger-Gron, M., Wigh, T., Pedersen, L. & Nielsen, G. L. Drug exposure and risk of microscopic colitis: a nationwide Danish case-control study with 5751 cases. Inflamm. Bowel Dis. 20, 1702–1707 (2014).

    PubMed  Google Scholar 

  35. Fernandez-Banares, F. et al. Drug consumption and the risk of microscopic colitis. Am. J. Gastroenterol. 102, 324–330 (2007).

    PubMed  Google Scholar 

  36. Bhatt, A. P. et al. Nonsteroidal anti-inflammatory drug-induced leaky gut modeled using polarized monolayers of primary human intestinal epithelial cells. ACS Infect. Dis. 4, 46–52 (2018).

    CAS  PubMed  Google Scholar 

  37. Berg, D. J. et al. Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology 123, 1527–1542 (2002).

    CAS  PubMed  Google Scholar 

  38. Ligumsky, M., Simon, P. L., Karmeli, F. & Rachmilewitz, D. Role of interleukin 1 in inflammatory bowel disease-enhanced production during active disease. Gut 31, 686–689 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Burke, K. E. et al. Identification of menopausal and reproductive risk factors for microscopic colitis — results from the nurses’ health study. Gastroenterology 155, 1764–1775.e2 (2018). This paper is a large prospective cohort study demonstrating a novel association between menopausal hormone therapy and oral contraceptive use and the risk of MC. This study also verifies independent associations of other medications and the risk of MC.

    PubMed  Google Scholar 

  40. Law, E. H. et al. Association between proton pump inhibitors and microscopic colitis. Ann. Pharmacother. 51, 253–263 (2017).

    CAS  PubMed  Google Scholar 

  41. Bonderup, O. K., Nielsen, G. L., Dall, M., Pottegard, A. & Hallas, J. Significant association between the use of different proton pump inhibitors and microscopic colitis: a nationwide Danish case-control study. Aliment. Pharmacol. Ther. 48, 618–625 (2018).

    CAS  PubMed  Google Scholar 

  42. Umeno, J. et al. Letter: lansoprazole consumption is more common in Japanese patients with collagenous colitis. Aliment. Pharmacol. Ther. 38, 208–209 (2013).

    CAS  PubMed  Google Scholar 

  43. Nomura, E. et al. Linear mucosal defects: a characteristic endoscopic finding of lansoprazole-associated collagenous colitis. Endoscopy 42 (Suppl. 2), E9–E10 (2010).

    PubMed  Google Scholar 

  44. Wilcox, G. M. & Mattia, A. R. Microscopic colitis associated with omeprazole and esomeprazole exposure. J. Clin. Gastroenterol. 43, 551–553 (2009).

    CAS  PubMed  Google Scholar 

  45. Keszthelyi, D. et al. Proton pump inhibitor use is associated with an increased risk for microscopic colitis: a case-control study. Aliment. Pharmacol. Ther. 32, 1124–1128 (2010).

    CAS  PubMed  Google Scholar 

  46. Alpizar-Rodriguez, D. et al. Female hormonal factors and the development of anti-citrullinated protein antibodies in women at risk of rheumatoid arthritis. Rheumatology 56, 1579–1585 (2017).

    CAS  PubMed  Google Scholar 

  47. Khalili, H. et al. Hormone therapy increases risk of ulcerative colitis but not Crohn’s disease. Gastroenterology 143, 1199–1206 (2012).

    CAS  PubMed  Google Scholar 

  48. Khalili, H. et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut 62, 1153–1159 (2013).

    CAS  PubMed  Google Scholar 

  49. Roth, B., Manjer, J. & Ohlsson, B. Microscopic colitis and reproductive factors related to exposure to estrogens and progesterone. Drug Target Insights 7, 53–62 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pai, R. K. et al. The significance of histological activity measurements in immune checkpoint inhibitor colitis. Aliment. Pharmacol. Ther. 53, 150–159 (2021). This paper describes MC induced by checkpoint inhibitors, a complication that will be increasingly observed with the growing use of these agents in cancer therapy.

    CAS  PubMed  Google Scholar 

  51. Ibraheim, H., Green, M., Papa, S. & Powell, N. Topical beclometasone dipropionate in the management of immune checkpoint inhibitor-induced microscopic colitis. BMJ Case Rep. 12, e226481 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Hughes, M. S. et al. Budesonide treatment for microscopic colitis from immune checkpoint inhibitors. J. Immunother. Cancer 7, 292 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Fernandez-Banares, F. et al. Collagenous and lymphocytic colitis. evaluation of clinical and histological features, response to treatment, and long-term follow-up. Am. J. Gastroenterol. 98, 340–347 (2003).

    PubMed  Google Scholar 

  54. Rosa, I. et al. Ticlopidine-induced lymphocytic colitis [In French]. Ann. Med. Interne 150, 437–439 (1999).

    CAS  Google Scholar 

  55. Martinez Aviles, P., Gisbert Moya, C., Berbegal Serra, J. & Lopez Benito, I. Ticlopidine-induced lymphocytic colitis. Med. Clin. 106, 317 (1996).

    CAS  Google Scholar 

  56. Hoffman, H. S. & Butensky, M. S. Severe diarrhea with Ticlid therapy. Conn. Med. 58, 251 (1994).

    CAS  PubMed  Google Scholar 

  57. Berrebi, D. et al. Ticlopidine induced colitis: a histopathological study including apoptosis. J. Clin. Pathol. 51, 280–283 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fernandez-Banares, F. et al. Epidemiological risk factors in microscopic colitis: a prospective case-control study. Inflamm. Bowel Dis. 19, 411–417 (2013).

    PubMed  Google Scholar 

  59. Yen, E. F. et al. Current and past cigarette smoking significantly increase risk for microscopic colitis. Inflamm. Bowel Dis. 18, 1835–1841 (2012).

    PubMed  Google Scholar 

  60. Wickbom, A., Nyhlin, N., Montgomery, S. M., Bohr, J. & Tysk, C. Family history, comorbidity, smoking and other risk factors in microscopic colitis: a case-control study. Eur. J. Gastroenterol. Hepatol. 29, 587–594 (2017).

    PubMed  Google Scholar 

  61. Verhaegh, B. P. M. et al. Early life exposure, lifestyle, and comorbidity as risk factors for microscopic colitis: a case-control study. Inflamm. Bowel Dis. 23, 1040–1046 (2017).

    PubMed  Google Scholar 

  62. Roth, B., Gustafsson, R. J., Jeppsson, B., Manjer, J. & Ohlsson, B. Smoking- and alcohol habits in relation to the clinical picture of women with microscopic colitis compared to controls. BMC Women’s Health 14, 16 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Vigren, L. et al. Is smoking a risk factor for collagenous colitis? Scand. J. Gastroenterol. 46, 1334–1339 (2011).

    PubMed  Google Scholar 

  64. Burke, K. E. et al. Smoking is associated with an increased risk of microscopic colitis: results from two large prospective cohort studies of US women. J. Crohns Colitis 12, 559–567 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Baert, F. et al. Lymphocytic colitis: a distinct clinical entity? A clinicopathological confrontation of lymphocytic and collagenous colitis. Gut 45, 375–381 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Allais, L. et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. 18, 1352–1363 (2016).

    CAS  PubMed  Google Scholar 

  67. Benjamin, J. L. et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel Dis. 18, 1092–1100 (2012).

    PubMed  Google Scholar 

  68. Opstelten, J. L. et al. Gut microbial diversity is reduced in smokers with Crohn’s disease. Inflamm. Bowel Dis. 22, 2070–2077 (2016).

    PubMed  Google Scholar 

  69. Leask, A. & Abraham, D. J. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    CAS  PubMed  Google Scholar 

  70. Cosnes, J. Tobacco and IBD: relevance in the understanding of disease mechanisms and clinical practice. Best. Pract. Res. Clin. Gastroenterol. 18, 481–496 (2004).

    CAS  PubMed  Google Scholar 

  71. Liu, P. H. et al. Obesity and weight gain since early adulthood are associated with a lower risk of microscopic colitis. Clin. Gastroenterol. Hepatol. 17, 2523–2532.e1 (2019).

    PubMed  Google Scholar 

  72. Cotter, T. G., Binder, M., Harper, E. P., Smyrk, T. C. & Pardi, D. S. Optimization of a scoring system to predict microscopic colitis in a cohort of patients with chronic diarrhea. J. Clin. Gastroenterol. 51, 228–234 (2017).

    PubMed  Google Scholar 

  73. Tworoger, S. S. et al. Plasma sex hormone concentrations and subsequent risk of breast cancer among women using postmenopausal hormones. J. Nat. Cancer Inst. 97, 595–602 (2005).

    CAS  PubMed  Google Scholar 

  74. Khalili, H. et al. Endogenous levels of circulating androgens and risk of Crohn’s disease and ulcerative colitis among women: a nested case-control study from the nurses’ health study cohorts. Inflamm. Bowel Dis. 21, 1378–1385 (2015).

    PubMed  Google Scholar 

  75. Liu, P. H. et al. Dietary gluten intake and risk of microscopic colitis among US women without celiac disease: a prospective cohort study. Am. J. Gastroenterol. 114, 127–134 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Larsson, J. K., Sonestedt, E., Ohlsson, B., Manjer, J. & Sjoberg, K. The association between the intake of specific dietary components and lifestyle factors and microscopic colitis. Eur. J. Clin. Nutr. 70, 1309–1317 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Khan, M. A., Brunt, E. M., Longo, W. E. & Presti, M. E. Persistent Clostridium difficile colitis: a possible etiology for the development of collagenous colitis. Dig. Dis. Sci. 45, 998–1001 (2000).

    CAS  PubMed  Google Scholar 

  78. Bohr, J., Nordfelth, R., Jarnerot, G. & Tysk, C. Yersinia species in collagenous colitis: a serologic study. Scand. J. Gastroenterol. 37, 711–714 (2002).

    CAS  PubMed  Google Scholar 

  79. Vesoulis, Z., Lozanski, G. & Loiudice, T. Synchronous occurrence of collagenous colitis and pseudomembranous colitis. Can. J. Gastroenterol. 14, 353–358 (2000).

    CAS  PubMed  Google Scholar 

  80. Nielsen, H. L., Dalager-Pedersen, M. & Nielsen, H. High risk of microscopic colitis after Campylobacter concisus infection: population-based cohort study. Gut 69, 1952–1958 (2020).

    PubMed  Google Scholar 

  81. Fasullo, M. J., Al-Azzawi, Y. & Abergel, J. Microscopic colitis after fecal microbiota transplant. ACG Case Rep. J. 4, e87 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Tariq, R., Smyrk, T., Pardi, D. S., Tremaine, W. J. & Khanna, S. New-onset microscopic colitis in an ulcerative colitis patient after fecal microbiota transplantation. Am. J. Gastroenterol. 111, 751–752 (2016).

    PubMed  Google Scholar 

  83. Roth, B., Manjer, J. & Ohlsson, B. Microscopic colitis is associated with several concomitant diseases. Drug Target Insights 7, 19–25 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Gustafsson, R. J. et al. A cross-sectional study of subclinical and clinical thyroid disorders in women with microscopic colitis compared to controls. Scand. J. Gastroenterol. 48, 1414–1422 (2013).

    PubMed  Google Scholar 

  85. Thorn, M. et al. Microscopic colitis in Uppsala health region, a population-based prospective study 2005-2009. Scand. J. Gastroenterol. 48, 825–830 (2013).

    PubMed  Google Scholar 

  86. Ronnblom, A., Holmstrom, T., Tanghoj, H., Wanders, A. & Sjoberg, D. Celiac disease, collagenous sprue and microscopic colitis in IBD. Observations from a population-based cohort of IBD (ICURE). Scand. J. Gastroenterol. 50, 1234–1240 (2015).

    PubMed  Google Scholar 

  87. Green, P. H. et al. An association between microscopic colitis and celiac disease. Clin. Gastroenterol. Hepatol. 7, 1210–1216 (2009).

    PubMed  Google Scholar 

  88. Stewart, M., Andrews, C. N., Urbanski, S., Beck, P. L. & Storr, M. The association of coeliac disease and microscopic colitis: a large population-based study. Aliment. Pharmacol. Ther. 33, 1340–1349 (2011).

    CAS  PubMed  Google Scholar 

  89. Sonnenberg, A., Turner, K. O. & Genta, R. M. Associations of microscopic colitis with other lymphocytic disorders of the gastrointestinal tract. Clin. Gastroenterol. Hepatol. 16, 1762–1767 (2018). This study describes the association of MC with coeliac disease and other lymphocytic disorders of the gastrointestinal tract.

    PubMed  Google Scholar 

  90. Nguyen, G. C., Smalley, W. E., Vege, S. S. & Carrasco-Labra, A., Clinical Guidelines Committee. American Gastroenterological Association Institute guideline on the medical management of microscopic colitis. Gastroenterology 150, 242–246 (2016). This paper describes the American Gastroenterological Association guidelines on the management of MC.

    PubMed  Google Scholar 

  91. Khalili, H. et al. Microscopic colitis and risk of inflammatory bowel disease in a nationwide cohort study. Gastroenterology 158, 1574–1583.e2 (2020).

    PubMed  Google Scholar 

  92. Borsotti, E. et al. Low prevalence of colorectal neoplasia in microscopic colitis: a large prospective multi-center study. Dig. Liver Dis. https://doi.org/10.1016/j.dld.2020.09.024 (2020).

    Article  PubMed  Google Scholar 

  93. Nyboe Andersen, N., Munck, L. K., Hansen, S., Jess, T. & Wildt, S. All-cause and cause-specific mortality in microscopic colitis: a Danish nationwide matched cohort study. Aliment. Pharmacol. Ther. 52, 319–328 (2020).

    PubMed  Google Scholar 

  94. Bergman, D., Khalili, H., Roelstraete, B. & Ludvigsson, J. F. Microscopic colitis and risk of cancer — a population-based cohort study. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjaa156 (2020).

    Article  PubMed  Google Scholar 

  95. Westerlind, H. et al. Dense genotyping of immune-related loci identifies HLA variants associated with increased risk of collagenous colitis. Gut 66, 421–428 (2017). The first genetic association study demonstrating the relationship between HLA variants and collagenous colitis.

    CAS  PubMed  Google Scholar 

  96. Goranzon, C. et al. Immunohistochemical characterization of lymphocytes in microscopic colitis. J. Crohns Colitis 7, e434–e442 (2013).

    CAS  PubMed  Google Scholar 

  97. Kumawat, A. K., Strid, H., Tysk, C., Bohr, J. & Hornquist, E. H. Microscopic colitis patients demonstrate a mixed Th17/Tc17 and Th1/Tc1 mucosal cytokine profile. Mol. Immunol. 55, 355–364 (2013). This study is a comprehensive assessment of cytokine profiles observed in MC.

    CAS  PubMed  Google Scholar 

  98. Tagkalidis, P. P., Gibson, P. R. & Bhathal, P. S. Microscopic colitis demonstrates a T helper cell type 1 mucosal cytokine profile. J. Clin. Pathol. 60, 382–387 (2007).

    CAS  PubMed  Google Scholar 

  99. Kumawat, A. K. et al. Microscopic colitis patients have increased proportions of Ki67+ proliferating and CD45RO+ active/memory CD8+ and CD4+8+ mucosal T cells. J. Crohns Colitis 7, 694–705 (2013).

    PubMed  Google Scholar 

  100. Kumawat, A. K., Elgbratt, K., Tysk, C., Bohr, J. & Hornquist, E. H. Reduced T cell receptor excision circle levels in the colonic mucosa of microscopic colitis patients indicate local proliferation rather than homing of peripheral lymphocytes to the inflamed mucosa. Biomed. Res. Int. 2013, 408638 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Shibahara, T., Wilcox, J. N., Couse, T. & Madara, J. L. Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 120, 60–70 (2001).

    CAS  PubMed  Google Scholar 

  102. Gunaltay, S. et al. Enhanced levels of chemokines and their receptors in the colon of microscopic colitis patients indicate mixed immune cell recruitment. Med. Inflamm. 2015, 132458 (2015).

    Google Scholar 

  103. Mosnier, J. F. et al. Lymphocytic and collagenous colitis: an immunohistochemical study. Am. J. Gastroenterol. 91, 709–713 (1996).

    CAS  PubMed  Google Scholar 

  104. Munch, A. et al. Dynamics of mucosal permeability and inflammation in collagenous colitis before, during, and after loop ileostomy. Gut 54, 1126–1128 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Barmeyer, C. et al. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J. Gastroenterol. 52, 1090–1100 (2017).

    CAS  PubMed  Google Scholar 

  106. Munch, A., Soderholm, J. D., Ost, A. & Strom, M. Increased transmucosal uptake of E. coli K12 in collagenous colitis persists after budesonide treatment. Am. J. Gastroenterol. 104, 679–685 (2009). A case report that describes dynamic changes in histological inflammation and mucosal permeability with diversion and restoration of the faecal stream in collagenous colitis.

    PubMed  Google Scholar 

  107. Farre, R., Fiorani, M., Abdu Rahiman, S. & Matteoli, G. Intestinal permeability, inflammation and the role of nutrients. Nutrients 12, 1185 (2020).

    CAS  PubMed Central  Google Scholar 

  108. Keita, A. V. et al. Increased uptake of non-pathogenic E. coli via the follicle-associated epithelium in longstanding ileal Crohn’s disease. J. Pathol. 215, 135–144 (2008).

    CAS  PubMed  Google Scholar 

  109. Watson, C. J., Hoare, C. J., Garrod, D. R., Carlson, G. L. & Warhurst, G. Interferon-γ selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J. Cell Sci. 118, 5221–5230 (2005).

    CAS  PubMed  Google Scholar 

  110. Schwarz, B. T. et al. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 132, 2383–2394 (2007).

    CAS  PubMed  Google Scholar 

  111. Jarnerot, G., Bohr, J., Tysk, C. & Eriksson, S. Faecal stream diversion in patients with collagenous colitis. Gut 38, 154–155 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Daferera, N. et al. Fecal stream diversion and mucosal cytokine levels in collagenous colitis: a case report. World J. Gastroenterol. 21, 6065–6071 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Rindom Krogsgaard, L., Kristian Munck, L., Bytzer, P. & Wildt, S. An altered composition of the microbiome in microscopic colitis is driven towards the composition in healthy controls by treatment with budesonide. Scand. J. Gastroenterol. 54, 446–452 (2019).

    CAS  PubMed  Google Scholar 

  114. Morgan, D. M. et al. Microscopic colitis is characterized by intestinal dysbiosis. Clin. Gastroenterol. Hepatol. 18, 984–986 (2020). This is the most comprehensive study characterizing the microbiome in MC.

    PubMed  Google Scholar 

  115. Gustafsson, R. J., Ohlsson, B., Benoni, C., Jeppsson, B. & Olsson, C. Mucosa-associated bacteria in two middle-aged women diagnosed with collagenous colitis. World J. Gastroenterol. 18, 1628–1634 (2012).

    PubMed  PubMed Central  Google Scholar 

  116. Fischer, H. et al. Altered microbiota in microscopic colitis. Gut 64, 1185–1186 (2015).

    PubMed  Google Scholar 

  117. Carstens, A. et al. The gut microbiota in collagenous colitis shares characteristics with inflammatory bowel disease-associated dysbiosis. Clin. Transl Gastroenterol. 10, e00065 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Millien, V., Rosen, D., Hou, J. & Shah, R. Proinflammatory sulfur-reducing bacteria are more abundant in colonic biopsies of patients with microscopic colitis compared to healthy controls. Dig. Dis. Sci. 64, 432–438 (2019).

    CAS  PubMed  Google Scholar 

  119. Stahl, E. et al. Collagenous colitis is associated with HLA signature and shares genetic risks with other immune-mediated diseases. Gastroenterology 159, 549–561.e8 (2020). This paper is the most comprehensive study of genetics in MC, which highlights shared genetics with other immune-mediated diseases.

    CAS  PubMed  Google Scholar 

  120. Green, H. D. et al. Genome-wide association study of microscopic colitis in the UK biobank confirms immune-related pathogenesis. J. Crohns Colitis 13, 1578–1582 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Westerlind, H. et al. HLA associations distinguish collagenous from lymphocytic colitis. Am. J. Gastroenterol. 111, 1211–1213 (2016).

    CAS  PubMed  Google Scholar 

  122. Ung, K. A., Gillberg, R., Kilander, A. & Abrahamsson, H. Role of bile acids and bile acid binding agents in patients with collagenous colitis. Gut 46, 170–175 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fernandez-Banares, F. et al. Bile acid malabsorption in microscopic colitis and in previously unexplained functional chronic diarrhea. Dig. Dis. Sci. 46, 2231–2238 (2001).

    CAS  PubMed  Google Scholar 

  124. Torres, J. et al. Farnesoid X receptor expression in microscopic colitis: a potential role in disease etiopathogenesis. GE Port. J. Gastroenterol. 25, 30–37 (2018).

    PubMed  Google Scholar 

  125. Gadaleta, R. M. et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472 (2011).

    CAS  PubMed  Google Scholar 

  126. Mori, S. et al. Proton pump inhibitor induced collagen expression in colonocytes is associated with collagenous colitis. World J. Gastroenterol. 23, 1586–1593 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Aigner, T. et al. Extracellular matrix composition and gene expression in collagenous colitis. Gastroenterology 113, 136–143 (1997).

    CAS  PubMed  Google Scholar 

  128. Flejou, J. F., Grimaud, J. A., Molas, G., Baviera, E. & Potet, F. Collagenous colitis. Ultrastructural study and collagen immunotyping of four cases. Arch. Pathol. Lab. Med. 108, 977–982 (1984).

    CAS  PubMed  Google Scholar 

  129. Mourelle, M. et al. Stimulation of transforming growth factor beta1 by enteric bacteria in the pathogenesis of rat intestinal fibrosis. Gastroenterology 114, 519–526 (1998).

    CAS  PubMed  Google Scholar 

  130. Gunther, U. et al. Fibrogenesis and fibrolysis in collagenous colitis. Patterns of procollagen types I and IV, matrix-metalloproteinase-1 and -13, and TIMP-1 gene expression. Am. J. Pathol. 155, 493–503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Stahle-Backdahl, M. et al. Increased presence of eosinophilic granulocytes expressing transforming growth factor-beta1 in collagenous colitis. Scand. J. Gastroenterol. 35, 742–746 (2000).

    CAS  PubMed  Google Scholar 

  132. Northcutt, M. J., Gentile, N. M., Goldstein, J. L. & Yen, E. F. Bile acid sequestrant therapy in microscopic colitis. J. Clin. Gastroenterol. https://doi.org/10.1097/MCG.0000000000001496 (2021).

    Article  Google Scholar 

  133. Stoicescu, A., Becheanu, G., Dumbrava, M., Gheorghe, C. & Diculescu, M. Microscopic colitis — a missed diagnosis in diarrhea-predominant irritable bowel syndrome. Maedica 7, 3–9 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. Kamp, E. J., Kane, J. S. & Ford, A. C. Irritable bowel syndrome and microscopic colitis: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 14, 659–668.e1 (2016).

    PubMed  Google Scholar 

  135. Asghar, Z. et al. Diagnostic yield of colonoscopy in patients with symptoms compatible with Rome IV functional bowel disorders. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2020.08.062 (2020). This study demonstrated the overlap between Rome IV functional diarrhoeal illnesses and MC.

    Article  PubMed  Google Scholar 

  136. Hjortswang, H. et al. Defining clinical criteria for clinical remission and disease activity in collagenous colitis. Inflamm. Bowel Dis. 15, 1875–1881 (2009). This paper demonstrates the correlation between disease activity and health-related quality of life using four scoring systems.

    PubMed  Google Scholar 

  137. Cotter, T. G. et al. Development of a microscopic colitis disease activity index: a prospective cohort study. Gut 67, 441–446 (2018). This study established the first disease activity index for MC as a non-invasive marker for use in clinical trials.

    PubMed  Google Scholar 

  138. Loreau, J. et al. Long-term natural history of microscopic colitis: a population-based cohort. Clin. Transl Gastroenterol. 10, e00071 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. von Arnim, U., Wex, T., Ganzert, C., Schulz, C. & Malfertheiner, P. Fecal calprotectin: a marker for clinical differentiation of microscopic colitis and irritable bowel syndrome. Clin. Exp. Gastroenterol. 9, 97–103 (2016).

    Google Scholar 

  140. Wildt, S., Nordgaard-Lassen, I., Bendtsen, F. & Rumessen, J. J. Metabolic and inflammatory faecal markers in collagenous colitis. Eur. J. Gastroenterol. Hepatol. 19, 567–574 (2007).

    CAS  PubMed  Google Scholar 

  141. Wagner, M. et al. Increased fecal levels of chromogranin A, chromogranin B, and secretoneurin in collagenous colitis. Inflammation 36, 855–861 (2013).

    CAS  PubMed  Google Scholar 

  142. Wagner, M. et al. Elevated fecal levels of eosinophil granule proteins predict collagenous colitis in patients referred to colonoscopy due to chronic non-bloody diarrhea. Scand. J. Gastroenterol. 51, 835–841 (2016).

    PubMed  Google Scholar 

  143. Lettesjo, H. et al. Detection of inflammatory markers in stools from patients with irritable bowel syndrome and collagenous colitis. Scand. J. Gastroenterol. 41, 54–59 (2006).

    PubMed  Google Scholar 

  144. Marlicz, W., Skonieczna-Zydecka, K., Yung, D. E., Loniewski, I. & Koulaouzidis, A. Endoscopic findings and colonic perforation in microscopic colitis: A systematic review. Dig. Liver Dis. 49, 1073–1085 (2017).

    PubMed  Google Scholar 

  145. Baudet, J. S. & Aguirre-Jaime, A. Factors related to the development of cat scratch colon during colonoscopy. Endoscopy 45, 582–584 (2013).

    CAS  PubMed  Google Scholar 

  146. Shiratori, Y. & Fukuda, K. Collagenous colitis diagnosed by endoscopically induced mucosal tears. BMJ Case Rep. 12, e230570 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Kakar, S., Pardi, D. S. & Burgart, L. J. Colonic ulcers accompanying collagenous colitis: implication of nonsteroidal anti-inflammatory drugs. Am. J. Gastroenterol. 98, 1834–1837 (2003).

    PubMed  Google Scholar 

  148. Lazenby, A. J., Yardley, J. H., Giardiello, F. M. & Bayless, T. M. Pitfalls in the diagnosis of collagenous colitis: experience with 75 cases from a registry of collagenous colitis at the Johns Hopkins Hospital. Hum. Pathol. 21, 905–910 (1990).

    CAS  PubMed  Google Scholar 

  149. Magro, F. et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis 7, 827–851 (2013).

    CAS  PubMed  Google Scholar 

  150. Robert, M. E. Microscopic colitis: pathologic considerations, changing dogma. J. Clin. Gastroenterol. 38, S18–26 (2004).

    PubMed  Google Scholar 

  151. Jessurun, J., Yardley, J. H., Giardiello, F. M., Hamilton, S. R. & Bayless, T. M. Chronic colitis with thickening of the subepithelial collagen layer (collagenous colitis): histopathologic findings in 15 patients. Hum. Pathol. 18, 839–848 (1987).

    CAS  PubMed  Google Scholar 

  152. Chetty, R. & Govender, D. Lymphocytic and collagenous colitis: an overview of so-called microscopic colitis. Nat. Rev. Gastroenterol. Hepatol. 9, 209–218 (2012).

    CAS  PubMed  Google Scholar 

  153. Miehlke, S. et al. Microscopic colitis: pathophysiology and clinical management. Lancet Gastroenterol. Hepatol. 4, 305–314 (2019).

    PubMed  Google Scholar 

  154. Fiehn, A. K. et al. Is revision of cutoff values needed when using CD3 immunohistochemical staining in histopathologic diagnosis of lymphocytic colitis? Hum. Pathol. 84, 115–123 (2019).

    PubMed  Google Scholar 

  155. Fiehn, A. K. et al. Distribution of histopathological features along the colon in microscopic colitis. Int. J. Colorectal Dis. 36, 151–159 (2021).

    PubMed  Google Scholar 

  156. Tanaka, M., Mazzoleni, G. & Riddell, R. H. Distribution of collagenous colitis: utility of flexible sigmoidoscopy. Gut 33, 65–70 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kanstrup Fiehn, A. M. et al. Topographical distribution of microscopic colitis and the importance of orientation of paraffin-embedded biopsies. Hum. Pathol. 103, 63–71 (2020).

    PubMed  Google Scholar 

  158. Virine, B., Chande, N. & Driman, D. K. Biopsies from ascending and descending colon are sufficient for diagnosis of microscopic colitis. Clin. Gastroenterol. Hepatol. 18, 2003–2009 (2020).

    PubMed  Google Scholar 

  159. Fernandez-Banares, F. et al. Current concepts on microscopic colitis: evidence-based statements and recommendations of the Spanish Microscopic Colitis Group. Aliment. Pharmacol. Ther. 43, 400–426 (2016).

    CAS  PubMed  Google Scholar 

  160. American Gastroenterological Association. AGA institute guideline on the management of microscopic colitis: clinical decision support tool. Gastroenterology 150, 276 (2016).

    Google Scholar 

  161. Capurso, G. et al. Lansoprazole-induced microscopic colitis: an increasing problem? Results of a prospecive case-series and systematic review of the literature. Dig. Liver Dis. 43, 380–385 (2011).

    CAS  PubMed  Google Scholar 

  162. Riddell, R. H., Tanaka, M. & Mazzoleni, G. Non-steroidal anti-inflammatory drugs as a possible cause of collagenous colitis: a case-control study. Gut 33, 683–686 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Edsbacker, S. & Andersson, T. Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn’s disease. Clin. Pharmacokinet. 43, 803–821 (2004).

    PubMed  Google Scholar 

  164. Miehlke, S. et al. Budesonide is more effective than mesalamine or placebo in short-term treatment of collagenous colitis. Gastroenterology 146, 1222–1230 (2014).

    CAS  PubMed  Google Scholar 

  165. Bonderup, O. K., Hansen, J. B., Teglbjaerg, P. S., Christensen, L. A. & Fallingborg, J. F. Long-term budesonide treatment of collagenous colitis: a randomised, double-blind, placebo-controlled trial. Gut 58, 68–72 (2009).

    CAS  PubMed  Google Scholar 

  166. Miehlke, S. et al. Efficacy and safety of budesonide, vs mesalazine or placebo, as induction therapy for lymphocytic colitis. Gastroenterology 155, 1795–1804 (2018). Randomized controlled trial demonstrating the efficacy and safety of budesonide for the induction of remission for MC and the superiority of budesonide to mesalamine.

    CAS  PubMed  Google Scholar 

  167. Kafil, T. S. et al. Interventions for treating collagenous colitis. Cochrane Database Syst. Rev. 11, CD003575 (2017).

    PubMed  Google Scholar 

  168. Chande, N. et al. Interventions for treating lymphocytic colitis. Cochrane Database Syst. Rev. 7, CD006096 (2017).

    PubMed  Google Scholar 

  169. Narla, N. P., Smyrk, T. C., Pardi, D. S. & Tung, J. Clinical features and treatment responses in pediatric lymphocytic and collagenous colitis. J. Pediatr. Gastroenterol. Nutr. 57, 557–561 (2013).

    PubMed  Google Scholar 

  170. Gentile, N. M. et al. Outcomes of patients with microscopic colitis treated with corticosteroids: a population-based study. Am. J. Gastroenterol. 108, 256–259 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Miehlke, S. et al. Oral budesonide for maintenance treatment of collagenous colitis: a randomized, double-blind, placebo-controlled trial. Gastroenterology 135, 1510–1516 (2008).

    CAS  PubMed  Google Scholar 

  172. Munch, A. et al. Low-dose budesonide for maintenance of clinical remission in collagenous colitis: a randomised, placebo-controlled, 12-month trial. Gut 65, 47–56 (2016). This is the longest clinical trial demonstrating the efficacy of low-dose budesonide for the maintenance of remission in collagenous colitis.

    CAS  PubMed  Google Scholar 

  173. Reilev, M., Hallas, J., Thomsen Ernst, M., Nielsen, G. L. & Bonderup, O. K. Long-term oral budesonide treatment and risk of osteoporotic fractures in patients with microscopic colitis. Aliment. Pharmacol. Ther. 51, 644–651 (2020).

    CAS  PubMed  Google Scholar 

  174. Wildt, S. et al. Risk of osteoporosis in microscopic colitis. Postgrad. Med. 130, 348–354 (2018).

    PubMed  Google Scholar 

  175. Kamboj, A. K. et al. Extended-release multimatrix budesonide for microscopic colitis. Inflamm. Bowel Dis. 23, E21–E22 (2017).

    PubMed  Google Scholar 

  176. Corte, T. et al. Beclomethasone dipropionate in microscopic colitis: results of an exploratory open-label multicentre study (COLCO). United European Gastroenterol. J. 7, 1183–1188 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Munck, L. K., Kjeldsen, J., Philipsen, E. & Fischer Hansen, B. Incomplete remission with short-term prednisolone treatment in collagenous colitis: a randomized study. Scand. J. Gastroenterol. 38, 606–610 (2003).

    CAS  PubMed  Google Scholar 

  178. El-Matary, W., Girgis, S., Huynh, H., Turner, J. & Diederichs, B. Microscopic colitis in children. Dig. Dis. Sci. 55, 1996–2001 (2010).

    PubMed  Google Scholar 

  179. Calabrese, C. et al. Mesalazine with or without cholestyramine in the treatment of microscopic colitis: randomized controlled trial. J. Gastroenterol. Hepatol. 22, 809–814 (2007).

    CAS  PubMed  Google Scholar 

  180. Bonderup, O. K. et al. Budesonide treatment of collagenous colitis: a randomised, double blind, placebo controlled trial with morphometric analysis. Gut 52, 248–251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Olesen, M., Eriksson, S., Bohr, J., Jarnerot, G. & Tysk, C. Lymphocytic colitis: a retrospective clinical study of 199 Swedish patients. Gut 53, 536–541 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Jarnerot, G. et al. Familial occurrence of microscopic colitis: a report on five families. Scand. J. Gastroenterol. 36, 959–962 (2001).

    CAS  PubMed  Google Scholar 

  183. Munch, A., Bohr, J., Vigren, L., Tysk, C. & Strom, M. Lack of effect of methotrexate in budesonide-refractory collagenous colitis. Clin. Exp. Gastroenterol. 6, 149–152 (2013).

    PubMed  PubMed Central  Google Scholar 

  184. Munch, A., Fernandez-Banares, F. & Munck, L. K. Azathioprine and mercaptopurine in the management of patients with chronic, active microscopic colitis. Aliment. Pharmacol. Ther. 37, 795–798 (2013).

    CAS  PubMed  Google Scholar 

  185. Riddell, J., Hillman, L., Chiragakis, L. & Clarke, A. Collagenous colitis: oral low-dose methotrexate for patients with difficult symptoms: long-term outcomes. J. Gastroenterol. Hepatol. 22, 1589–1593 (2007).

    CAS  PubMed  Google Scholar 

  186. Vennamaneni, S. R. & Bonner, G. F. Use of azathioprine or 6-mercaptopurine for treatment of steroid-dependent lymphocytic and collagenous colitis. Am. J. Gastroenterol. 96, 2798–2799 (2001).

    CAS  PubMed  Google Scholar 

  187. Pardi, D. S., Loftus, E. V. Jr, Tremaine, W. J. & Sandborn, W. J. Treatment of refractory microscopic colitis with azathioprine and 6-mercaptopurine. Gastroenterology 120, 1483–1484 (2001).

    CAS  PubMed  Google Scholar 

  188. Cotter, T. G. et al. Immune modulator therapy for microscopic colitis in a case series of 73 patients. Aliment. Pharmacol. Ther. 46, 169–174 (2017). The largest case series of thiopurines, methotrexate and TNF antagonists for the management of budesonide-refractory MC.

    CAS  PubMed  Google Scholar 

  189. Pola, S., Fahmy, M., Evans, E., Tipps, A. & Sandborn, W. J. Successful use of infliximab in the treatment of corticosteroid dependent collagenous colitis. Am. J. Gastroenterol. 108, 857–858 (2013).

    CAS  PubMed  Google Scholar 

  190. Anderson, R. J. & Makins, R. Successful use of adalimumab in patient with treatment-refractory microscopic colitis. BMJ Case Rep. 2016, bcr2016215639 (2016).

    PubMed  PubMed Central  Google Scholar 

  191. Munch, A., Ignatova, S. & Strom, M. Adalimumab in budesonide and methotrexate refractory collagenous colitis. Scand. J. Gastroenterol. 47, 59–63 (2012).

    PubMed  Google Scholar 

  192. Esteve, M. et al. Efficacy of anti-TNF therapies in refractory severe microscopic colitis. J. Crohns Colitis 5, 612–618 (2011).

    PubMed  Google Scholar 

  193. Jennings, J. J. & Charabaty, A. Vedolizumab-induced remission in 3 patients with refractory microscopic colitis: a tertiary care center case series. Inflamm. Bowel Dis. 25, e97 (2019).

    PubMed  Google Scholar 

  194. Cushing, K. C., Mino-Kenudson, M., Garber, J., Lochhead, P. & Khalili, H. Vedolizumab as a novel treatment for refractory collagenous colitis: a case report. Am. J. Gastroenterol. 113, 632–633 (2018).

    CAS  PubMed  Google Scholar 

  195. Casper, M., Zimmer, V., Hubschen, U. & Lammert, F. Vedolizumab for refractory collagenous colitis: another piece of the puzzle. Dig. Liver Dis. 50, 1099–1100 (2018).

    PubMed  Google Scholar 

  196. Riviere, P. et al. Vedolizumab in refractory microscopic colitis: an international case series. J. Crohns Colitis 13, 337–340 (2019).

    PubMed  Google Scholar 

  197. Bradley, B., Singleton, M. & Lin Wan Po, A. Bismuth toxicity — a reassessment. J. Clin. Pharm. Ther. 14, 423–441 (1989).

    CAS  PubMed  Google Scholar 

  198. Fine, K. D. & Lee, E. L. Efficacy of open-label bismuth subsalicylate for the treatment of microscopic colitis. Gastroenterology 114, 29–36 (1998).

    CAS  PubMed  Google Scholar 

  199. Madisch, A. et al. Boswellia serrata extract for the treatment of collagenous colitis. A double-blind, randomized, placebo-controlled, multicenter trial. Int. J. Colorectal Dis. 22, 1445–1451 (2007).

    PubMed  Google Scholar 

  200. Cotter, T. G. et al. Case report: pentoxifylline treatment in microscopic colitis. Medicine 96, e8355 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Wildt, S. et al. Probiotic treatment of collagenous colitis: a randomized, double-blind, placebo-controlled trial with Lactobacillus acidophilus and Bifidobacterium animalis subsp. Lactis. Inflamm. Bowel Dis. 12, 395–401 (2006).

    PubMed  Google Scholar 

  202. Holster, S. et al. Faecal microbiota transfer in patients with microscopic colitis — a pilot study in collagenous colitis. Scand. J. Gastroenterol. 55, 1454–1466 (2020).

    CAS  PubMed  Google Scholar 

  203. Gunaltay, S., Rademacher, L., Hultgren Hornquist, E. & Bohr, J. Clinical and immunologic effects of faecal microbiota transplantation in a patient with collagenous colitis. World J. Gastroenterol. 23, 1319–1324 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Irvine, E. J. et al. Quality of life: a valid and reliable measure of therapeutic efficacy in the treatment of inflammatory bowel disease. Canadian Crohn’s Relapse Prevention Trial Study Group. Gastroenterology 106, 287–296 (1994).

    CAS  PubMed  Google Scholar 

  205. Stjernman, H. et al. Short health scale: a valid, reliable, and responsive instrument for subjective health assessment in Crohn’s disease. Inflamm. Bowel Dis. 14, 47–52 (2008).

    PubMed  Google Scholar 

  206. Hjortswang, H. et al. The Short Health Scale: a valid measure of subjective health in ulcerative colitis. Scand. J. Gastroenterol. 41, 1196–1203 (2006).

    PubMed  Google Scholar 

  207. McDermott, E., Keegan, D., Byrne, K., Doherty, G. A. & Mulcahy, H. E. The Short Health Scale: a valid and reliable measure of health related quality of life in English speaking inflammatory bowel disease patients. J. Crohns Colitis 7, 616–621 (2013).

    PubMed  Google Scholar 

  208. Kane, J. S., Irvine, A. J., Derwa, Y. & Ford, A. C. Fatigue and its associated factors in microscopic colitis. Ther. Adv. Gastroenterol. 11, 1756284818799599 (2018).

    Google Scholar 

  209. Khalili, H. et al. Mortality of patients with microscopic colitis in Sweden. Clin. Gastroenterol. Hepatol. 18, 2491–2499.e3 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

H.K. acknowledges the funding from an American College of Gastroenterology Clinical Research Award and J.F.L. and H.K. acknowledge the National Institutes of Health for funding their research NIA R01 (AG068390).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (K.E.B., D.S.P. and H.K.); Epidemiology (K.E.B., J.F.L., D.S.P. and H.K.); Mechanisms/pathophysiology (K.E.B., S.C.N. and H.K.); Genetics (K.E.B. and M.D.); Diagnosis, screening and prevention (K.E.B., D.S.P. and H.K.); Management (K.E.B. and D.S.P.); Quality of life (K.E.B. and H.K.); Outlook (K.E.B., J.F.L., M.D. and H.K.); Overview of the Primer (H.K.).

Corresponding authors

Correspondence to Kristin E. Burke or Hamed Khalili.

Ethics declarations

Competing interests

D.S.P. reports grant funding from Pfizer, Vedanta, Seres, Finch, Applied Molecular Transport and Takeda. J.F.L. coordinates a study on behalf of the Swedish IBD quality register (SWIBREG). This study has received funding from Janssen corporation. H.K. reports grant funding from Takeda and Pfizer and serves as a consultant to Takeda. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks Nilesh Chande, Taku Kobayashi, Stephan Miehlke, Lars Kristian Munck, Ole Nielsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Protopathic bias

Bias that occurs when a treatment given for a disease (outcome) before establishing a formal diagnosis seems to be the cause of the outcome.

Checkpoint inhibitors

Drugs that promote an antitumour immune response by blocking checkpoint proteins and by stimulating the immune-mediated elimination of tumour cells.

Pack-years

A measure of cumulative cigarette smoking over a lifetime, calculated by multiplying packs of cigarettes per day by years smoked.

Alpha diversity

The bacterial species richness within a sample.

Petechiae

Pinpoint spots that occur in the intestinal epithelium due to bleeding.

Metatarsalgia

Pain and inflammation of the ball of the foot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, K.E., D’Amato, M., Ng, S.C. et al. Microscopic colitis. Nat Rev Dis Primers 7, 39 (2021). https://doi.org/10.1038/s41572-021-00273-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00273-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing