Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple sclerosis

An Author Correction to this article was published on 22 November 2018

This article has been updated

Abstract

Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. This disorder is a heterogeneous, multifactorial, immune-mediated disease that is influenced by both genetic and environmental factors. In most patients, reversible episodes of neurological dysfunction lasting several days or weeks characterize the initial stages of the disease (that is, clinically isolated syndrome and relapsing–remitting MS). Over time, irreversible clinical and cognitive deficits develop. A minority of patients have a progressive disease course from the onset. The pathological hallmark of MS is the formation of demyelinating lesions in the brain and spinal cord, which can be associated with neuro-axonal damage. Focal lesions are thought to be caused by the infiltration of immune cells, including T cells, B cells and myeloid cells, into the central nervous system parenchyma, with associated injury. MS is associated with a substantial burden on society owing to the high cost of the available treatments and poorer employment prospects and job retention for patients and their caregivers.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Clinical course of MS.
Fig. 2: Worldwide prevalence of MS.
Fig. 3: Post-mortem histopathological findings in MS.
Fig. 4: Immune system dysregulation within the central nervous system in early and late MS.
Fig. 5: Radiological examples of demyelinating events in MS.
Fig. 6: 2017 McDonald Criteria for demonstration of DIS and DIT in a patient with CIS suggestive of MS.

Change history

  • 22 November 2018

    In the originally published version of this article, in Table 4, Ocrelizumab was incorrectly referred to as an anti-CD25 antibody. This has been corrected in the HTML and PDF versions of the article to an anti-CD20 antibody.

References

  1. 1.

    Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014). This is a proposal for a redefinition of MS clinical courses on the basis of the inclusion of disease activity (considering clinical relapse rate and imaging findings) and disease progression.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Krieger, S. C., Cook, K., De Nino, S. & Fletcher, M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurol. Neuroimmunol. Neuroinflamm. 3, e279 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Greer, J. M. & McCombe, P. A. Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J. Neuroimmunol. 234, 7–18 (2011).

    CAS  Google Scholar 

  4. 4.

    Yeshokumar, A. K., Narula, S. & Banwell, B. Pediatric multiple sclerosis. Curr. Opin. Neurol. 30, 216–221 (2017).

    Google Scholar 

  5. 5.

    Multiple Sclerosis International Federation. Atlas of MS 2013: mapping multiple sclerosis around the world. MSIF.org https://www.msif.org/wp-content/uploads/2014/09/Atlas-of-MS.pdf (2013).

  6. 6.

    Gustavsson, A. et al. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 718–779 (2011).

    CAS  Google Scholar 

  7. 7.

    Chen, A. Y., Chonghasawat, A. O. & Leadholm, K. L. Multiple sclerosis: frequency, cost, and economic burden in the United States. J. Clin. Neurosci. 45, 180–186 (2017).

    Google Scholar 

  8. 8.

    Rosati, G. The prevalence of multiple sclerosis in the world: an update. Neurol. Sci. 22, 117–139 (2001).

    CAS  Google Scholar 

  9. 9.

    Koch-Henriksen, N. & Sorensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).

    Google Scholar 

  10. 10.

    Alonso, A. & Hernan, M. A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71, 129–135 (2008).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 5, 932–936 (2006).

    Google Scholar 

  12. 12.

    Scalfari, A. et al. Mortality in patients with multiple sclerosis. Neurology 81, 184–192 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kingwell, E. et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J. Neurol. Neurosurg. Psychiatry 83, 61–66 (2012).

    CAS  Google Scholar 

  14. 14.

    Lunde, H. M. B., Assmus, J., Myhr, K. M., Bo, L. & Grytten, N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J. Neurol. Neurosurg. Psychiatry 88, 621–625 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Koch-Henriksen, N., Laursen, B., Stenager, E. & Magyari, M. Excess mortality among patients with multiple sclerosis in Denmark has dropped significantly over the past six decades: a population based study. J. Neurol. Neurosurg. Psychiatry 88, 626–631 (2017).

    Google Scholar 

  16. 16.

    Burkill, S. et al. Mortality trends for multiple sclerosis patients in Sweden from 1968 to 2012. Neurology 89, 555–562 (2017).

    Google Scholar 

  17. 17.

    Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017). This comprehensive review summarizes recent findings on genetic, lifestyle and environmental risk factors for MS and their possible interactions.

    CAS  Google Scholar 

  18. 18.

    Mirzaei, F. et al. Gestational vitamin D and the risk of multiple sclerosis in offspring. Ann. Neurol. 70, 30–40 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Endriz, J., Ho, P. P. & Steinman, L. Time correlation between mononucleosis and initial symptoms of MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e308 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Haahr, S., Plesner, A. M., Vestergaard, B. F. & Hollsberg, P. A role of late Epstein-Barr virus infection in multiple sclerosis. Acta Neurol. Scand. 109, 270–275 (2004).

    CAS  Google Scholar 

  21. 21.

    Healy, B. C. et al. Smoking and disease progression in multiple sclerosis. Arch. Neurol. 66, 858–864 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pierrot-Deseilligny, C. & Souberbielle, J. C. Vitamin D and multiple sclerosis: an update. Mult. Scler. Relat. Disord. 14, 35–45 (2017).

    Google Scholar 

  23. 23.

    Harirchian, M. H., Fatehi, F., Sarraf, P., Honarvar, N. M. & Bitarafan, S. Worldwide prevalence of familial multiple sclerosis: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 20, 43–47 (2017).

    Google Scholar 

  24. 24.

    Compston, A. & Coles, A. Multiple sclerosis. Lancet 359, 1221–1231 (2002).

    Google Scholar 

  25. 25.

    Baranzini, S. E. & Oksenberg, J. R. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 33, 960–970 (2017). This review presents a historical perspective on the progresses made in MS genetics and discusses the most recent findings, which have enabled the identification of>200 loci that independently contribute to disease susceptibility and pathogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cotsapas, C. & Mitrovic, M. Genome-wide association studies of multiple sclerosis. Clin. Transl Immunol. 7, e1018 (2018).

    Google Scholar 

  27. 27.

    De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    International Multiple Sclerosis Genetics Consortium. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Google Scholar 

  29. 29.

    Hedstrom, A. K. et al. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134, 653–664 (2011).

    Google Scholar 

  30. 30.

    Sundqvist, E. et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA. Genes Immun. 13, 14–20 (2012).

    CAS  Google Scholar 

  31. 31.

    Hedstrom, A. K. et al. Interaction between adolescent obesity and HLA risk genes in the etiology of multiple sclerosis. Neurology 82, 865–872 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Mokry, L. E. et al. Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLOS Med. 12, e1001866 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Minagar, A. & Alexander, J. S. Blood-brain barrier disruption in multiple sclerosis. Mult. Scler. 9, 540–549 (2003).

    CAS  Google Scholar 

  34. 34.

    Ortiz, G. G. et al. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 45, 687–697 (2014).

    CAS  Google Scholar 

  35. 35.

    Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    CAS  Google Scholar 

  36. 36.

    Frohman, E. M., Racke, M. K. & Raine, C. S. Multiple sclerosis — the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    CAS  Google Scholar 

  37. 37.

    Gilmore, C. P. et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J. Neurol. Neurosurg. Psychiatry 80, 182–187 (2009).

    CAS  Google Scholar 

  38. 38.

    Green, A. J., McQuaid, S., Hauser, S. L., Allen, I. V. & Lyness, R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133, 1591–1601 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Petrova, N., Carassiti, D., Altmann, D. R., Baker, D. & Schmierer, K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol. 28, 334–348 (2017).

    Google Scholar 

  40. 40.

    Sormani, M. P., Rovaris, M., Comi, G. & Filippi, M. A reassessment of the plateauing relationship between T2 lesion load and disability in MS. Neurology 73, 1538–1542 (2009).

    Google Scholar 

  41. 41.

    Rocca, M. A. et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 14, 302–317 (2015).

    Google Scholar 

  42. 42.

    Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+T lymphocytes and B cells. Brain 141, 2066–2082 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lassmann, H., van Horssen, J. & Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol. 8, 647–656 (2012).

    CAS  Google Scholar 

  45. 45.

    Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015). This review discusses the complex immunological and neurodegenerative phenomena causing disease progression in patients with MS.

    CAS  Google Scholar 

  46. 46.

    Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    CAS  Google Scholar 

  47. 47.

    Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015). This comprehensive review summarizes the current understanding of MS immunopathology, focusing on the complex pathophysiological substrates involving both innate and adaptive immunity.

    CAS  Google Scholar 

  48. 48.

    Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 8, a028936 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005). By including pathological samples obtained from patients with MS with the main clinical phenotypes of the disease, this study shows that focal inflammation characterizes the earliest phases of MS, whereas diffuse inflammation, axonal loss and cortical demyelination occur in the progressive forms of the disease.

    Google Scholar 

  51. 51.

    Evangelou, N., DeLuca, G. C., Owens, T. & Esiri, M. M. Pathological study of spinal cord atrophy in multiple sclerosis suggests limited role of local lesions. Brain 128, 29–34 (2005).

    CAS  Google Scholar 

  52. 52.

    Klaver, R., De Vries, H. E., Schenk, G. J. & Geurts, J. J. Grey matter damage in multiple sclerosis: a pathology perspective. Prion 7, 66–75 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kutzelnigg, A. et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 17, 38–44 (2007).

    Google Scholar 

  54. 54.

    Giorgio, A. et al. Cortical lesions in radiologically isolated syndrome. Neurology 77, 1896–1899 (2011).

    CAS  Google Scholar 

  55. 55.

    Filippi, M. et al. Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurol. 17, 133–142 (2018). This multicentre study compares the performance of the 2010 McDonald criteria and the 2016 Magnetic Resonance Imaging in MS (MAGNIMS) criteria for MS diagnosis in a large group of patients with CIS.

    Google Scholar 

  56. 56.

    Haider, L. et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J. Neurol. Neurosurg. Psychiatry 85, 1386–1395 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Vercellino, M. et al. Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J. Neuropathol. Exp. Neurol. 68, 489–502 (2009).

    Google Scholar 

  58. 58.

    Choi, S. R. et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain 135, 2925–2937 (2012).

    Google Scholar 

  59. 59.

    Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Google Scholar 

  60. 60.

    Magliozzi, R. et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol. 83, 739–755 (2018).

    CAS  Google Scholar 

  61. 61.

    Peterson, J. W., Bo, L., Mork, S., Chang, A. & Trapp, B. D. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50, 389–400 (2001).

    CAS  Google Scholar 

  62. 62.

    Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    Google Scholar 

  63. 63.

    Strijbis, E. M. M., Kooi, E. J., van der Valk, P. & Geurts, J. J. G. Cortical remyelination is heterogeneous in multiple sclerosis. J. Neuropathol. Exp. Neurol. 76, 390–401 (2017). This analysis of brain tissue sample from 21 chronic patients with MS shows more remyelination in the grey matter than in the white matter in the brains of patients with MS, with a trend towards more remyelination in patients with PPMS.

    CAS  Google Scholar 

  64. 64.

    Dutta, R. et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69, 445–454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Jurgens, T. et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain 139, 39–46 (2016).

    Google Scholar 

  66. 66.

    Bo, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D. & Mork, S. J. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62, 723–732 (2003).

    Google Scholar 

  67. 67.

    Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Google Scholar 

  68. 68.

    Harlow, D. E., Honce, J. M. & Miravalle, A. A. Remyelination therapy in multiple sclerosis. Front. Neurol. 6, 257 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E. S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993).

    CAS  Google Scholar 

  70. 70.

    Franklin, R. J. & Ffrench-Constant, C. Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008).

    CAS  Google Scholar 

  71. 71.

    Goldschmidt, T., Antel, J., Konig, F. B., Bruck, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    CAS  Google Scholar 

  72. 72.

    Li, R., Patterson, K. & Bar-Or, A. Reassessing the contributions of B cells in multiple sclerosis. Nat. Rev. Immunol. 19, 696–707 (2018).

    CAS  Google Scholar 

  73. 73.

    Lassmann, H. Targets of therapy in progressive MS. Mult. Scler. 23, 1593–1599 (2017).

    Google Scholar 

  74. 74.

    Dutta, R. & Trapp, B. D. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr. Opin. Neurol. 27, 271–278 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    CAS  Google Scholar 

  76. 76.

    Kaskow, B. J. & Baecher-Allan, C. Effector T cells in multiple sclerosis. Cold Spring Harb. Perspect. Med. 8, a029025 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Kitz, A., Singer, E. & Hafler, D. Regulatory T cells: from discovery to autoimmunity. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a029041 (2018).

  78. 78.

    Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Venken, K. et al. Compromised CD4+ CD25high regulatory T cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123, 79–89 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Frisullo, G. et al. Regulatory T cells fail to suppress CD4+T-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127, 418–428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Astier, A. L., Meiffren, G., Freeman, S. & Hafler, D. A. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J. Clin. Invest. 116, 3252–3257 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fletcher, J. M. et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J. Immunol. 183, 7602–7610 (2009).

    CAS  Google Scholar 

  83. 83.

    Dhaeze, T. et al. Circulating follicular regulatory T cells are defective in multiple sclerosis. J. Immunol. 195, 832–840 (2015).

    CAS  Google Scholar 

  84. 84.

    Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kebir, H. et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    CAS  Google Scholar 

  86. 86.

    Huber, M. et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin. Invest. 123, 247–260 (2013).

    CAS  Google Scholar 

  87. 87.

    van Langelaar, J. et al. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain 141, 1334–1349 (2018).

    Google Scholar 

  88. 88.

    Rasouli, J. et al. Expression of GM-CSF in T cells is increased in multiple sclerosis and suppressed by IFN-beta therapy. J. Immunol. 194, 5085–5093 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Annibali, V. et al. CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134, 542–554 (2011).

    Google Scholar 

  91. 91.

    Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Bar-Or, A. The immunology of multiple sclerosis. Semin. Neurol. 28, 29–45 (2008).

    Google Scholar 

  93. 93.

    Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. & Segal, B. M. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Moore, C. S. et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann. Neurol. 74, 709–720 (2013).

    CAS  Google Scholar 

  95. 95.

    Ronchi, F. et al. Experimental priming of encephalitogenic Th1/Th17 cells requires pertussis toxin-driven IL-1beta production by myeloid cells. Nat. Commun. 7, 11541 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Palanichamy, A. et al. Immunoglobulin class-switched B cells form an active immune axis between CNS and periphery in multiple sclerosis. Sci. Transl Med. 6, 248ra106 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. 98.

    Stern, J. N. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl Med. 6, 248ra107 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Larochelle, C. et al. Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation. Ann. Neurol. 78, 39–53 (2015).

    CAS  Google Scholar 

  100. 100.

    Pare, A. et al. IL-1beta enables CNS access to CCR2hi monocytes and the generation of pathogenic cells through GM-CSF released by CNS endothelial cells. Proc. Natl Acad. Sci. USA 115, E1194–E1203 (2018).

    CAS  Google Scholar 

  101. 101.

    Alvarez, J. I. et al. JAML mediates monocyte and CD8 T cell migration across the brain endothelium. Ann. Clin. Transl Neurol. 2, 1032–1037 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    van der Valk, P. & Amor, S. Preactive lesions in multiple sclerosis. Curr. Opin. Neurol. 22, 207–213 (2009).

    Google Scholar 

  103. 103.

    Alvarez, J. I. et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727–1731 (2011).

    CAS  Google Scholar 

  104. 104.

    Alvarez, J. I. et al. Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol. Dis. 74, 14–24 (2015).

    CAS  Google Scholar 

  105. 105.

    Darlington, P. J. et al. Natural killer cells regulate Th17 cells after autologous hematopoietic stem cell transplantation for relapsing remitting multiple sclerosis. Front. Immunol. 9, 834 (2018).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Gold, R., Hartung, H. P. & Lassmann, H. T cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci. 20, 399–404 (1997).

    CAS  Google Scholar 

  107. 107.

    Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    CAS  Google Scholar 

  108. 108.

    Palanichamy, A. et al. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J. Immunol. 193, 580–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Cross, A. H., Stark, J. L., Lauber, J., Ramsbottom, M. J. & Lyons, J. A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180, 63–70 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Monson, N. L., Cravens, P. D., Frohman, E. M., Hawker, K. & Racke, M. K. Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch. Neurol. 62, 258–264 (2005).

    Google Scholar 

  111. 111.

    Bar-Or, A. et al. Abnormal B cell cytokine responses a trigger of T cell-mediated disease in MS? Ann. Neurol. 67, 452–461 (2010).

    CAS  Google Scholar 

  112. 112.

    Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl Med. 7, 310ra166 (2015).

    Google Scholar 

  113. 113.

    Duddy, M. et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 178, 6092–6099 (2007).

    CAS  Google Scholar 

  114. 114.

    Barr, T. A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Li, R. et al. Cytokine-defined B cell responses as therapeutic targets in multiple sclerosis. Front. Immunol. 6, 626 (2015).

    Google Scholar 

  116. 116.

    Li, R. et al. Antibody-independent function of human B cells contributes to antifungal T cell responses. J. Immunol. 198, 3245–3254 (2017).

    CAS  Google Scholar 

  117. 117.

    Sergott, R. C. et al. ATON: results from a phase II randomized trial of the B cell-targeting agent atacicept in patients with optic neuritis. J. Neurol. Sci. 351, 174–178 (2015).

    CAS  Google Scholar 

  118. 118.

    Piccio, L. et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 67, 707–714 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Srivastava, R. et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 367, 115–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Brickshawana, A. et al. Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study. Lancet Neurol. 13, 795–806 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Hemmer, B. Antibodies to the inward rectifying potassium channel 4.1 in multiple sclerosis: different methodologies — conflicting results? Mult. Scler. 21, 537–539 (2015).

    CAS  Google Scholar 

  122. 122.

    Narayan, R. et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult. Scler. Relat. Disord. 25, 66–72 (2018).

    Google Scholar 

  123. 123.

    Ketelslegers, I. A. et al. Anti-MOG antibodies plead against MS diagnosis in an Acquired Demyelinating Syndromes cohort. Mult. Scler. 21, 1513–1520 (2015).

    CAS  Google Scholar 

  124. 124.

    Waters, P. et al. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurol. Neuroimmunol. Neuroinflamm. 2, e89 (2015).

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Spadaro, M. et al. Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e257 (2016).

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    CAS  Google Scholar 

  127. 127.

    Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Magliozzi, R. et al. B cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 72, 29–41 (2013).

    CAS  Google Scholar 

  129. 129.

    Lisak, R. P. et al. Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro. J. Neuroimmunol. 246, 85–95 (2012).

    CAS  Google Scholar 

  130. 130.

    Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    CAS  Google Scholar 

  131. 131.

    Touil, H. et al. Human central nervous system astrocytes support survival and activation of B cells: implications for MS. J. Neuroinflammation 15, 114 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Miller, D. H., Chard, D. T. & Ciccarelli, O. Clinically isolated syndromes. Lancet Neurol. 11, 157–169 (2012). This review provides a summary of the main risk factors associated with a conversion to clinically definite MS and disability progression in patients with CIS.

    Google Scholar 

  133. 133.

    Brownlee, W. J., Hardy, T. A., Fazekas, F. & Miller, D. H. Diagnosis of multiple sclerosis: progress and challenges. Lancet 389, 1336–1346 (2017).

    Google Scholar 

  134. 134.

    Toosy, A. T., Mason, D. F. & Miller, D. H. Optic neuritis. Lancet Neurol. 13, 83–99 (2014).

    CAS  Google Scholar 

  135. 135.

    Petzold, A. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat. Rev. Neurol. 10, 447–458 (2014).

    Google Scholar 

  136. 136.

    Galetta, S. L. et al. Acute optic neuritis: unmet clinical needs and model for new therapies. Neurol. Neuroimmunol. Neuroinflamm. 2, e135 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Rae-Grant, A. D., Eckert, N. J., Bartz, S. & Reed, J. F. Sensory symptoms of multiple sclerosis: a hidden reservoir of morbidity. Mult. Scler. 5, 179–183 (1999).

    CAS  Google Scholar 

  138. 138.

    Kanchandani, R. & Howe, J. G. Lhermitte’s sign in multiple sclerosis: a clinical survey and review of the literature. J. Neurol. Neurosurg. Psychiatry 45, 308–312 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    McAlpine, D. in Multiple Sclerosis: A Reappraisal 2nd edn (eds McAlpine, D., Lumsden, C. E. & Acheson, E. D.) 132–196 (Churchill Livingstone, 1972).

  140. 140.

    Dillon, B. E. & Lemack, G. E. Urodynamics in the evaluation of the patient with multiple sclerosis: when are they helpful and how do we use them? Urol. Clin. North Am. 41, 439–444 (2014).

    Google Scholar 

  141. 141.

    Zipoli, V. et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult. Scler. 16, 62–67 (2010).

    Google Scholar 

  142. 142.

    Lerdal, A., Celius, E. G., Krupp, L. & Dahl, A. A. A prospective study of patterns of fatigue in multiple sclerosis. Eur. J. Neurol. 14, 1338–1343 (2007).

    CAS  Google Scholar 

  143. 143.

    Filippi, M., Preziosa, P. & Rocca, M. A. Brain mapping in multiple sclerosis: lessons learned about the human brain. Neuroimage https://doi.org/10.1016/j.neuroimage.2017.09.021 (2017).

  144. 144.

    Brass, S. D., Duquette, P., Proulx-Therrien, J. & Auerbach, S. Sleep disorders in patients with multiple sclerosis. Sleep Med. Rev. 14, 121–129 (2010).

    Google Scholar 

  145. 145.

    Veauthier, C. & Paul, F. Sleep disorders in multiple sclerosis and their relationship to fatigue. Sleep Med. 15, 5–14 (2014).

    Google Scholar 

  146. 146.

    Feinstein, A. Multiple sclerosis and depression. Mult. Scler. 17, 1276–1281 (2011).

    Google Scholar 

  147. 147.

    Solaro, C. et al. The prevalence of pain in multiple sclerosis: a multicenter cross-sectional study. Neurology 63, 919–921 (2004).

    CAS  Google Scholar 

  148. 148.

    Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452 (1983).

    CAS  Google Scholar 

  149. 149.

    Filippi, M. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 15, 292–303 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. 150.

    Schumacher, F. Problems of experimental trials of therapy in multiple sclerosis. Ann. NY Acad. Sci. 122, 552–568 (1965).

    CAS  Google Scholar 

  151. 151.

    Poser, C. M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).

    CAS  Google Scholar 

  152. 152.

    Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018). This position paper presents an update to MS diagnostic criteria on the basis of a critical revision of new evidence and an expert opinion consensus from an international panel of experts.

    Google Scholar 

  153. 153.

    Dobson, R., Ramagopalan, S., Davis, A. & Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 84, 909–914 (2013).

    Google Scholar 

  154. 154.

    Arrambide, G. et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain 141, 1075–1084 (2018).

    Google Scholar 

  155. 155.

    Kuhle, J. et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult. Scler. 21, 1013–1024 (2015).

    CAS  Google Scholar 

  156. 156.

    Leocani, L., Rocca, M. A. & Comi, G. MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr. Opin. Neurol. 29, 243–253 (2016).

    CAS  Google Scholar 

  157. 157.

    McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001).

    CAS  Google Scholar 

  158. 158.

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”. Ann. Neurol. 58, 840–846 (2005).

    Google Scholar 

  159. 159.

    Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    van Waesberghe, J. H. et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann. Neurol. 46, 747–754 (1999).

    Google Scholar 

  161. 161.

    Rovira, A. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat. Rev. Neurol. 11, 471–482 (2015).

    Google Scholar 

  162. 162.

    De Stefano, N. et al. Radiologically isolated syndrome or subclinical multiple sclerosis: MAGNIMS consensus recommendations. Mult. Scler. 24, 214–221 (2018).

    Google Scholar 

  163. 163.

    Okuda, D. T. et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLOS ONE 9, e90509 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Wattjes, M. P. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis — establishing disease prognosis and monitoring patients. Nat. Rev. Neurol. 11, 597–606 (2015). This paper provides an evidence-based and expert opinion consensus of the MAGNIMS experts for the application of MRI in monitoring patients with MS and their treatments on the basis of a critical revision and discussion of state of the art MRI findings in these patients.

    CAS  Google Scholar 

  165. 165.

    Brex, P. A. et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N. Engl. J. Med. 346, 158–164 (2002).

    Google Scholar 

  166. 166.

    Fisniku, L. K. et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131, 808–817 (2008).

    CAS  Google Scholar 

  167. 167.

    Degenhardt, A., Ramagopalan, S. V., Scalfari, A. & Ebers, G. C. Clinical prognostic factors in multiple sclerosis: a natural history review. Nat. Rev. Neurol. 5, 672–682 (2009).

    Google Scholar 

  168. 168.

    Charil, A. et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol. 5, 841–852 (2006).

    Google Scholar 

  169. 169.

    Geraldes, R. et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat. Rev. Neurol. 14, 199–213 (2018). This review from MAGNIMS experts provides an update on the imaging characteristics that contribute to differentiate the most common mimics of MS, particularly age-related cerebrovascular disease and neuromyelitis optica.

    Google Scholar 

  170. 170.

    Amato, M. P. et al. Environmental modifiable risk factors for multiple sclerosis: report from the 2016 ECTRIMS focused workshop. Mult. Scler. 24, 590–603 (2017).

    Google Scholar 

  171. 171.

    Sintzel, M. B., Rametta, M. & Reder, A. T. Vitamin D and multiple sclerosis: a comprehensive review. Neurol. Ther. 7, 59–85 (2018).

    Google Scholar 

  172. 172.

    Granqvist, M. et al. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurol. 75, 320–327 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. 173.

    Filippini, G. et al. Immunomodulators and immunosuppressants for multiple sclerosis: a network meta-analysis. Cochrane Database Syst. Rev. 6, CD008933 (2013).

    Google Scholar 

  174. 174.

    Okwuokenye, M., Zhang, A., Pace, A. & Peace, K. E. Number needed to treat in multiple sclerosis clinical trials. Neurol. Ther. 6, 1–9 (2017).

    PubMed  PubMed Central  Google Scholar 

  175. 175.

    Montalban, X. et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler. 24, 96–120 (2018). This paper provides the guidelines proposed by the European Committee for Treatment and Research in MS and the European Academy of Neurology for the treatment of patients with MS.

    Google Scholar 

  176. 176.

    Rae-Grant, A. et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis. Neurology 90, 777–788 (2018). This paper provides the guidelines proposed by the American Academy of Neurology for the treatment of patients with MS.

    Google Scholar 

  177. 177.

    Muraro, P. A. et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 74, 459–469 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Sormani, M. P. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology 88, 2115–2122 (2017).

    Google Scholar 

  179. 179.

    Comi, G., Radaelli, M. & Soelberg Sorensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet 389, 1347–1356 (2017).

    Google Scholar 

  180. 180.

    Pakpoor, J. et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol. Neuroimmunol. Neuroinflamm. 2, e158 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Plavina, T. et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 76, 802–812 (2014).

    CAS  Google Scholar 

  182. 182.

    Coles, A. J. et al. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology 89, 1117–1126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Havrdova, E. et al. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology 89, 1107–1116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Piehl, F. A changing treatment landscape for multiple sclerosis: challenges and opportunities. J. Intern. Med. 275, 364–381 (2014).

    CAS  Google Scholar 

  185. 185.

    Hartung, H. P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    Google Scholar 

  186. 186.

    Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    CAS  Google Scholar 

  187. 187.

    Kapoor, R. et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension. Lancet Neurol. 17, 405–415 (2018).

    CAS  Google Scholar 

  188. 188.

    Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    CAS  Google Scholar 

  189. 189.

    Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017). This 2-year phase III randomized clinical trial shows that in patients with primary progressive MS, compared with placebo, ocrelizumab reduces focal lesion accumulation, brain volume loss and disability progression.

    CAS  Google Scholar 

  190. 190.

    Amtmann, D., Bamer, A. M., Kim, J., Chung, H. & Salem, R. People with multiple sclerosis report significantly worse symptoms and health related quality of life than the US general population as measured by PROMIS and NeuroQoL outcome measures. Disabil. Health J. 11, 99–107 (2018).

    Google Scholar 

  191. 191.

    Giovannoni, G. et al. Brain health: time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 9, S5–S48 (2016).

    Google Scholar 

  192. 192.

    Collin, C. et al. A double-blind, randomized, placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol. Res. 32, 451–459 (2010).

    CAS  Google Scholar 

  193. 193.

    Novotna, A. et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur. J. Neurol. 18, 1122–1131 (2011).

    CAS  Google Scholar 

  194. 194.

    Goodman, A. D. et al. A phase 3 trial of extended release oral dalfampridine in multiple sclerosis. Ann. Neurol. 68, 494–502 (2010).

    CAS  Google Scholar 

  195. 195.

    Goodman, A. D. et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet 373, 732–738 (2009).

    CAS  Google Scholar 

  196. 196.

    Moulin, D. et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res. Manag. 19, 328–335 (2014).

    PubMed  PubMed Central  Google Scholar 

  197. 197.

    Aharony, S. M., Lam, O. & Corcos, J. Treatment of lower urinary tract symptoms in multiple sclerosis patients: review of the literature and current guidelines. Can. Urol. Assoc. J. 11, E110–E115 (2017).

    PubMed  PubMed Central  Google Scholar 

  198. 198.

    Amato, M. P. et al. Treatment of cognitive impairment in multiple sclerosis: position paper. J. Neurol. 260, 1452–1468 (2013).

    CAS  Google Scholar 

  199. 199.

    Kobelt, G. et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult. Scler. 23, 1123–1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. 200.

    Marrie, R. A. et al. The incidence and prevalence of psychiatric disorders in multiple sclerosis: a systematic review. Mult. Scler. 21, 305–317 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Stankoff, B. et al. Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology 64, 1139–1143 (2005).

    CAS  Google Scholar 

  202. 202.

    Asano, M. & Finlayson, M. L. Meta-analysis of three different types of fatigue management interventions for people with multiple sclerosis: exercise, education, and medication. Mult. Scler. Int. 2014, 798285 (2014).

    PubMed  PubMed Central  Google Scholar 

  203. 203.

    Achiron, A. et al. Effect of alfacalcidol on multiple sclerosis-related fatigue: a randomized, double-blind placebo-controlled study. Mult. Scler. 21, 767–775 (2015).

    CAS  Google Scholar 

  204. 204.

    Pottgen, J. et al. Randomised controlled trial of a self-guided online fatigue intervention in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 89, 970–976 (2018).

    Google Scholar 

  205. 205.

    Gaede, G. et al. Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurol. Neuroimmunol. Neuroinflamm. 5, e423 (2018).

    Google Scholar 

  206. 206.

    Veauthier, C., Hasselmann, H., Gold, S. M. & Paul, F. The Berlin Treatment Algorithm: recommendations for tailored innovative therapeutic strategies for multiple sclerosis-related fatigue. EPMA J. 7, 25 (2016).

    PubMed  PubMed Central  Google Scholar 

  207. 207.

    Fiest, K. M. et al. Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 5, 12–26 (2016).

    CAS  Google Scholar 

  208. 208.

    Brenner, P. & Piehl, F. Fatigue and depression in multiple sclerosis: pharmacological and non-pharmacological interventions. Acta Neurol. Scand. 134, S47–S54 (2016).

    Google Scholar 

  209. 209.

    Motl, R. W. et al. Exercise in patients with multiple sclerosis. Lancet Neurol. 16, 848–856 (2017).

    Google Scholar 

  210. 210.

    Sormani, M. P. & Bruzzi, P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol. 12, 669–676 (2013).

    Google Scholar 

  211. 211.

    Pullicino, R., Radon, M., Biswas, S., Bhojak, M. & Das, K. A. Review of the current evidence on gadolinium deposition in the brain. Clin. Neuroradiol 28, 159–169 (2018).

    Google Scholar 

  212. 212.

    Filippi, M. et al. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology 81, 1759–1767 (2013).

    Google Scholar 

  213. 213.

    Rocca, M. A. et al. Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology 88, 403–413 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. 214.

    Sormani, M. P., Arnold, D. L. & De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. 75, 43–49 (2014).

    Google Scholar 

  215. 215.

    Comabella, M. & Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 13, 113–126 (2014).

    Google Scholar 

  216. 216.

    Kappos, L. et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 73, 1089–1098 (2016).

    Google Scholar 

  217. 217.

    Cohen, J. A. et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 373–381 (2016).

    CAS  Google Scholar 

  218. 218.

    van Noort, J. M., Bsibsi, M., Nacken, P. J., Verbeek, R. & Venneker, E. H. Therapeutic intervention in multiple sclerosis with alpha B-crystallin: a randomized controlled phase IIa trial. PLOS ONE 10, e0143366 (2015).

    PubMed  PubMed Central  Google Scholar 

  219. 219.

    Walczak, A., Siger, M., Ciach, A., Szczepanik, M. & Selmaj, K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70, 1105–1109 (2013).

    Google Scholar 

  220. 220.

    Raftopoulos, R. et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 259–269 (2016).

    CAS  Google Scholar 

  221. 221.

    Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    CAS  Google Scholar 

  222. 222.

    Chataway, J. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383, 2213–2221 (2014).

    CAS  Google Scholar 

  223. 223.

    Tran, J. Q. et al. Randomized phase I trials of the safety/tolerability of anti-LINGO-1 monoclonal antibody BIIB033. Neurol. Neuroimmunol. Neuroinflamm. 1, e18 (2014).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Ranger, A. et al. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies. Neurol. Neuroimmunol. Neuroinflamm. 5, e417 (2018).

    Google Scholar 

  225. 225.

    Mische, L. J. & Mowry, E. M. The evidence for dietary interventions and nutritional supplements as treatment options in multiple sclerosis: a review. Curr. Treat. Options Neurol. 20, 8 (2018).

    Google Scholar 

  226. 226.

    Mitchell, A. J., Benito-Leon, J., Gonzalez, J. M. & Rivera-Navarro, J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. Lancet Neurol. 4, 556–566 (2005). This review summarizes the clinical relevance of health-related quality of life assessment in patients with MS, focusing on its practical measurement and its interplay with psychosocial and emotional domains.

    Google Scholar 

  227. 227.

    Solari, A. Role of health-related quality of life measures in the routine care of people with multiple sclerosis. Health Qual. Life Outcomes 3, 16 (2005).

    PubMed  PubMed Central  Google Scholar 

  228. 228.

    US Department of Health and Human Services. Guidance for industry patient-reported outcome measures: use in medical product development to support labeling claims. FDA.gov https://www.fda.gov/downloads/drugs/guidances/ucm193282.pdf (2009).

  229. 229.

    Committee For Medicinal Products For Human Use. Reflection paper on the regulatory guidance for the use of health-related quality of life (HRQL) measures in the evaluation of medicinal products. EMA.europa.eu https://www.ema.europa.eu/regulatory-guidance-use-health-related-quality-life-hrql-measures-evaluation-medicinal-products (2005).

  230. 230.

    Vickrey, B. G., Hays, R. D., Harooni, R., Myers, L. W. & Ellison, G. W. A health-related quality of life measure for multiple sclerosis. Qual. Life Res. 4, 187–206 (1995).

    CAS  Google Scholar 

  231. 231.

    Cella, D. F. et al. Validation of the functional assessment of multiple sclerosis quality of life instrument. Neurology 47, 129–139 (1996).

    CAS  Google Scholar 

  232. 232.

    Bond, T. G. & Fox, C. M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences 2nd edn (Routledge, 2007).

  233. 233.

    Ford, H. L. et al. Developing a disease-specific quality of life measure for people with multiple sclerosis. Clin. Rehabil. 15, 247–258 (2001).

    CAS  Google Scholar 

  234. 234.

    Doward, L. C., McKenna, S. P., Meads, D. M., Twiss, J. & Eckert, B. J. The development of patient-reported outcome indices for multiple sclerosis (PRIMUS). Mult. Scler. 15, 1092–1102 (2009).

    CAS  Google Scholar 

  235. 235.

    Simeoni, M. et al. Validation of the Multiple Sclerosis International Quality of Life questionnaire. Mult. Scler. 14, 219–230 (2008).

    Google Scholar 

  236. 236.

    Giordano, A. et al. Responsiveness of patient reported outcome measures in multiple sclerosis relapses: the REMS study. J. Neurol. Neurosurg. Psychiatry 80, 1023–1028 (2009).

    CAS  Google Scholar 

  237. 237.

    Gold, S. M. et al. Responsiveness of patient-based and external rating scales in multiple sclerosis: head-to-head comparison in three clinical settings. J. Neurol. Sci. 290, 102–106 (2010).

    Google Scholar 

  238. 238.

    Moore, F., Vickrey, B., Fortin, K. & Lee, L. Two multiple sclerosis quality-of-life measures: comparison in a national sample. Can. J. Neurol. Sci. 42, 55–63 (2015).

    Google Scholar 

  239. 239.

    Rosato, R. et al. Development of a short version of MSQOL-54 using factor analysis and item response theory. PLOS ONE 11, e0153466 (2016).

    PubMed  PubMed Central  Google Scholar 

  240. 240.

    Twiss, J., Doward, L. C., McKenna, S. P. & Eckert, B. Interpreting scores on multiple sclerosis-specific patient reported outcome measures (the PRIMUS and U-FIS). Health Qual. Life Outcomes 8, 117 (2010).

    PubMed  PubMed Central  Google Scholar 

  241. 241.

    Reeve, B. B. et al. Psychometric evaluation and calibration of health-related quality of life item banks: plans for the patient-reported outcomes measurement information system (PROMIS). Med. Care 45, S22–S31 (2007).

    Google Scholar 

  242. 242.

    Michel, P. et al. A multidimensional computerized adaptive short-form quality of life questionnaire developed and validated for multiple sclerosis: the MusiQoL-MCAT. Medicine 95, e3068 (2016).

    PubMed  PubMed Central  Google Scholar 

  243. 243.

    Solomon, A. J. et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology 87, 1393–1399 (2016).

    PubMed  PubMed Central  Google Scholar 

  244. 244.

    Sati, P. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat. Rev. Neurol. 12, 714–722 (2016).

    Google Scholar 

  245. 245.

    Sinnecker, T. et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79, 708–714 (2012).

    Google Scholar 

  246. 246.

    Maggi, P. et al. Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann. Neurol. 83, 283–294 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Mistry, N. et al. Imaging central veins in brain lesions with 3-T T2*-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult. Scler. 22, 1289–1296 (2016).

    Google Scholar 

  248. 248.

    Solomon, A. J. et al. Diagnostic performance of central vein sign for multiple sclerosis with a simplified three-lesion algorithm. Mult. Scler. 24, 750–757 (2017).

    PubMed  PubMed Central  Google Scholar 

  249. 249.

    Norgren, N., Rosengren, L. & Stigbrand, T. Elevated neurofilament levels in neurological diseases. Brain Res. 987, 25–31 (2003).

    CAS  Google Scholar 

  250. 250.

    Teunissen, C. E., Malekzadeh, A., Leurs, C., Bridel, C. & Killestein, J. Body fluid biomarkers for multiple sclerosis—the long road to clinical application. Nat. Rev. Neurol. 11, 585–596 (2015).

    CAS  Google Scholar 

  251. 251.

    Arrambide, G. et al. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology 87, 1076–1084 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. 252.

    Matute-Blanch, C. et al. Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain 141, 1085–1093 (2018).

    Google Scholar 

  253. 253.

    Khalil, M. et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult. Scler. 19, 436–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. 254.

    Disanto, G. et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 81, 857–870 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. 255.

    Disanto, G. et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J. Neurol. Neurosurg. Psychiatry 87, 126–129 (2016).

    Google Scholar 

  256. 256.

    Siller, N. et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult. Scler. https://doi.org/10.1177/1352458518765666 (2018).

  257. 257.

    Petzold, A., Steenwijk, M. D., Eikelenboom, J. M., Wattjes, M. P. & Uitdehaag, B. M. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult. Scler. 22, 1154–1162 (2016).

    CAS  Google Scholar 

  258. 258.

    Salzer, J., Svenningsson, A. & Sundstrom, P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult. Scler. 16, 287–292 (2010).

    CAS  Google Scholar 

  259. 259.

    Trentini, A. et al. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J. Neurol. 261, 2338–2343 (2014).

    CAS  Google Scholar 

  260. 260.

    Gunnarsson, M. et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol. 69, 83–89 (2011).

    CAS  Google Scholar 

  261. 261.

    Kuhle, J. et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology 84, 1639–1643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. 262.

    Piehl, F. et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult. Scler. 24, 1046–1054 (2017).

    Google Scholar 

  263. 263.

    Oberwahrenbrock, T. et al. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurol. Neuroimmunol. Neuroinflamm. 5, e449 (2018).

    PubMed  PubMed Central  Google Scholar 

  264. 264.

    Schippling, S. et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult. Scler. 21, 163–170 (2015).

    CAS  Google Scholar 

  265. 265.

    Cruz-Herranz, A. et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 86, 2303–2309 (2016).

    PubMed  PubMed Central  Google Scholar 

  266. 266.

    Zimmermann, H. G. et al. Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome. JAMA Neurol. 75, 1071–1079 (2018).

    PubMed  PubMed Central  Google Scholar 

  267. 267.

    Costello, F. et al. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult. Scler. 14, 893–905 (2008).

    CAS  Google Scholar 

  268. 268.

    Petzold, A. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 9, 921–932 (2010).

    Google Scholar 

  269. 269.

    Petzold, A. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 16, 797–812 (2017).

    Google Scholar 

  270. 270.

    Gabilondo, I. et al. Dynamics of retinal injury after acute optic neuritis. Ann. Neurol. 77, 517–528 (2015).

    Google Scholar 

  271. 271.

    Oberwahrenbrock, T. et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult. Scler. 19, 1887–1895 (2013).

    Google Scholar 

  272. 272.

    Pulicken, M. et al. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology 69, 2085–2092 (2007).

    CAS  Google Scholar 

  273. 273.

    Narayanan, D. et al. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult. Scler. 20, 1331–1341 (2014).

    PubMed  PubMed Central  Google Scholar 

  274. 274.

    Lambe, J., Murphy, O. C. & Saidha, S. Can optical coherence tomography be used to guide treatment decisions in adult or pediatric multiple sclerosis? Curr. Treat. Options Neurol. 20, 9 (2018).

    Google Scholar 

  275. 275.

    Gordon-Lipkin, E. et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69, 1603–1609 (2007).

    CAS  Google Scholar 

  276. 276.

    Saidha, S. et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol. 70, 34–43 (2013).

    PubMed  PubMed Central  Google Scholar 

  277. 277.

    Balcer, L. J., Miller, D. H., Reingold, S. C. & Cohen, J. A. Vision and vision-related outcome measures in multiple sclerosis. Brain 138, 11–27 (2015).

    Google Scholar 

  278. 278.

    Seewann, A. et al. Postmortem verification of MS cortical lesion detection with 3D DIR. Neurology 78, 302–308 (2012).

    CAS  Google Scholar 

  279. 279.

    Calabrese, M. et al. No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79, 1671–1676 (2012).

    Google Scholar 

  280. 280.

    Absinta, M. et al. Patients with migraine do not have MRI-visible cortical lesions. J. Neurol. 259, 2695–2698 (2012).

    Google Scholar 

  281. 281.

    Daams, M., Geurts, J. J. & Barkhof, F. Cortical imaging in multiple sclerosis: recent findings and ‘grand challenges’. Curr. Opin. Neurol. 26, 345–352 (2013).

    Google Scholar 

  282. 282.

    Rocca, M. A. et al. Long-term disability progression in primary progressive multiple sclerosis: a 15-year study. Brain 140, 2814–2819 (2017).

    Google Scholar 

  283. 283.

    Filippi, M., Preziosa, P. & Rocca, M. A. Magnetic resonance outcome measures in multiple sclerosis trials: time to rethink? Curr. Opin. Neurol. 27, 290–299 (2014).

    Google Scholar 

  284. 284.

    Trojano, M. et al. Treatment decisions in multiple sclerosis — insights from real-world observational studies. Nat. Rev. Neurol. 13, 105–118 (2017).

    Google Scholar 

  285. 285.

    Kalincik, T. et al. Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. Brain 140, 2426–2443 (2017).

    Google Scholar 

  286. 286.

    Havrdova, E. et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the natalizumab safety and efficacy in relapsing-remitting multiple sclerosis (AFFIRM) study. Lancet Neurol. 8, 254–260 (2009).

    Google Scholar 

  287. 287.

    Giovannoni, G., Tomic, D., Bright, J. R. & Havrdová, E. “No evident disease activity”: the use of combined assessments in the management of patients with multiple sclerosis. Mult. Scler. 23, 1179–1187 (2017).

    PubMed  PubMed Central  Google Scholar 

  288. 288.

    Parks, N. E., Flanagan, E. P., Lucchinetti, C. F. & Wingerchuk, D. M. NEDA treatment target? No evident disease activity as an actionable outcome in practice. J. Neurol. Sci. 383, 31–34 (2017).

    Google Scholar 

  289. 289.

    Rotstein, D. L., Healy, B. C., Malik, M. T., Chitnis, T. & Weiner, H. L. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 72, 152–158 (2015).

    Google Scholar 

  290. 290.

    De Stefano, N. et al. Long-term assessment of no evidence of disease activity in relapsing-remitting MS. Neurology 85, 1722–1723 (2015).

    Google Scholar 

  291. 291.

    Damasceno, A., Damasceno, B. P. & Cendes, F. No evidence of disease activity in multiple sclerosis: implications on cognition and brain atrophy. Mult. Scler. 22, 64–72 (2016).

    CAS  Google Scholar 

  292. 292.

    Stangel, M., Penner, I. K., Kallmann, B. A., Lukas, C. & Kieseier, B. C. Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Ther. Adv. Neurol. Disord. 8, 3–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  293. 293.

    Kappos, L. et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing-remitting multiple sclerosis. Mult. Scler. 22, 1297–1305 (2016).

    Google Scholar 

  294. 294.

    Marrie, R. A. & Horwitz, R. I. Emerging effects of comorbidities on multiple sclerosis. Lancet Neurol. 9, 820–828 (2010).

    Google Scholar 

  295. 295.

    Marrie, R. A. Comorbidity in multiple sclerosis: implications for patient care. Nat. Rev. Neurol. 13, 375–382 (2017). This paper provides an extensive summary of the prevalence of comorbidity in MS and a discussion of the effects of comorbidity on clinically relevant outcomes in MS and of the potential implications for treatment.

    Google Scholar 

  296. 296.

    Marrie, R. A. et al. Recommendations for observational studies of comorbidity in multiple sclerosis. Neurology 86, 1446–1453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. 297.

    Marrie, R. A. et al. The challenge of comorbidity in clinical trials for multiple sclerosis. Neurology 86, 1437–1445 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. 298.

    Zhang, T. et al. Examining the effects of comorbidities on disease-modifying therapy use in multiple sclerosis. Neurology 86, 1287–1295 (2016).

    PubMed  PubMed Central  Google Scholar 

  299. 299.

    Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl Med. 7, 287ra74 (2015).

    PubMed  PubMed Central  Google Scholar 

  300. 300.

    Dhaunchak, A. S. et al. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann. Neurol. 71, 601–613 (2012).

    Google Scholar 

  301. 301.

    Ascherio, A. & Munger, K. L. Epidemiology of multiple sclerosis: from risk factors to prevention — an update. Semin. Neurol. 36, 103–114 (2016).

    Google Scholar 

  302. 302.

    Yea, C. et al. Epstein-Barr virus in oral shedding of children with multiple sclerosis. Neurology 81, 1392–1399 (2013).

    PubMed  PubMed Central  Google Scholar 

  303. 303.

    Lunemann, J. D. et al. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 205, 1763–1773 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. 304.

    Lunemann, J. D. et al. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. 305.

    Angelini, D. F. et al. Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLOS Pathog. 9, e1003220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. 306.

    Quintana, F. J. et al. Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology 83, 2219–2226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. 307.

    Ahmed, R. M. et al. A practical approach to diagnosing adult onset leukodystrophies. J. Neurol. Neurosurg. Psychiatry 85, 770–781 (2014).

    CAS  Google Scholar 

  308. 308.

    Chun, B. Y. & Rizzo, J. F. 3rd Dominant optic atrophy and Leber’s hereditary optic neuropathy: update on clinical features and current therapeutic approaches. Semin. Pediatr. Neurol. 24, 129–134 (2017).

    Google Scholar 

  309. 309.

    Kumar, N., Ahlskog, J. E., Klein, C. J. & Port, J. D. Imaging features of copper deficiency myelopathy: a study of 25 cases. Neuroradiology 48, 78–83 (2006).

    Google Scholar 

  310. 310.

    Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E. & Bousser, M. G. Cadasil. Lancet Neurol. 8, 643–653 (2009).

    Google Scholar 

  311. 311.

    Wingerchuk, D. M. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85, 177–189 (2015).

    PubMed  PubMed Central  Google Scholar 

  312. 312.

    Jarius, S. et al. MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J. Neuroinflamm. 15, 134 (2018).

    CAS  Google Scholar 

  313. 313.

    Tenembaum, S., Chitnis, T., Ness, J. & Hahn, J. S. Acute disseminated encephalomyelitis. Neurology 68, S23–S36 (2007).

    Google Scholar 

  314. 314.

    Tobin, W. O. et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain 140, 2415–2425 (2017).

    Google Scholar 

  315. 315.

    Simon, J. H. & Kleinschmidt-DeMasters, B. K. Variants of multiple sclerosis. Neuroimaging Clin. N. Am. 18, 703–716 (2008).

    Google Scholar 

  316. 316.

    Lublin, F. D. & Reingold, S. C. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46, 907–911 (1996).

    CAS  Google Scholar 

  317. 317.

    McAlpine, D. Multiple sclerosis: a review. BMJ 2, 292–295 (1973).

    CAS  Google Scholar 

  318. 318.

    McDonald, W. I. Relapse, remission, and progression in multiple sclerosis. N. Engl. J. Med. 343, 1486–1487 (2000).

    CAS  Google Scholar 

  319. 319.

    Patzold, U. & Pocklington, P. R. Course of multiple sclerosis: first results of a prospective study carried out of 102 MS patients from 1976–1980. Acta Neurol. Scand. 65, 248–266 (1982).

    CAS  Google Scholar 

  320. 320.

    Di Pauli, F. et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult. Scler. 14, 1026–1030 (2008).

    Google Scholar 

  321. 321.

    Martinelli, V. et al. Vitamin D levels and risk of multiple sclerosis in patients with clinically isolated syndromes. Mult. Scler. 20, 147–155 (2014).

    CAS  Google Scholar 

  322. 322.

    Gianfrancesco, M. A. et al. Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes. Res. Clin. Pract. 8, e435–e447 (2014).

    PubMed  PubMed Central  Google Scholar 

  323. 323.

    Hedstrom, A. K., Olsson, T. & Alfredsson, L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult. Scler. 18, 1334–1336 (2012).

    Google Scholar 

  324. 324.

    De Jager, P. L. et al. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol. 8, 1111–1119 (2009).

    PubMed  PubMed Central  Google Scholar 

  325. 325.

    Kelly, M. A. et al. The influence of HLA-DR and -DQ alleles on progression to multiple sclerosis following a clinically isolated syndrome. Hum. Immunol. 37, 185–191 (1993).

    CAS  Google Scholar 

  326. 326.

    Mowry, E. M. et al. Clinical predictors of early second event in patients with clinically isolated syndrome. J. Neurol. 256, 1061–1066 (2009).

    PubMed  PubMed Central  Google Scholar 

  327. 327.

    Sidhom, Y. et al. Fast multiple sclerosis progression in North Africans: both genetics and environment matter. Neurology 88, 1218–1225 (2017).

    Google Scholar 

  328. 328.

    Dobson, R., Ramagopalan, S. & Giovannoni, G. The effect of gender in clinically isolated syndrome (CIS): a meta-analysis. Mult. Scler. 18, 600–604 (2012).

    Google Scholar 

  329. 329.

    Confavreux, C., Vukusic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    Google Scholar 

  330. 330.

    Bove, R. M. et al. Effect of gender on late-onset multiple sclerosis. Mult. Scler. 18, 1472–1479 (2012).

    Google Scholar 

  331. 331.

    Guillemin, F. et al. Older age at multiple sclerosis onset is an independent factor of poor prognosis: a population-based cohort study. Neuroepidemiology 48, 179–187 (2017).

    Google Scholar 

  332. 332.

    Eriksson, M., Andersen, O. & Runmarker, B. Long-term follow up of patients with clinically isolated syndromes, relapsing-remitting and secondary progressive multiple sclerosis. Mult. Scler. 9, 260–274 (2003).

    Google Scholar 

  333. 333.

    Tintore, M. et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 138, 1863–1874 (2015).

    Google Scholar 

  334. 334.

    Comi, G. et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357, 1576–1582 (2001).

    CAS  Google Scholar 

  335. 335.

    Nielsen, J. M. et al. MRI characteristics are predictive for CDMS in monofocal, but not in multifocal patients with a clinically isolated syndrome. BMC Neurol. 9, 19 (2009).

    PubMed  PubMed Central  Google Scholar 

  336. 336.

    Scalfari, A. et al. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain 133, 1914–1929 (2010).

    PubMed  PubMed Central  Google Scholar 

  337. 337.

    Martinez, M. A. et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult. Scler. 21, 550–561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  338. 338.

    Minneboo, A. et al. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch. Neurol. 61, 217–221 (2004).

    Google Scholar 

  339. 339.

    Tintore, M. et al. Brainstem lesions in clinically isolated syndromes. Neurology 75, 1933–1938 (2010).

    CAS  Google Scholar 

  340. 340.

    Arrambide, G. et al. Spinal cord lesions: a modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult. Scler. 24, 301–312 (2017).

    Google Scholar 

  341. 341.

    Sombekke, M. H. et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology 80, 69–75 (2013).

    Google Scholar 

  342. 342.

    Brownlee, W. J. et al. Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult. Scler. 23, 665–674 (2017).

    CAS  Google Scholar 

  343. 343.

    Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology 45, 1268–1276 (1995).

    CAS  Google Scholar 

  344. 344.

    Ebers, G. C. & PRISMS Study Group. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

    CAS  Google Scholar 

  345. 345.

    Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann. Neurol. 39, 285–294 (1996).

    CAS  Google Scholar 

  346. 346.

    The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Neurology 43, 655–661 (1993).

    Google Scholar 

  347. 347.

    Calabresi, P. A. et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 13, 657–665 (2014).

    CAS  Google Scholar 

  348. 348.

    Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    CAS  Google Scholar 

  349. 349.

    O’Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    Google Scholar 

  350. 350.

    Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    CAS  Google Scholar 

  351. 351.

    Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    CAS  Google Scholar 

  352. 352.

    Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    CAS  Google Scholar 

  353. 353.

    Calabresi, P. A. et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545–556 (2014).

    CAS  Google Scholar 

  354. 354.

    Kappos, L. et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 373, 1418–1428 (2015).

    CAS  Google Scholar 

  355. 355.

    Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    CAS  Google Scholar 

  356. 356.

    Coles, A. J. et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380, 1829–1839 (2012).

    CAS  Google Scholar 

  357. 357.

    Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426 (2010).

    CAS  Google Scholar 

  358. 358.

    Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  Google Scholar 

  359. 359.

    Rudick, R. A. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    CAS  Google Scholar 

Download references

Reviewer information

Nature Reviews Disease Primers thanks M. Amato, R. Gold, H. Lassman and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

Authors

Contributions

Introduction (M.F.); Epidemiology (S.V.); Mechanisms/pathophysiology (P.P. and A.B.-O.); Diagnosis, screening and prevention (P.P. and M.A.R.); Management (F.P.); Quality of life (A.S.); Outlook (all authors); Overview of Primer (M.F.).

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Competing interests

M.F. is Editor-in-Chief of the Journal of Neurology, has received compensation for consulting services and/or speaking activities from Biogen Idec, Merck-Serono, Novartis and Teva and receives research support from ARiSLA (Fondazione Italiana di Ricerca per la SLA), Biogen Idec, Fondazione Italiana Sclerosi Multipla, the Italian Ministry of Health, Novartis, Roche and Teva. A.B.-O. has participated as a speaker in meetings sponsored by and received consulting fees and/or grant support from Biogen Idec, Celgene/Receptos, GlaxoSmithKline, Medimmune, Merck/EMD Serono, Novartis, Roche/Genentech and Sanofi-Genzyme. F.P. has received unrestricted academic research grants from Biogen, Genzyme and Novartis, and on behalf of Frederik Piehl, his department has received travel support and/or compensation for lectures and/or participation in advisory boards from Biogen, Genzyme, Merck-Serono, Novartis, Roche and Teva, which have been exclusively used for the support of research activities. P.P. has received speakers honoraria from Biogen Idec, Excemed, Merck-Serono and Novartis. A.S. was a board member of Merck-Serono and Novartis and received speaker honoraria from Almirall, Excemed, Genzyme, Merck-Serono and Teva. S.V. has received consulting and lecturing fees, travel grants and research support from Biogen, Celgene, Genentech, Genzyme, MedDay, Merck-Serono, Novartis, Roche, Sanofi-Aventis and Teva. M.A.R. has received speakers honoraria from Biogen Idec, Genzyme, Merck-Serono, Novartis, Roche, Sanofi-Aventis and Teva and receives research support from the Fondazione Italiana Sclerosi Multipla and the Italian Ministry of Health.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Netherlands Brain Bank: http://www.brainbank.nl/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filippi, M., Bar-Or, A., Piehl, F. et al. Multiple sclerosis. Nat Rev Dis Primers 4, 43 (2018). https://doi.org/10.1038/s41572-018-0041-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing