Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apparent changes in the epidemiology and severity of multiple sclerosis

Abstract

Multiple sclerosis (MS) is an immunological disease that causes acute inflammatory lesions and chronic inflammation in the CNS, leading to tissue damage and disability. As awareness of MS has increased and options for therapy have come into use, a large amount of epidemiological data have been collected, enabling studies of changes in incidence and disease course over time. Overall, these data seem to indicate that the incidence of MS has increased, but the course of the disease has become milder, particularly in the 25 years since the first disease-modifying therapies (DMTs) became available. A clear understanding of these trends and the reasons for them is important for understanding the factors that influence the development and progression of MS, and for clinical management with respect to prevention and treatment decisions. In this Review, we consider the evidence for changes in the epidemiology of MS, focusing on trends in the incidence of the disease over time and trends in the disease severity. In addition, we discuss the factors influencing these trends, including refinement of diagnostic criteria and improvements in health-care systems that have increased diagnosis in people with mild disease, and the introduction and improvement of DMT.

Key points

  • Most studies of multiple sclerosis (MS) in the same population over time have shown that the incidence has increased.

  • At least a part of the increase in incidence can be attributed to improved public awareness, better health care, more MS specialists and MRI scanners, and changing diagnostic criteria.

  • In parallel with the increase in incidence, the disease course of MS has also changed; time to disability has lengthened and survival has improved in patients with relapsing–remitting MS.

  • Changes in disease course are likely to have resulted from more complete diagnosis of benign MS, disease-modifying therapies and lifestyle-driven changes in the natural history of the disease.

  • Understanding the reasons for the changing epidemiology of MS is important and provides insight into factors that influence development and progression of MS and for clinical management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in incidence of MS.
Fig. 2: Trend in MS progression rate.

Similar content being viewed by others

References

  1. Alonso, A. & Hernan, M. A. Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71, 129–135 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  2. Koch-Henriksen, N. & Sorensen, P. S. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 9, 520–532 (2010).

    Article  PubMed  Google Scholar 

  3. Beiki, O., Frumento, P., Bottai, M., Manouchehrinia, A. & Hillert, J. Changes in the risk of reaching multiple sclerosis disability milestones in recent decades: a nationwide population-based cohort study in Sweden. JAMA Neurol. 76, 665–671 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  4. Celius, E. G. & Vandvik, B. Multiple sclerosis in Oslo, Norway: prevalence on 1 January 1995 and incidence over a 25-year period. Eur. J. Neurol. 8, 463–469 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Simonsen, C. S., Edland, A., Berg-Hansen, P. & Celius, E. G. High prevalence and increasing incidence of multiple sclerosis in the Norwegian county of Buskerud. Acta Neurol. Scand. 135, 412–418 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Dahl, O. P., Aarseth, J. H., Myhr, K. M., Nyland, H. & Midgard, R. Multiple sclerosis in Nord-Trondelag County, Norway: a prevalence and incidence study. Acta Neurol. Scand. 109, 378–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Grytten, N. et al. A 50-year follow-up of the incidence of multiple sclerosis in Hordaland County, Norway. Neurology 66, 182–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Benjaminsen, E., Olavsen, J., Karlberg, M. & Alstadhaug, K. B. Multiple sclerosis in the far north–incidence and prevalence in Nordland County, Norway, 1970-2010. BMC Neurol. 14, 226 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sumelahti, M. L., Holmberg, M. H., Murtonen, A., Huhtala, H. & Elovaara, I. Increasing incidence in relapsing–remitting MS and high rates among young women in Finland: a thirty-year follow-up. Mult. Scler. Int. 2014, 186950 (2014).

    PubMed Central  PubMed  Google Scholar 

  10. Debouverie, M., Pittion-Vouyovitch, S., Louis, S., Roederer, T. & Guillemin, F. Increasing incidence of multiple sclerosis among women in Lorraine, Eastern France. Mult. Scler. 13, 962–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Grassivaro, F. et al. Multiple sclerosis incidence and prevalence trends in the province of Padua, Northeast Italy, 1965-2018. Neuroepidemiology 52, 41–46 (2018).

    Article  PubMed  Google Scholar 

  12. Papathanasopoulos, P., Gourzoulidou, E., Messinis, L., Georgiou, V. & Leotsinidis, M. Prevalence and incidence of multiple sclerosis in western Greece: a 23-year survey. Neuroepidemiology 30, 167–173 (2008).

    Article  PubMed  Google Scholar 

  13. Ribbons, K., Lea, R., Tiedeman, C., Mackenzie, L. & Lechner-Scott, J. Ongoing increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 50-year study. Mult. Scler. 23, 1063–1071 (2017).

    Article  PubMed  Google Scholar 

  14. Warren, S. A., Svenson, L. W. & Warren, K. G. Contribution of incidence to increasing prevalence of multiple sclerosis in Alberta, Canada. Mult. Scler. 14, 872–879 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Alshubaili, A. F., Alramzy, K., Ayyad, Y. M. & Gerish, Y. Epidemiology of multiple sclerosis in Kuwait: new trends in incidence and prevalence. Eur. Neurol. 53, 125–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Saadatnia, M., Etemadifar, M. & Maghzi, A. H. Multiple sclerosis in Isfahan, Iran. Int. Rev. Neurobiol. 79, 357–375 (2007).

    Article  PubMed  Google Scholar 

  17. Elhami, S. R., Mohammad, K., Sahraian, M. A. & Eftekhar, H. A 20-year incidence trend (1989-2008) and point prevalence (March 20, 2009) of multiple sclerosis in Tehran, Iran: a population-based study. Neuroepidemiology 36, 141–147 (2011).

    Article  PubMed  Google Scholar 

  18. Etemadifar, M. & Maghzi, A. H. Sharp increase in the incidence and prevalence of multiple sclerosis in Isfahan, Iran. Mult. Scler. 17, 1022–1027 (2011).

    Article  PubMed  Google Scholar 

  19. Etemadifar, M. et al. Estimated prevalence and incidence of multiple sclerosis in Iran. Eur. Neurol. 72, 370–374 (2014).

    Article  PubMed  Google Scholar 

  20. Eskandarieh, S., Heydarpour, P., Elhami, S. R. & Sahraian, M. A. Prevalence and incidence of multiple sclerosis in Tehran, Iran. Iran J. Public Heal. 46, 699–704 (2017).

    Google Scholar 

  21. Cheraghmakani, H., Baghbanian, S. M., HabibiSaravi, R., Azar, A. & Ghasemihamedani, F. Age and sex-adjusted incidence and yearly prevalence of multiple sclerosis (MS) in Mazandaran province, Iran: an 11-years study. PLoS ONE 15, e0235562 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Etemadifar, M., Nikanpour, Y., Neshatfar, A., Mansourian, M. & Fitzgerald, S. Incidence and prevalence of multiple sclerosis in Persian Gulf area: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 40, 101959 (2020).

    Article  PubMed  Google Scholar 

  23. Willumsen, J. S., Aarseth, J. H., Myhr, K. M. & Midgard, R. High incidence and prevalence of MS in Møre and Romsdal County, Norway, 1950-2018. Neurol. Neuroimmunol. Neuroinflamm. 7, e713 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  24. Koch-Henriksen, N., Thygesen, L. C., Stenager, E., Laursen, B. & Magyari, M. Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women. Neurology 90, e1954–e1963 (2018).

    Article  PubMed  Google Scholar 

  25. Sumelahti, M. L., Tienari, P. J., Hakama, M. & Wikstrom, J. Multiple sclerosis in Finland: incidence trends and differences in relapsing remitting and primary progressive disease courses. J. Neurol. Neurosurg. Psychiatry 74, 25–28 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Westerlind, H., Stawiarz, L., Fink, K., Hillert, J. & Manouchehrinia, A. A significant decrease in diagnosis of primary progressive multiple sclerosis: a cohort study. Mult. Scler. 22, 1071–1079 (2016).

    Article  PubMed  Google Scholar 

  27. Ahlgren, C., Oden, A. & Lycke, J. High nationwide incidence of multiple sclerosis in Sweden. PLoS ONE 9, e108599 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Kingwell, E. et al. High incidence and increasing prevalence of multiple sclerosis in British Columbia, Canada: findings from over two decades (1991-2010). J. Neurol. 262, 2352–2363 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mayr, W. T. et al. Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985-2000. Neurology 61, 1373–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Daltrozzo, T., Hapfelmeier, A., Donnachie, E., Schneider, A. & Hemmer, B. A systematic assessment of prevalence, incidence and regional distribution of multiple sclerosis in Bavaria from 2006 to 2015. Front. Neurol. 9, 871 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hader, W. J. & Yee, I. M. Incidence and prevalence of multiple sclerosis in Saskatoon, Saskatchewan. Neurology 69, 1224–1229 (2007).

    Article  PubMed  Google Scholar 

  32. Rotstein, D. L. et al. Temporal trends in multiple sclerosis prevalence and incidence in a large population. Neurology 90, e1435–e1441 (2018).

    Article  PubMed  Google Scholar 

  33. Zamboni, P. et al. A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J. Vasc. Surg. 50, 1348–1358 (2009).

    Article  PubMed  Google Scholar 

  34. Iljicsov, A. et al. Incidence and prevalence of multiple sclerosis in Hungary based on record linkage of nationwide multiple healthcare administrative data. PLoS ONE 15, e0236432 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Grytten, N., Aarseth, J. H., Lunde, H. M. & Myhr, K. M. A 60-year follow-up of the incidence and prevalence of multiple sclerosis in Hordaland County, Western Norway. J. Neurol. Neurosurg. Psychiatry 87, 100–105 (2016).

    CAS  PubMed  Google Scholar 

  36. Marrie, R. A. et al. The incidence and prevalence of multiple sclerosis in Nova Scotia, Canada. Can. J. Neurol. Sci. 40, 824–831 (2013).

    Article  PubMed  Google Scholar 

  37. Widdifield, J. et al. Development and validation of an administrative data algorithm to estimate the disease burden and epidemiology of multiple sclerosis in Ontario, Canada. Mult. Scler. 21, 1045–1054 (2015).

    Article  PubMed  Google Scholar 

  38. Hirst, C. et al. Increasing prevalence and incidence of multiple sclerosis in South East Wales. J. Neurol. Neurosurg. Psychiatry 80, 386–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kotzamani, D. et al. Rising incidence of multiple sclerosis in females associated with urbanization. Neurology 78, 1728–1735 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Trojano, M. et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS ONE 7, e48078 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Valadkeviciene, D., Kavaliunas, A., Kizlaitiene, R., Jocys, M. & Jatuzis, D. Incidence rate and sex ratio in multiple sclerosis in Lithuania. Brain Behav. 9, e01150 (2019).

    Article  PubMed  Google Scholar 

  42. Ramagopalan, S. V. et al. Sex ratio of multiple sclerosis and clinical phenotype. Eur. J. Neurol. 17, 634–637 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Kampman, M. T. et al. Sex ratio of multiple sclerosis in persons born from 1930 to 1979 and its relation to latitude in Norway. J. Neurol. 260, 1481–1488 (2013).

    Article  PubMed  Google Scholar 

  44. Brain, W. R. Critical review: disseminated sclerosis. Q. J. Med 23, 343–391 (1930).

    Article  Google Scholar 

  45. Tremlett, H. Slower MS disability progression than previously reported. ECTRIMS https://onlinelibrary.ectrims-congress.eu/ectrims/2019/stockholm/279360/helen.tremlett.slower.ms.disability.progression.than.previously.reported.html (2019).

  46. Kalincik, T. et al. Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. Brain 136, 3609–3617 (2013).

    Article  PubMed  Google Scholar 

  47. Tintore, M. et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 138, 1863–1874 (2015).

    Article  PubMed  Google Scholar 

  48. Hernan, M. A., Olek, M. J. & Ascherio, A. Cigarette smoking and incidence of multiple sclerosis. Am. J. Epidemiol. 154, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Riise, T., Nortvedt, M. W. & Ascherio, A. Smoking is a risk factor for multiple sclerosis. Neurology 61, 1122–1124 (2003).

    Article  PubMed  Google Scholar 

  50. Hawkes, C. H. Smoking is a risk factor for multiple sclerosis: a metanalysis. Mult. Scler. 13, 610–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Munger, K. L. et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult. Scler. 19, 1323–1329 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  52. Nielsen, N. M. et al. Reproductive history and risk of multiple sclerosis. Epidemiology 22, 546–552 (2011).

    Article  PubMed  Google Scholar 

  53. Allison, R. A. & Miller, J. D. H. Prevalence and familial incidence of disseminated sclerosis. Ulster. Med. J. 23 (Suppl. 2), 5–27 (1954).

    PubMed Central  Google Scholar 

  54. Schumacher, G. et al. Problems of experimental trials of therapy in multiple sclerosis: report by the Panel on the Evaluation of Experimental Trials of Therapy in Multiple Sclerosis. Ann. NY Acad. Sci. 122, 552–568 (1965).

    Article  CAS  PubMed  Google Scholar 

  55. Poser, C. M. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13, 227–231 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. McDonald, W. I. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 50, 121–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald criteria’. Ann. Neurol. 58, 840–846 (2005).

    Article  PubMed  Google Scholar 

  58. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Thompson, A. J. et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17, 162–173 (2018).

    Article  PubMed  Google Scholar 

  60. McNicholas, N., Hutchinson, M., McGuigan, C. & Chataway, J. 2017 McDonald diagnostic criteria: a review of the evidence. Mult. Scler. Relat. Disord. 24, 48–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. van der Vuurst de Vries, R. M. et al. Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol. 75, 1392–1398 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gobbin, F. et al. 2017 McDonald criteria for multiple sclerosis: earlier diagnosis with reduced specificity? Mult. Scler. Relat. Disord. 29, 23–25 (2019).

    Article  PubMed  Google Scholar 

  63. Gaetani, L. et al. 2017 revisions of McDonald criteria shorten the time to diagnosis of multiple sclerosis in clinically isolated syndromes. J. Neurol. 265, 2684–2687 (2018).

    Article  PubMed  Google Scholar 

  64. Miller, D. H., Chard, D. T. & Ciccarelli, O. Clinically isolated syndromes. Lancet Neurol. 11, 157–169 (2012).

    Article  PubMed  Google Scholar 

  65. Novakova, L. et al. Clinically isolated syndromes with no further disease activity suggestive of multiple sclerosis at the age of population life expectancy. Mult. Scler. 20, 496–500 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Kerbrat, A. et al. Ten-year prognosis in multiple sclerosis: a better outcome in relapsing-remitting patients but not in primary progressive patients. Eur. J. Neurol. 22, 507–e35 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Kuhle, J. et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult. Scler. 21, 1013–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Tintore, M. et al. The long-term outcomes of CIS patients in the Barcelona inception cohort: looking back to recognize aggressive MS. Mult. Scler. 26, 1658–1669 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Adornato, B. T. et al. The practice of neurology, 2000-2010: report of the AAN Member Research Subcommittee. Neurology 77, 1921–1928 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Canadian Agency for Drugs and Technologies in Health. In Brief: Canadian medical imaging inventory: 2017 (CADTH, 2018).

  71. Michas, F. Total number of magnetic resonance imaging (MRI) units in the United Kingdom (UK) from 2000 to 2014. Statista https://www.statista.com/statistics/473302/number-of-magnetic-resonance-imaging-units-united-kingdom-uk/ (2019).

  72. Gianfrancesco, M. A. et al. Obesity during childhood and adolescence increases susceptibility to multiple sclerosis after accounting for established genetic and environmental risk factors. Obes. Res. Clin. Pract. 8, e435–e447 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  73. Stamatakis, E., Primatesta, P., Chinn, S., Rona, R. & Falascheti, E. Overweight and obesity trends from 1974 to 2003 in English children: what is the role of socioeconomic factors? Arch. Dis. Child. 90, 999–1004 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hedstrom, A. K., Baarnhielm, M., Olsson, T. & Alfredsson, L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology 73, 696–701 (2009).

    Article  PubMed  Google Scholar 

  75. Ramagopalan, S. V. et al. Association of smoking with risk of multiple sclerosis: a population-based study. J. Neurol. 260, 1778–1781 (2013).

    Article  PubMed  Google Scholar 

  76. Thun, M. J., Henley, S. J. & Calle, E. E. Tobacco use and cancer: an epidemiologic perspective for genetics. Oncogene 21, 7307–7325 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Hedstrom, A. K., Baarnhielm, M., Olsson, T. & Alfredsson, L. Exposure to environmental tobacco smoke is associated with increased risk for multiple sclerosis. Mult. Scler. 17, 788–793 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Oturai, D. B. et al. Exposure to passive smoking during adolescence is associated with an increased risk of developing multiple sclerosis. Mult. Scler. J. 27, 188–197 (2021).

    Article  CAS  Google Scholar 

  79. Magyari, M., Koch-Henriksen, N., Pfleger, C. C. & Sorensen, P. S. Reproduction and the risk of multiple sclerosis. Mult. Scler. 19, 1604–1609 (2013).

    Article  PubMed  Google Scholar 

  80. Goldacre, M. J., Wotton, C. J., Seagroatt, V. & Yeates, D. Multiple sclerosis after infectious mononucleosis: record linkage study. J. Epidemiol. Community Heal. 58, 1032–1035 (2004).

    Article  Google Scholar 

  81. Nielsen, T. R. et al. Multiple sclerosis after infectious mononucleosis. Arch. Neurol. 64, 72–75 (2007).

    Article  PubMed  Google Scholar 

  82. Kuri, A. et al. Epidemiology of Epstein-Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health 20, 912 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  83. Bergamaschi, R. et al. PM(2.5) exposure as a risk factor for multiple sclerosis. An ecological study with a Bayesian mapping approach. Environ. Sci. Pollut. Res. Int. 28, 2804–2809 (2021).

    Article  PubMed  Google Scholar 

  84. Bihrmann, K. et al. Small-scale geographical variation in multiple sclerosis: a case-control study using Danish register data 1971-2013. Mult. Scler. Relat. Disord. 23, 40–45 (2018).

    Article  PubMed  Google Scholar 

  85. Kurtzke, J. F. Disability rating scales in multiple sclerosis. Ann. NY Acad. Sci. 436, 347–360 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112, 133–146 (1989).

    Article  PubMed  Google Scholar 

  87. Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain 116, 117–134 (1993).

    Article  PubMed  Google Scholar 

  88. Myhr, K. M. et al. Disability and prognosis in multiple sclerosis: demographic and clinical variables important for the ability to walk and awarding of disability pension. Mult. Scler. 7, 59–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Confavreux, C. Establishment and use of multiple sclerosis registers–EDMUS. Ann. Neurol. 36, S136–S139 (1994).

    Article  PubMed  Google Scholar 

  90. Confavreux, C., Vukusic, S., Moreau, T. & Adeleine, P. Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 343, 1430–1438 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Confavreux, C., Vukusic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    Article  PubMed  Google Scholar 

  92. Confavreux, C. & Vukusic, S. Age at disability milestones in multiple sclerosis. Brain 129, 595–605 (2006).

    Article  PubMed  Google Scholar 

  93. Leray, E. et al. Evidence for a two-stage disability progression in multiple sclerosis. Brain 133, 1900–1913 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  94. Tremlett, H., Paty, D. & Devonshire, V. Disability progression in multiple sclerosis is slower than previously reported. Neurology 66, 172–177 (2006).

    Article  PubMed  Google Scholar 

  95. Veugelers, P. J. et al. Disease progression among multiple sclerosis patients before and during a disease-modifying drug program: a longitudinal population-based evaluation. Mult. Scler. 15, 1286–1294 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Hillert, J. & Stawiarz, L. The Swedish MS registry–clinical support tool and scientific resource. Acta Neurol. Scand. 132, 11–19 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Manouchehrinia, A., Beiki, O. & Hillert, J. Clinical course of multiple sclerosis: a nationwide cohort study. Mult. Scler. 23, 1488–1495 (2017).

    Article  PubMed  Google Scholar 

  98. Damasceno, A., von, G. F., Brandao, C. O., Damasceno, B. P. & Cendes, F. Prognostic indicators for long-term disability in multiple sclerosis patients. J. Neurol. Sci. 324, 29–33 (2013).

    Article  PubMed  Google Scholar 

  99. Capra, R. et al. Assessing long-term prognosis improvement as a consequence of treatment pattern changes in MS. Mult. Scler. 23, 1757–1761 (2017).

    Article  PubMed  Google Scholar 

  100. Kister, I. et al. Increasing age at disability milestones among MS patients in the MSBase registry. J. Neurol. Sci. 318, 94–99 (2012).

    Article  PubMed  Google Scholar 

  101. Shirani, A., Zhao, Y., Kingwell, E., Rieckmann, P. & Tremlett, H. Temporal trends of disability progression in multiple sclerosis: findings from British Columbia, Canada (1975-2009). Mult. Scler. 18, 442–450 (2012).

    Article  PubMed  Google Scholar 

  102. Koch, M., Kingwell, E., Rieckmann, P. & Tremlett, H. The natural history of secondary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 81, 1039–1043 (2010).

    Article  PubMed  Google Scholar 

  103. Cottrell, D. A. et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain 122, 625–639 (1999).

    Article  PubMed  Google Scholar 

  104. Tremlett, H., Paty, D. & Devonshire, V. The natural history of primary progressive MS in British Columbia, Canada. Neurology 65, 1919–1923 (2005).

    Article  PubMed  Google Scholar 

  105. Leray, E. et al. Long-term survival of patients with multiple sclerosis in West France. Mult. Scler. 13, 865–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Smestad, C., Sandvik, L. & Celius, E. G. Excess mortality and cause of death in a cohort of Norwegian multiple sclerosis patients. Mult. Scler. 15, 1263–1270 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Capkun, G. et al. Mortality and comorbidities in patients with multiple sclerosis compared with a population without multiple sclerosis: an observational study using the US Department of Defense administrative claims database. Mult. Scler. Relat. Disord. 4, 546–554 (2015).

    Article  PubMed  Google Scholar 

  108. Ragonese, P., Aridon, P., Salemi, G., D’Amelio, M. & Savettieri, G. Mortality in multiple sclerosis: a review. Eur. J. Neurol. 15, 123–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Manouchehrinia, A., Tanasescu, R., Tench, C. R. & Constantinescu, C. S. Mortality in multiple sclerosis: meta-analysis of standardised mortality ratios. J. Neurol. Neurosurg. Psychiatry 87, 324–331 (2016).

    Article  PubMed  Google Scholar 

  110. Kingwell, E. et al. Relative mortality and survival in multiple sclerosis: findings from British Columbia, Canada. J. Neurol. Neurosurg. Psychiatry 83, 61–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Lunde, H. M. B., Assmus, J., Myhr, K. M., Bo, L. & Grytten, N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J. Neurol. Neurosurg. Psychiatry 88, 621–625 (2017).

    Article  PubMed  Google Scholar 

  112. Koch-Henriksen, N., Laursen, B., Stenager, E. & Magyari, M. Excess mortality among patients with multiple sclerosis in Denmark has dropped significantly over the past six decades: a population based study. J. Neurol. Neurosurg. Psychiatry 88, 626–631 (2017).

    Article  PubMed  Google Scholar 

  113. Burkill, S. et al. Mortality trends for multiple sclerosis patients in Sweden from 1968 to 2012. Neurology 89, 555–562 (2017).

    Article  PubMed  Google Scholar 

  114. Ramsaransing, G., Maurits, N., Zwanikken, C. & De, K. J. Early prediction of a benign course of multiple sclerosis on clinical grounds: a systematic review. Mult. Scler. 7, 345–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Amato, M. P. et al. Benign multiple sclerosis: cognitive, psychological and social aspects in a clinical cohort. J. Neurol. 253, 1054–1059 (2006).

    Article  PubMed  Google Scholar 

  116. Glad, S., Nyland, H. & Myhr, K. M. Benign multiple sclerosis. Acta Neurol. Scand. Suppl. 183, 55–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Gajofatto, A. et al. Benign multiple sclerosis: physical and cognitive impairment follow distinct evolutions. Acta Neurol. Scand. 133, 183–191 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Sayao, A. L., Devonshire, V. & Tremlett, H. Longitudinal follow-up of ‘benign’ multiple sclerosis at 20 years. Neurology 68, 496–500 (2007).

    Article  PubMed  Google Scholar 

  119. Hirst, C. et al. Change in disability in patients with multiple sclerosis: a 20-year prospective population-based analysis. J. Neurol. Neurosurg. Psychiatry 79, 1137–1143 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Tallantyre, E. C. et al. How common is truly benign MS in a UK population? J. Neurol. Neurosurg. Psychiatry 90, 522–528 (2019).

    Article  PubMed  Google Scholar 

  121. Skoog, B., Runmarker, B., Winblad, S., Ekholm, S. & Andersen, O. A representative cohort of patients with non-progressive multiple sclerosis at the age of normal life expectancy. Brain 135, 900–911 (2012).

    Article  PubMed  Google Scholar 

  122. Pfleger, C. C., Flachs, E. M. & Koch-Henriksen, N. Social consequences of multiple sclerosis (1): Early pension and temporary unemployment–a historical prospective cohort study. Mult. Scler. 16, 121–126 (2010).

    Article  PubMed  Google Scholar 

  123. Ellenberger, D. et al. Is benign MS really benign? What a meaningful classification beyond the EDSS must take into consideration. Mult. Scler. Relat. Disord. 46, 102485 (2020).

    Article  PubMed  Google Scholar 

  124. Casserly, C. & Ebers, G. C. Relapses do not matter in relation to long-term disability: yes. Mult. Scler. 17, 1412–1414 (2011).

    Article  PubMed  Google Scholar 

  125. Lublin, F. D. Relapses do not matter in relation to long-term disability: no (they do). Mult. Scler. 17, 1415–1416 (2011).

    Article  PubMed  Google Scholar 

  126. Hutchinson, M. Relapses do not matter in relation to long-term disability: commentary. Mult. Scler. 17, 1417 (2011).

    Article  PubMed  Google Scholar 

  127. Cree, B. A. C. et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann. Neurol. 85, 653–666 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  128. Koch-Henriksen, N., Thygesen, L. C., Sorensen, P. S. & Magyari, M. Worsening of disability caused by relapses in multiple sclerosis: a different approach. Mult. Scler. Relat. Disord. 32, 1–8 (2019).

    Article  PubMed  Google Scholar 

  129. Tedeholm, H. et al. Time to secondary progression in patients with multiple sclerosis who were treated with first generation immunomodulating drugs. Mult. Scler. 19, 765–774 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Palace, J. et al. Assessing the long-term effectiveness of interferon-beta and glatiramer acetate in multiple sclerosis: final 10-year results from the UK multiple sclerosis risk-sharing scheme. J. Neurol. Neurosurg. Psychiatry 90, 251–260 (2018).

    Article  PubMed  Google Scholar 

  131. Tremlett, H., Zhao, Y., Rieckmann, P. & Hutchinson, M. New perspectives in the natural history of multiple sclerosis. Neurology 74, 2004–2015 (2010).

    Article  PubMed  Google Scholar 

  132. Trojano, M. et al. New natural history of interferon-β-treated relapsing multiple sclerosis. Ann. Neurol. 61, 300–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Trojano, M. et al. Real-life impact of early interferonβ therapy in relapsing multiple sclerosis. Ann. Neurol. 66, 513–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Chalmer, T. A. et al. Early versus later treatment start in multiple sclerosis: a register-based cohort study. Eur. J. Neurol. 25, 1262.e110 (2018).

    Article  PubMed  Google Scholar 

  135. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

    Article  Google Scholar 

  136. Goodin, D. S. et al. Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial. Neurology 78, 1315–1322 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Amato, M. P. et al. Disease-modifying drugs can reduce disability progression in relapsing multiple sclerosis. Brain 143, 3013–3024 (2020).

    Article  PubMed  Google Scholar 

  138. Kalincik, T. et al. Effect of disease-modifying therapy on disability in relapsing-remitting multiple sclerosis over 15 years. Neurology 96, e783–e797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kingwell, E. et al. Assessment of cancer risk with β-interferon treatment for multiple sclerosis. J. Neurol. Neurosurg.Psychiatry 85, 1096–1102 (2014).

    Article  PubMed  Google Scholar 

  140. Sormani, M. P. et al. Will Rogers phenomenon in multiple sclerosis. Ann. Neurol. 64, 428–433 (2008).

    Article  PubMed  Google Scholar 

  141. Sormani, M. P. The Will Rogers phenomenon: the effect of different diagnostic criteria. J. Neurol. Sci. 287 (Suppl. 1), 46–49 (2009).

    Article  Google Scholar 

  142. Tintore, M. et al. New diagnostic criteria for multiple sclerosis: application in first demyelinating episode. Neurology 60, 27–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Handel, A. E. et al. Smoking and multiple sclerosis: an updated meta-analysis. PLoS ONE 6, e16149 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Degelman, M. L. & Herman, K. M. Smoking and multiple sclerosis: a systematic review and meta-analysis using the Bradford Hill criteria for causation. Mult. Scler. Relat. Disord. 17, 207–216 (2017).

    Article  PubMed  Google Scholar 

  145. Ng, M. et al. Smoking prevalence and cigarette consumption in 187 countries, 1980-2012. JAMA 311, 183–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Jakimovski, D. et al. Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. J. Neurol. 266, 866–875 (2019).

    Article  PubMed  Google Scholar 

  147. Atkinson, S. A. & Fleet, J. C. Canadian recommendations for vitamin D intake for persons affected by multiple sclerosis. J. Steroid Biochem. 199, 105606 (2020).

    Article  CAS  Google Scholar 

  148. Karim, M. E., Gustafson, P., Petkau, J. & Tremlett, H. Comparison of statistical approaches for dealing with immortal time bias in drug effectiveness studies. Am. J. Epidemiol. 184, 325–335 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  149. Cain, K. C. et al. Bias due to left truncation and left censoring in longitudinal studies of developmental and disease processes. Am. J. Epidemiol. 173, 1078–1084 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  150. McKay, K. A. et al. A population-based study comparing multiple sclerosis clinic users and non-users in British Columbia, Canada. Eur. J. Neurol. 23, 1093–1100 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.K.-H. researched data for the article and wrote the article. Both authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nils Koch-Henriksen.

Ethics declarations

Competing interests

In the past 2 years, N.K.-H. has received support for participation in congresses and symposia from Sanofi Genzyme. M.M. has served on scientific advisory boards for Abbvie, Biogen, Merck, Novartis, Roche, Sanofi and Teva, has received honoraria for lecturing from Biogen, Genzyme, Merck, Novartis and Sanofi, support for congress participation from Biogen, Genzyme, Roche and Teva, and research grants from Merck, Novartis and Sanofi.

Additional information

Peer review information

Nature Reviews Neurology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch-Henriksen, N., Magyari, M. Apparent changes in the epidemiology and severity of multiple sclerosis. Nat Rev Neurol 17, 676–688 (2021). https://doi.org/10.1038/s41582-021-00556-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00556-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing