Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Abdominal aortic aneurysms

Abstract

An abdominal aortic aneurysm (AAA) is a localized dilatation of the infrarenal aorta. AAA is a multifactorial disease, and genetic and environmental factors play a part; smoking, male sex and a positive family history are the most important risk factors, and AAA is most common in men >65 years of age. AAA results from changes in the aortic wall structure, including thinning of the media and adventitia due to the loss of vascular smooth muscle cells and degradation of the extracellular matrix. If the mechanical stress of the blood pressure acting on the wall exceeds the wall strength, the AAA ruptures, causing life-threatening intra-abdominal haemorrhage — the mortality for patients with ruptured AAA is 65–85%. Although AAAs of any size can rupture, the risk of rupture increases with diameter. Intact AAAs are typically asymptomatic, and in settings where screening programmes with ultrasonography are not implemented, most cases are diagnosed incidentally. Modern functional imaging techniques (PET, CT and MRI) may help to assess rupture risk. Elective repair of AAA with open surgery or endovascular aortic repair (EVAR) should be considered to prevent AAA rupture, although the morbidity and mortality associated with both techniques remain non-negligible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAAs.
Fig. 2: A speculative model of AAA progression.
Fig. 3: Conventional imaging of AAA.
Fig. 4: Functional imaging of AAA.
Fig. 5: Finite element analysis of AAA.
Fig. 6: Proposed surveillance protocol for patients with AAAs.
Fig. 7: History of the treatment of AAA.
Fig. 8: Open AAA repair surgery.
Fig. 9: Endovascular aortic repair.

Similar content being viewed by others

References

  1. Slaney, G. in The Cause and Management of Aneurysm (eds Greenhalgh, R. M., Mannick, J. A.) 1–19 (Saunders, 1990).

  2. Johnston, K. W. et al. Suggested standards for reporting on arterial aneurysms. J. Vasc. Surg. 13, 452–458 (1991).

    CAS  Google Scholar 

  3. McGregor, J. C., Pollock, J. G. & Anton, H. C. The value of ultrasonography in the diagnosis of abdominal aortic aneurysm. Scott. Med. J. 20, 133–137 (1975).

    CAS  Google Scholar 

  4. Rogers, I. S. et al. Distribution, determinants, and normal reference values of thoracic and abdominal aortic diameters by computed tomography (from the Framingham Heart Study). Am. J. Cardiol. 111, 1510–1516 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Steinberg, C. R., Archer, M. & Steinberg, I. Measurement of the abdominal aorta after intravenous aortography in health and arteriosclerotic peripheral vascular disease. Am. J. Roentgenol. Radium Ther. Nucl. Med. 95, 703–708 (1965).

    CAS  Google Scholar 

  6. Moll, F. L. et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 41 (Suppl. 1), 1–58 (2011).

    Google Scholar 

  7. Michel, J. B. et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90, 18–27 (2011).

    CAS  Google Scholar 

  8. Biancari, F., Catania, A. & D’Andrea, V. Elective endovascular versus open repair for abdominal aortic aneurysm in patients aged 80 years and older: systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 42, 571–576 (2011).

    CAS  Google Scholar 

  9. Sampson, U. K. A. et al. Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010. Glob. Heart 9, 159–170 (2014).

    Google Scholar 

  10. Svensjö, S., Bjorck, M. & Wanhainen, A. Current prevalence of abdominal aortic aneurysm in 70-year-old women. Br. J. Surg. 100, 367–372 (2013).

    Google Scholar 

  11. Oliver-Williams, C. et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. Br. J. Surg. 105, 68–74 (2018). This study on the population-based screening programme of 81,000 men invited in Gloucestershire, UK, in 1990 shows a decreasing prevalence from 5% to 1.3% in 25 years and demonstrates that 28% of patients with subaneurysmal aortas (25–29 mm) develop large AAAs within 15 years.

    CAS  Google Scholar 

  12. Grondal, N., Sogaard, R. & Lindholt, J. S. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). Br. J. Surg. 102, 902–906 (2015).

    CAS  Google Scholar 

  13. Dahl, M. et al. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. BMC Cardiovasc. Disord. 18, 20 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Zommorodi, S., Leander, K., Roy, J., Steuer, J. & Hultgren, R. Understanding abdominal aortic aneurysm epidemiology: socioeconomic position affects outcome. J. Epidemiol. Community Health. https://doi.org/10.1136/jech-2018-210644 (2018). This nationwide population-based study of >41,000 individuals with intact AAAs or ruptured AAAs in Sweden during 2001–2015 presents contemporary temporal trends on untreated and treated patients with intact and ruptured AAAs. The decreasing numbers of patients with ruptured AAAs in parallel with more patients with diagnosed intact AAAs possibly reflect the introduction of screening in men.

  15. Lederle, F. A., Nelson, D. B. & Joseph, A. M. Smokers’ relative risk for aortic aneurysm compared with other smoking-related diseases: a systematic review. J. Vasc. Surg. 38, 329–334 (2003).

    Google Scholar 

  16. Hultgren, R., Granath, F. & Swedenborg, J. Different disease profiles for women and men with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33, 556–560 (2007).

    CAS  Google Scholar 

  17. Norman, P. E., Semmens, J. B., Lawrence-Brown, M. M. & Holman, C. D. Long term relative survival after surgery for abdominal aortic aneurysm in western Australia: population based study. BMJ 317, 852–856 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kent, K. C. et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 52, 539–548 (2010).

    Google Scholar 

  19. Bengtsson, H. & Bergqvist, D. Ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 18, 74–80 (1993).

    CAS  Google Scholar 

  20. Villard, C. & Hultgren, R. Abdominal aortic aneurysm: sex differences. Maturitas 109, 63–69 (2018).

    Google Scholar 

  21. Hultgren, R., Vishnevskaya, L. & Wahlgren, C. M. Women with abdominal aortic aneurysms have more extensive aortic neck pathology. Ann. Vasc. Surg. 27, 547–552 (2013).

    PubMed  Google Scholar 

  22. Ulug, P., Sweeting, M. J., von Allmen, R. S., Thompson, S. G. & Powell, J. T. Morphological suitability for endovascular repair, non-intervention rates, and operative mortality in women and men assessed for intact abdominal aortic aneurysm repair: systematic reviews with meta-analysis. Lancet 389, 2482–2491 (2017). This systematic review and meta-analysis of reports from 2009 to 2016 summarize the lower proportion of women eligible for EVAR (34% versus 54%) and the poorer outcomes in women treated for AAA with EVAR and open repair surgery.

    PubMed  PubMed Central  Google Scholar 

  23. Khashram, M., Pitama, S., Williman, J. A., Jones, G. T. & Roake, J. A. Survival disparity following abdominal aortic aneurysm repair highlights inequality in ethnic and socio-economic status. Eur. J. Vasc. Endovasc. Surg. 54, 689–696 (2017).

    Google Scholar 

  24. Deery, S. E. et al. Racial disparities in outcomes after intact abdominal aortic aneurysm repair. J. Vasc. Surg. 67, 1059–1067 (2018).

    Google Scholar 

  25. Ravi, P. et al. Racial/ethnic disparities in perioperative outcomes of major procedures: results from the National Surgical Quality Improvement Program. Ann. Surg. 262, 955–964 (2015).

    Google Scholar 

  26. Williams, T. K. et al. Disparities in outcomes for hispanic patients undergoing endovascular and open abdominal aortic aneurysm repair. Ann. Vasc. Surg. 27, 29–37 (2013).

    Google Scholar 

  27. Bobadilla, J. L. & Kent, K. C. Screening for abdominal aortic aneurysms. Adv. Surg. 46, 101–109 (2012).

    Google Scholar 

  28. Larsson, E., Granath, F., Swedenborg, J. & Hultgren, R. A population-based case-control study of the familial risk of abdominal aortic aneurysm. J. Vasc. Surg. 49, 47–50 (2009).

    Google Scholar 

  29. Sakalihasan, N. et al. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Ann. Vasc. Surg. 28, 787–797 (2014).

    Google Scholar 

  30. Biros, E. et al. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease. Oncotarget 6, 12984–12996 (2015). In this genomic observational study in human occlusive atherothrombosis of the aorta versus AAA tissue, the authors report that the network of adaptive immunity is overexpressed in AAAs compared with atherothrombotic occlusive tissue. This observation underscores the importance of adventitial immune responses in AAA.

    PubMed  PubMed Central  Google Scholar 

  31. Hernesniemi, J. A., Vanni, V. & Hakala, T. The prevalence of abdominal aortic aneurysm is consistently high among patients with coronary artery disease. J. Vasc. Surg. 62, 232–240 (2015).

    Google Scholar 

  32. Tang, W. et al. Lifetime risk and risk factors for abdominal aortic aneurysm in a 24-year prospective study: the ARIC study (atherosclerosis risk in communities). Arterioscler. Thromb. Vasc. Biol. 36, 2468–2477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lederle, F. A. The strange relationship between diabetes and abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 43, 254–256 (2012).

    CAS  Google Scholar 

  34. Sweeting, M. J., Thompson, S. G., Brown, L. C. & Powell, J. T. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br. J. Surg. 99, 655–665 (2012).

    CAS  Google Scholar 

  35. Golledge, J. et al. Association between metformin prescription and growth rates of abdominal aortic aneurysms. Br. J. Surg. 104, 1486–1493 (2017).

    CAS  PubMed  Google Scholar 

  36. Ulug, P. et al. Meta-analysis of the current prevalence of screen-detected abdominal aortic aneurysm in women. Br. J. Surg. 103, 1097–1104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tweed, J. O., Hsia, S. H., Lutfy, K. & Friedman, T. C. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol. Metab. 23, 334–342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Beckman, J. A. & Creager, M. A. in Vascular Medicine: A Companion to Braunwald’s Heart Disease (eds Creager, M. A., Dzau, V. J., Loscalzo, J.) 560–569 (Elsevier Saunders, 2006).

  39. Kuivaniemi, H. et al. Familial abdominal aortic aneurysms: collection of 233 multiplex families. J. Vasc. Surg. 37, 340–345 (2003).

    PubMed  Google Scholar 

  40. Majumder, P. P., St Jean, P. L., Ferrell, R. E., Webster, M. W. & Steed, D. L. On the inheritance of abdominal aortic aneurysm. Am. J. Hum. Genet. 48, 164–170 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Verloes, A., Sakalihasan, N., Koulischer, L. & Limet, R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J. Vasc. Surg. 21, 646–655 (1995).

    CAS  Google Scholar 

  42. Wahlgren, C. M., Larsson, E., Magnusson, P. K., Hultgren, R. & Swedenborg, J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J. Vasc. Surg. 51, 3–7; discussion 7 (2010).

    Google Scholar 

  43. Joergensen, T. M. et al. High heritability of liability to abdominal aortic aneurysms: a population based twin study. J. Vasc. Surg. 64, 537 (2016).

    Google Scholar 

  44. Akai, A. et al. Family history of aortic aneurysm is an independent risk factor for more rapid growth of small abdominal aortic aneurysms in Japan. J. Vasc. Surg. 61, 287–290 (2015).

    Google Scholar 

  45. van de Luijtgaarden, K. M. et al. Familial abdominal aortic aneurysm is associated with more complications after endovascular aneurysm repair. J. Vasc. Surg. 59, 275–282 (2014).

    Google Scholar 

  46. Ryer, E. J. et al. Patients with familial abdominal aortic aneurysms are at increased risk for endoleak and secondary intervention following elective endovascular aneurysm repair. J. Vasc. Surg. 62, 1119–1124 (2015).

    Google Scholar 

  47. Shibamura, H. et al. Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 109, 2103–2108 (2004).

    Google Scholar 

  48. Hinterseher, I., Tromp, G. & Kuivaniemi, H. Genes and abdominal aortic aneurysm. Ann. Vasc. Surg. 25, 388–412 (2011).

    Google Scholar 

  49. Jones, G. T. et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ. Res. 120, 341–353 (2017). This paper describes the results from the largest genetic association study for AAA with a total of 10,204 AAA cases and 107,766 controls.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Toghill, B. J. et al. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells. Clin. Epigenet. 10, 29 (2018).

    Google Scholar 

  51. Boddy, A. M. et al. Basic research studies to understand aneurysm disease. Drug News Perspect. 21, 142–148 (2008).

    CAS  Google Scholar 

  52. Telomeres Mendelian Randomization Collaboration. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 3, 636–651 (2017).

    Google Scholar 

  53. Chaer, R. A. et al. Synchronous and metachronous thoracic aneurysms in patients with abdominal aortic aneurysms. J. Vasc. Surg. 56, 1261–1265 (2012).

    Google Scholar 

  54. Kuivaniemi, H., Ryer, E. J., Elmore, J. R. & Tromp, G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev. Cardiovasc. Ther. 13, 975–987 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brownstein, A. J. et al. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. Aorta 5, 11–20 (2017).

    Google Scholar 

  56. Tromp, G., Weinsheimer, S., Ronkainen, A. & Kuivaniemi, H. Molecular basis and genetic predisposition to intracranial aneurysm. Ann. Med. 46, 597–606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gadson, P. et al. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-β1: regulation of c-myb and α1 (I) procollagen genes. Exp. Cell Res. 230, 169–180 (1997).

    CAS  Google Scholar 

  58. Meijer, C. A. et al. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann. Intern. Med. 159, 815–823 (2013).

    Google Scholar 

  59. Sillesen, H. et al. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm. Br. J. Surg. 102, 894–901 (2015).

    CAS  Google Scholar 

  60. Brady, A. R., Thompson, S. G., Fowkes, F. G., Greenhalgh, R. M. & Powell, J. T. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16–21 (2004).

    Google Scholar 

  61. Brown, L. C. & Powell, J. T. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann. Surg. 230, 287–289 (1999).

    Google Scholar 

  62. Chaikof, E. L. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 67, 2–77 (2018).

    Google Scholar 

  63. Lindquist Liljeqvist, M., Hultgren, R., Siika, A., Gasser, T. C. & Roy, J. Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. J. Vasc. Surg. 65, 1014–1021 (2017).

    Google Scholar 

  64. Iyer, V., Rowbotham, S., Biros, E., Bingley, J. & Golledge, J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 261, 78–89 (2017).

    CAS  Google Scholar 

  65. Lindquist Liljeqvist, M., Hultgren, R., Gasser, T. C. & Roy, J. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J. Vasc. Surg. 63, 1434–1442 (2016).

    Google Scholar 

  66. Limet, R., Sakalihassan, N. & Albert, A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14, 540–548 (1991). In this study, the authors clearly indicate that the evolution of the disease process can be adequately described by an exponential model and strongly suggest that exponential, rather than the classic linear, expansion rate should be calculated to assess the relative change in the size of an aneurysm. The authors also reveal that rupture of the aneurysm is related not only to the aneurysm size but also to the rate of expansion.

    CAS  Google Scholar 

  67. Sakalihasan, N., Delvenne, P., Nusgens, B. V., Limet, R. & Lapiere, C. M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133 (1996).

    CAS  Google Scholar 

  68. Sakalihasan, N., Heyeres, A., Nusgens, B. V., Limet, R. & Lapiere, C. M. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur. J. Vasc. Surg. 7, 633–637 (1993).

    CAS  Google Scholar 

  69. Matyal, R. et al. Impact of gender and body surface area on outcome after abdominal aortic aneurysm repair. Am. J. Surg. 209, 315–323 (2015).

    Google Scholar 

  70. Pasternak, B., Inghammar, M. & Svanström, H. Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study. BMJ 360, k678 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Lederle, F. A. et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287, 2968–2972 (2002). This unique cohort study is based on prospectively collected trial data on patients with AAAs >55 mm who were non-eligible for repair; of the 198 patients enrolled, 45 experienced a ruptured AAA during the study period. Although it has a small sample size, this is one of few studies in the field and shows a close association between increased diameter and rupture risk.

    Google Scholar 

  72. Michel, J. B. Contrasting outcomes of atheroma evolution: intimal accumulation versus medial destruction. Arterioscler. Thromb. Vasc. Biol. 21, 1389–1392 (2001).

    CAS  Google Scholar 

  73. Sakalihasan, N., Limet, R. & Defawe, O. D. Abdominal aortic aneurysm. Lancet 365, 1577–1589 (2005).

    CAS  Google Scholar 

  74. Folkesson, M. et al. Proteolytically active ADAM10 and ADAM17 carried on membrane microvesicles in human abdominal aortic aneurysms. Thromb. Haemost. 114, 1165–1174 (2015).

    Google Scholar 

  75. Vollmar, J. F., Paes, E., Pauschinger, P., Henze, E. & Friesch, A. Aortic aneurysms as late sequelae of above-knee amputation. Lancet 2, 834–835 (1989). In this study, the authors observe that AAAs are more frequent in patients with above-knee amputations than in a specific control group of men of >65 years of age. The authors also observe that the largest convexity of the AAA is always developed on the opposite side of the amputation. This observation is seminal for the role of reflection waves in the development of AAAs.

    CAS  Google Scholar 

  76. Haller, S. J. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 67, 1051–1058 (2018).

    Google Scholar 

  77. Talvitie, M., Lindquist Liljeqvist, M., Siika, A., Hultgren, R. & Roy, J. Localized hyperattenuations in the intraluminal thrombus may predict rupture of abdominal aortic aneurysms. J. Vasc. Interv. Radiol. 29, 144–145 (2018).

    Google Scholar 

  78. Piechota-Polanczyk, A. et al. The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment. Front. Cardiovasc. Med. 2, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Touat, Z. et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am. J. Pathol. 168, 1022–1030 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Martinez-Pinna, R. et al. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm. Thromb. Haemost. 112, 87–95 (2014).

    CAS  Google Scholar 

  81. Burillo, E. et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb. Haemost. 113, 1335–1346 (2015).

    Google Scholar 

  82. Zhang, Y. et al. Aortic aneurysm and chronic disseminated intravascular coagulation: a retrospective study of 235 patients. Front. Med. 11, 62–67 (2017).

    CAS  Google Scholar 

  83. Fontaine, V. et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 164, 2077–2087 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dobrin, P. B., Baker, W. H. & Gley, W. C. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch. Surg. 119, 405–409 (1984).

    CAS  Google Scholar 

  85. Busuttil, R. W., Rinderbriecht, H., Flesher, A. & Carmack, C. Elastase activity: the role of elastase in aortic aneurysm formation. J. Surg. Res. 32, 214–217 (1982).

    CAS  Google Scholar 

  86. Michel, J. B. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler. Thromb. Vasc. Biol. 23, 2146–2154 (2003).

    CAS  Google Scholar 

  87. Wang, Q. et al. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ. Res. 116, 600–611 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Michel, J.-B., Martin-Ventura, J. L., Nicoletti, A. & Ho-Tin-Noé, B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis 234, 311–319 (2014).

    CAS  Google Scholar 

  89. Houard, X. et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J. Pathol. 212, 20–28 (2007).

    CAS  Google Scholar 

  90. Sangiorgi, G. et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation 104, I288–I295 (2001).

    CAS  Google Scholar 

  91. Lindholt, J. S., Jorgensen, B., Fasting, H. & Henneberg, E. W. Plasma levels of plasmin-antiplasmin-complexes are predictive for small abdominal aortic aneurysms expanding to operation-recommendable sizes. J. Vasc. Surg. 34, 611–615 (2001).

    CAS  Google Scholar 

  92. Coscas, R. et al. Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo. Atherosclerosis 259, 60–67 (2017).

    CAS  Google Scholar 

  93. Lindholt, J. S. Aneurysmal wall calcification predicts natural history of small abdominal aortic aneurysms. Atherosclerosis 197, 673–678 (2008).

    CAS  Google Scholar 

  94. Buijs, R. V. C. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 46, 542–548 (2013).

    CAS  Google Scholar 

  95. Michel, J. B. et al. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler. Thromb. Vasc. Biol. 27, 1259–1268 (2007). In this opinion review, the authors explain how the lumen injuries of the arterial wall influence the adventitial response, in relation to the principle of outward hydraulic convection of transformed blood components from the arterial lumen towards the adventitia through the wall.

    CAS  Google Scholar 

  96. Ho-Tin-Noé, B. & Michel, J.-B. Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc. Med. 21, 183–187 (2011).

    Google Scholar 

  97. Delbosc, S. et al. Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats. PLOS ONE 6, e18679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Clement, M. et al. Control of the T follicular helper–germinal center B cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    CAS  Google Scholar 

  99. Martinez-Pinna, R. et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 33, 2013–2020 (2013).

    CAS  Google Scholar 

  100. Crawford, J. L., Stowe, C. L., Safi, H. J., Hallman, C. H. & Crawford, E. S. Inflammatory aneurysms of the aorta. J. Vasc. Surg. 2, 113–124 (1985).

    CAS  Google Scholar 

  101. Stella, A. et al. The cellular component in the parietal infiltrate of inflammatory abdominal aortic aneurysms (IAAA). Eur. J. Vasc. Surg. 5, 65–70 (1991).

    CAS  PubMed  Google Scholar 

  102. Kasashima, S. et al. A new clinicopathological entity of IgG4-related inflammatory abdominal aortic aneurysm. J. Vasc. Surg. 49, 1264–1271 (2009).

    PubMed  Google Scholar 

  103. Raparia, K. et al. Inflammatory aortic aneurysm: possible manifestation of IgG4-related sclerosing disease. Int. J. Clin. Exp. Pathol. 6, 469–475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Galis, Z. S. & Khatri, J. J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251–262 (2002).

    CAS  Google Scholar 

  105. Pincemail, J. et al. On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep. 17, 139–144 (2012).

    CAS  Google Scholar 

  106. Delbosc, S. et al. Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovasc. Res. 100, 307–315 (2013).

    CAS  PubMed  Google Scholar 

  107. DiDonato, J. A. et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128, 1644–1655 (2013). In this experimental study, the authors report how HDL macromolecules are modified by their convection through a highly oxidative arterial wall (atherothrombosis), leading to oxidation of APOA1 and its dissociation from its lipid cargo. In this context, free APOA1 is quickly filtered by the glomeruli and metabolized in the kidney, leading to a potential decrease in circulating HDL as observed in AAAs.

    CAS  PubMed  Google Scholar 

  108. Ashton, H. A. et al. Fifteen-year follow-up of a randomized clinical trial of ultrasonographic screening for abdominal aortic aneurysms. Br. J. Surg. 94, 696–701 (2007).

    CAS  PubMed  Google Scholar 

  109. Powell, J. T. et al. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br. J. Surg. 94, 702–708 (2007). The landmark study, the UK-Small aneurysm trial, randomizes 1,090 patients with AAA <55 mm to surveillance or treatment in 1991–1995. The 12-year follow-up confirms that there are no benefits in long-term survival in early treatment of small aneurysms versus surveillance and timely treatment when AAA expands above 55 mm.

    CAS  PubMed  Google Scholar 

  110. Wanhainen, A. et al. Outcome of the Swedish Nationwide Abdominal Aortic Aneurysm Screening Program. Circulation 134, 1141–1148 (2016).

    Google Scholar 

  111. Fielding, J. W., Black, J., Ashton, F., Slaney, G. & Campbell, D. J. Diagnosis and management of 528 abdominal aortic aneurysms. BMJ 283, 355–359 (1981).

    CAS  PubMed  Google Scholar 

  112. Marston, W. A., Ahlquist, R., Johnson Jr. G. & Meyer, A. A. Misdiagnosis of ruptured abdominal aortic aneurysms. J. Vasc. Surg. 16, 17–22 (1992).

    CAS  Google Scholar 

  113. Wilmink, A. B. M., Forshaw, M., Quick, C. R. G., Hubbard, C. S. & Day, N. E. Accuracy of serial screening for abdominal aortic aneurysms by ultrasound. J. Med. Screen 9, 125–127 (2002).

    CAS  PubMed  Google Scholar 

  114. Rudd, J. H. The role of 18F-FDG PET in aortic dissection. J. Nucl. Med. 51, 667–668 (2010).

    PubMed  Google Scholar 

  115. Barwick, T. D. et al. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur. J. Nucl. Med. Mol. Imaging 41, 2310–2318 (2014).

    CAS  PubMed  Google Scholar 

  116. Marini, C. et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur. J. Nucl. Med. Mol. Imaging 39, 91–101 (2012).

    PubMed  Google Scholar 

  117. Palombo, D. et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann. Vasc. Surg. 26, 491–499 (2012).

    Google Scholar 

  118. Tegler, G., Ericson, K., Sorensen, J., Bjorck, M. & Wanhainen, A. Inflammation in the walls of asymptomatic abdominal aortic aneurysms is not associated with increased metabolic activity detectable by 18-fluorodeoxglucose positron-emission tomography. J. Vasc. Surg. 56, 802–807 (2012).

    Google Scholar 

  119. Sakalihasan, N. et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg. 23, 431–436 (2002). This is the first pilot study on the functional imaging of metabolic activity in the aneurysmal aortic wall.

    CAS  Google Scholar 

  120. Defawe, O. D., Hustinx, R., Defraigne, J. O., Limet, R. & Sakalihasan, N. Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin. Nucl. Med. 30, 340–341 (2005).

    Google Scholar 

  121. Truijers, M., Kurvers, H. A., Bredie, S. J., Oyen, W. J. & Blankensteijn, J. D. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J. Endovasc. Ther. 15, 462–467 (2008).

    Google Scholar 

  122. Kotze, C. W. et al. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur. J. Vasc. Endovasc. Surg. 38, 93–99 (2009).

    CAS  Google Scholar 

  123. Sarda-Mantel, L. et al. 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 2153–2159 (2006).

    CAS  Google Scholar 

  124. Reeps, C. et al. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int. J. Cardiovasc. Imaging 29, 505–512 (2013).

    Google Scholar 

  125. Courtois, A. et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J. Nucl. Med. 54, 1740–1747 (2013).

    CAS  Google Scholar 

  126. Nchimi, A. et al. MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans. Radiology 254, 973–981 (2010).

    Google Scholar 

  127. Emeto, T. I. et al. Use of nanoparticles as contrast agents for the functional and molecular imaging of abdominal aortic aneurysm. Front. Cardiovasc. Med. 4, 16 (2017). This article provides a comprehensive overview of all imaging techniques and agents that are currently in use or being considered to evaluate the risk of rupture in AAA.

    PubMed  PubMed Central  Google Scholar 

  128. Nchimi, A., Couvreur, T., Meunier, B. & Sakalihasan, N. Magnetic resonance imaging findings in a positron emission tomography-positive thoracic aortic aneurysm. Aorta 1, 198–201 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. Nguyen, V. L. et al. Quantification of abdominal aortic aneurysm wall enhancement with dynamic contrast-enhanced MRI: feasibility, reproducibility, and initial experience. J. Magn. Reson. Imaging 39, 1449–1456 (2014).

    Google Scholar 

  130. Nguyen, V. L. et al. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison. PLOS ONE 8, e75173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nchimi, A. et al. Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. Eur. Radiol. 26, 2378–2386 (2016).

    PubMed  Google Scholar 

  132. English, S. J. et al. Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann. Surg. 261, 395–404 (2015). This study shows that rupture occurs focally in a rat model of AAA and that the point of rupture is detectable by an increased metabolic activity on 18 F-FDG–PET.

    PubMed  PubMed Central  Google Scholar 

  133. Timur, U. T. et al. 18)F-FDG PET scanning of abdominal aortic aneurysms and correlation with molecular characteristics: a systematic review. EJNMMI Res. 5, 76 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee, H. et al. Correlation of FDG PET/CT findings with long-term growth and clinical course of abdominal aortic aneurysm. Nucl. Med. Mol. Imaging 52, 46–52 (2018).

    PubMed  Google Scholar 

  135. Xu, X. Y. et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur. J. Vasc. Endovasc. Surg. 39, 295–301 (2010).

    CAS  PubMed  Google Scholar 

  136. Khosla, S. et al. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 101, 1350–1357 (2014).

    CAS  PubMed  Google Scholar 

  137. Vande Geest, J. P., Schmidt, D. E., Sacks, M. S. & Vorp, D. A. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36, 921–932 (2008).

    PubMed  PubMed Central  Google Scholar 

  138. Vande Geest, J. P., Di Martino, E. S., Bohra, A., Makaroun, M. S. & Vorp, D. A. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. NY Acad. Sci. 1085, 11–21 (2006).

    Google Scholar 

  139. Speelman, L. et al. The influence of wall stress on AAA growth and biomarkers. Eur. J. Vasc. Endovasc. Surg. 39, 410–416 (2010).

    CAS  PubMed  Google Scholar 

  140. Li, Z. Y. et al. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation 122, 1815–1822 (2010).

    Google Scholar 

  141. Erhart, P. et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J. Endovasc. Ther. 23, 115–120 (2016).

    Google Scholar 

  142. Barrett, H. E. et al. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J. Vasc. Surg. 67, 1234–1246 (2017).

    PubMed  Google Scholar 

  143. Chung, T. K., da Silva, E. S. & Raghavan, S. M. L. Does elevated wall tension cause aortic aneurysm rupture? Investigation using a subject-specific heterogeneous model. J. Biomech. 64, 164–171 (2017).

    PubMed  Google Scholar 

  144. Erhart, P. et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J. Endovasc. Ther. 21, 556–564 (2014).

    PubMed  Google Scholar 

  145. Malkawi, A. et al. Increased expression of lamin A/C correlate with regions of high wall stress in abdominal aortic aneurysms. Aorta 3, 152–166 (2015).

    PubMed  Google Scholar 

  146. Georgakarakos, E., Ioannou, C., Kostas, T. & Katsamouris, A. Inflammatory response to aortic aneurysm intraluminal thrombus may cause increased 18F-FDG uptake at sites not associated with high wall stress: comment on “high levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress”. Eur. J. Vasc. Endovasc. Surg. 39, 795; author reply 795–796 (2010).

    CAS  PubMed  Google Scholar 

  147. Nchimi, A. et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ. Cardiovasc. Imaging 7, 82–91 (2014). In this study, 18 F-FDG uptake on PET and wall-stress estimates are shown to be potential predictors of events in patients with AAAs. Both techniques correlate, albeit weakly, hinting at potentially complementary approaches to the risk of rupture.

    PubMed  Google Scholar 

  148. Conlisk, N. et al. Exploring the biological and mechanical properties of abdominal aortic aneurysms using USPIO MRI and peak tissue stress: a combined clinical and finite element study. J. Cardiovasc. Transl Res. 10, 489–498 (2017).

    PubMed  PubMed Central  Google Scholar 

  149. Glover, M. J., Kim, L. G., Sweeting, M. J., Thompson, S. G. & Buxton, M. J. Cost-effectiveness of the National Health Service Abdominal Aortic Aneurysm Screening Programme in England. Br. J. Surg. 101, 976–982 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Svensjö, S., Mani, K., Björck, M., Lundkvist, J. & Wanhainen, A. Screening for abdominal aortic aneurysm in 65-year-old men remains cost-effective with contemporary epidemiology and management. Eur. J. Vasc. Endovasc. Surg. 47, 357–365 (2014).

    PubMed  Google Scholar 

  151. Lederle, F. A. The last (randomized) word on screening for abdominal aortic aneurysms. JAMA Intern. Med. 176, 1767–1768 (2016).

    PubMed  Google Scholar 

  152. Johansson, M. et al. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. Lancet 391, 2441–2447 (2018).

    PubMed  Google Scholar 

  153. IMPROVE Trial Investigators. Comparative clinical effectiveness and cost effectiveness of endovascular strategy v open repair for ruptured abdominal aortic aneurysm: three year results of the IMPROVE randomised trial. BMJ 359, j4859 (2017). This randomized prospective trial of 613 patients evaluates the possible effects on the outcome and cost-effectiveness of EVAR versus open repair surgery in patients admitted with suspected ruptured AAAs. The mortality at 3 years in EVAR-treated patients is lower than that in patients who received open repair surgery (42% versus 54%, OR 0.62). QOL is better in patients who receive EVAR, and length of hospital stay is lower, resulting in lower average costs than in open repair surgery.

    Google Scholar 

  154. Campbell, B., Wilkinson, J., Marlow, M. & Sheldon, M. Long-term evidence for new high-risk medical devices. Lancet 391, 2194–2195 (2018).

    PubMed  Google Scholar 

  155. Nordanstig, J. The Swedvasc Annual Report 2014 [Swedish]. Uppsala Clinical Research Center http://www.ucr.uu.se/swedvasc/arsrapporter/swedvasc-2015/viewdocument (2015).

  156. Ozdemir, B. A. et al. Association of hospital structures with mortality from ruptured abdominal aortic aneurysm. Br. J. Surg. 102, 516–524 (2015).

    CAS  PubMed  Google Scholar 

  157. Karthikesalingam, A. et al. Thresholds for abdominal aortic aneurysm repair in England and the United States. N. Engl. J. Med. 375, 2051–2059 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Beck, A. W. et al. Variations in abdominal aortic aneurysm care: a report from the International Consortium of Vascular Registries. Circulation 134, 1948–1958 (2016).

    PubMed  PubMed Central  Google Scholar 

  159. Williamson, A. J. & Babrowski, T. Current endovascular management of complex pararenal aneurysms. J. Cardiovasc. Surg. 59, 336–341 (2018).

    Google Scholar 

  160. Katsargyris, A. & Verhoeven, E. L. Endovascular strategies for infrarenal aneurysms with short necks. J. Cardiovasc. Surg. 54 (Suppl. 1), 21–26 (2013).

    CAS  Google Scholar 

  161. AbuRahma, A. F. et al. Aortic neck anatomic features and predictors of outcomes in endovascular repair of abdominal aortic aneurysms following vs not following instructions for use. J. Am. Coll. Surg. 222, 579–589 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Katsargyris, A., Oikonomou, K., Klonaris, C., Topel, I. & Verhoeven, E. L. Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift? J. Endovasc. Ther. 20, 159–169 (2013).

    PubMed  Google Scholar 

  163. Böckler, D. et al. Multicenter Nellix EndoVascular Aneurysm Sealing system experience in aneurysm sac sealing. J. Vasc. Surg. 62, 290–298 (2015).

    PubMed  Google Scholar 

  164. Zerwes, S. & Hyhlik-Dürr, A. Commentary: polymerization and its similarity with building solid evidence. J. Endovasc. Ther. 25, 207–208 (2018).

    Google Scholar 

  165. Thompson, M. M. et al. Endovascular aneurysm sealing: early and midterm results from the EVAS FORWARD global registry. J. Endovasc. Ther. 23, 685–692 (2016).

    Google Scholar 

  166. Buck, D. B., van Herwaarden, J. A., Schermerhorn, M. L. & Moll, F. L. Endovascular treatment of abdominal aortic aneurysms. Nat. Rev. Cardiol. 11, 112–123 (2014).

    Google Scholar 

  167. Prinssen, M. et al. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. N. Engl. J. Med. 351, 1607–1618 (2004).

    CAS  Google Scholar 

  168. Blankensteijn, J. D. et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N. Engl. J. Med. 352, 2398–2405 (2005).

    CAS  PubMed  Google Scholar 

  169. De Bruin, J. L. et al. Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N. Engl. J. Med. 362, 1881–1889 (2010).

    Google Scholar 

  170. EVAR Trial Participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364, 843–848 (2004).

    Google Scholar 

  171. United Kingdom EVAR Trial Investigators. Endovascular repair of aortic aneurysm in patients physically ineligible for open repair. N. Engl. J. Med. 362, 1872–1880 (2010).

    Google Scholar 

  172. Lederle, F. A. et al. Outcomes following endovascular versus open repair of abdominal aortic aneurysm: a randomized trial. JAMA 302, 1535–1542 (2009).

    CAS  PubMed  Google Scholar 

  173. EVAR Trial Participants. Endovascular versus open repair of abdominal aortic aneurysm in 15-years’ follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. Lancet 388, 2366–2374 (2016).

    Google Scholar 

  174. EVAR Trial Participants. Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet 365, 2179–2186 (2005).

    Google Scholar 

  175. Becquemin, J. P. et al. A randomized controlled trial of endovascular aneurysm repair versus open surgery for abdominal aortic aneurysms in low- to moderate-risk patients. J. Vasc. Surg. 53, 1167–1173 (2011).

    Google Scholar 

  176. Berg, P., Kaufmann, D., van Marrewijk, C. J. & Buth, J. Spinal cord ischaemia after stent-graft treatment for infra-renal abdominal aortic aneurysms. Analysis of the Eurostar database. Eur. J. Vasc. Endovasc. Surg. 22, 342–347 (2001).

    CAS  Google Scholar 

  177. Szilagyi, D. E., Hageman, J. H., Smith, R. F. & Elliott, J. P. Spinal cord damage in surgery of the abdominal aorta. Surgery 83, 38–56 (1978).

    CAS  Google Scholar 

  178. Regnier, P. et al. Sexual dysfunction after abdominal aortic aneurysm surgical repair: current knowledge and future directions. Eur. J. Vasc. Endovasc. Surg. 55, 267–280 (2018).

    Google Scholar 

  179. Powell, J. T. et al. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. Br. J. Surg. 104, 166–178 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Golledge, J. & Powell, J. T. Medical management of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 34, 267–273 (2007).

    CAS  Google Scholar 

  181. Baxter, B. T., Terrin, M. C. & Dalman, R. L. Medical management of small abdominal aortic aneurysms. Circulation 117, 1883–1889 (2008).

    PubMed  PubMed Central  Google Scholar 

  182. Yoshimura, K. et al. Current status and perspectives on pharmacologic therapy for abdominal aortic aneurysm. Curr. Drug Targets 19, 1265–1275 (2017). This article provides new insights into the pharmacological management of AAAs.

    Google Scholar 

  183. Golledge, J., Norman, P. E., Murphy, M. P. & Dalman, R. L. Challenges and opportunities in limiting abdominal aortic aneurysm growth. J. Vasc. Surg. 65, 225–233 (2017).

    Google Scholar 

  184. Sénémaud, J. et al. Translational relevance and recent advances of animal models of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 37, 401–410 (2017).

    Google Scholar 

  185. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).

    CAS  Google Scholar 

  186. Huffman, M. D. et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128, 429–438 (2000).

    CAS  Google Scholar 

  187. Allaire, E. et al. Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis. Ann. Surg. 239, 417–427 (2004).

    PubMed  PubMed Central  Google Scholar 

  188. Schneider, F. et al. Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model. Eur. J. Vasc. Endovasc. Surg. 45, 666–672 (2013).

    CAS  Google Scholar 

  189. Yamawaki-Ogata, A. et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model. Eur. J. Cardiothorac. Surg. 45, e156–e165 (2014).

    Google Scholar 

  190. Brophy, C., Tilson, J. E. & Tilson, M. D. Propranolol delays the formation of aneurysms in the male blotchy mouse. J. Surg. Res. 44, 687–689 (1988).

    CAS  Google Scholar 

  191. Juvonen, J. et al. Demonstration of Chlamydia pneumoniae in the walls of abdominal aortic aneurysms. J. Vasc. Surg. 25, 499–505 (1997).

    CAS  Google Scholar 

  192. Mosorin, M. et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J. Vasc. Surg. 34, 606–610 (2001).

    CAS  Google Scholar 

  193. Kokje, V. B., Hamming, J. F. & Lindeman, J. H. Editor’s choice — pharmaceutical management of small abdominal aortic aneurysms: a systematic review of the clinical evidence. Eur. J. Vasc. Endovasc. Surg. 50, 702–713 (2015).

    CAS  Google Scholar 

  194. Chaikof, E. L. et al. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J. Vasc. Surg. 50 (Suppl. 4), 2–49 (2009).

    Google Scholar 

  195. ESC Committee for Practice Guidelines. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. Eur. Heart J. 35, 2873–2926 (2014).

    Google Scholar 

  196. UK Aneurysm Growth Study Investigators. Impact of abdominal aortic aneurysm screening on quality of life. Br. J. Surg. 105, 203–208 (2018).

    Google Scholar 

  197. Howell, S. J. Abdominal aortic aneurysm repair in the United Kingdom: an exemplar for the role of anaesthetists in perioperative medicine. Br. J. Anaesth. 119, i15–i22 (2017).

    CAS  Google Scholar 

  198. Soulez, G. et al. Pain and quality of life assessment after endovascular versus open repair of abdominal aortic aneurysms in patients at low risk. J. Vasc. Interv. Radiol. 16, 1093–1100 (2005).

    Google Scholar 

  199. Reise, J. A. et al. Patient preference for surgical method of abdominal aortic aneurysm repair: postal survey. Eur. J. Vasc. Endovasc. Surg. 39, 55–61 (2010).

    CAS  Google Scholar 

  200. Kolh, P. Quality of life after abdominal aortic aneurysm repair: similar long-term results with endovascular and open techniques. Eur. J. Vasc. Endovasc. Surg. 36, 290–291 (2008).

    CAS  Google Scholar 

  201. Aljabri, B. et al. Patient-reported quality of life after abdominal aortic aneurysm surgery: a prospective comparison of endovascular and open repair. J. Vasc. Surg. 44, 1182–1187 (2006).

    Google Scholar 

  202. Peach, G., Holt, P., Loftus, I., Thompson, M. M. & Hinchliffe, R. Questions remain about quality of life after abdominal aortic aneurysm repair. J. Vasc. Surg. 56, 520–527 (2012).

    Google Scholar 

  203. Jones, S. M. et al. Type IIIb endoleak is an important cause of failure following endovascular aneurysm repair. J. Endovasc. Ther. 21, 723–727 (2014).

    Google Scholar 

  204. de Bruin, J. L. et al. Quality of life from a randomized trial of open and endovascular repair for abdominal aortic aneurysm. Br. J. Surg. 103, 995–1002 (2016).

    Google Scholar 

  205. Coughlin, P. A. et al. Meta-analysis of prospective trials determining the short- and mid-term effect of elective open and endovascular repair of abdominal aortic aneurysms on quality of life. Br. J. Surg. 100, 448–455 (2013).

    CAS  Google Scholar 

  206. Kayssi, A., DeBord Smith, A., Roche-Nagle, G. & Nguyen, L. L. Health-related quality-of-life outcomes after open versus endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 62, 491–498 (2015).

    Google Scholar 

  207. Sidloff, D. A. et al. Sex differences in mortality after abdominal aortic aneurysm repair in the UK. Br. J. Surg. 104, 1656–1664 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Trenner, M., Kuehnl, A., Reutersberg, B., Salvermoser, M. & Eckstein, H.-H. Nationwide analysis of risk factors for in-hospital mortality in patients undergoing abdominal aortic aneurysm repair. Br. J. Surg. 105, 379–387 (2018).

    CAS  Google Scholar 

  209. Daugherty, A. et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 37, e131–e157 (2017).

    CAS  Google Scholar 

  210. Stackelberg, O., Bjorck, M., Larsson, S. C., Orsini, N. & Wolk, A. Fruit and vegetable consumption with risk of abdominal aortic aneurysm. Circulation 128, 795–802 (2013).

    CAS  Google Scholar 

  211. Stackelberg, O. et al. Obesity and abdominal aortic aneurysm. Br. J. Surg. 100, 360–366 (2013).

    CAS  Google Scholar 

  212. Lu, G. et al. A novel chronic advanced stage abdominal aortic aneurysm murine model. J. Vasc. Surg. 66, 232–242 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Martinod, K. & Wagner, D. D. Thrombosis: tangled up in NETs. Blood 123, 2768–2776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Kurvers, H. et al. Discontinuous, staccato growth of abdominal aortic aneurysms. J. Am. Coll. Surg. 199, 709–715 (2004).

    Google Scholar 

  215. Woon, C. Y. L., Sebastian, M. G., Tay, K.-H. & Tan, S.-G. Extra-anatomic revascularization and aortic exclusion for mycotic aneurysms of the infrarenal aorta and iliac arteries in an Asian population. Am. J. Surg. 195, 66–72 (2008).

    Google Scholar 

  216. Kan, C. D., Lee, H. L. & Yang, Y. J. Outcome after endovascular stent graft treatment for mycotic aortic aneurysm: a systematic review. J. Vasc. Surg. 46, 906–912 (2007).

    Google Scholar 

  217. Sorelius, K., Mani, K., Bjorck, M. & Wanhainen, A. Endovascular treatment of mycotic aortic aneurysms: a paradigm shift. J. Cardiovasc. Surg. 58, 870–874 (2017).

    Google Scholar 

  218. Lin, C. H. & Hsu, R. B. Primary infected aortic aneurysm: clinical presentation, pathogen, and outcome. Acta Cardiol. Sin. 30, 514–521 (2014).

    PubMed  PubMed Central  Google Scholar 

  219. Oderich, G. S. et al. Infected aortic aneurysms: aggressive presentation, complicated early outcome, but durable results. J. Vasc. Surg. 34, 900–908 (2001).

    CAS  Google Scholar 

  220. Kan, C. D., Yen, H. T., Kan, C. B. & Yang, Y. J. The feasibility of endovascular aortic repair strategy in treating infected aortic aneurysms. J. Vasc. Surg. 55, 55–60 (2012).

    PubMed  Google Scholar 

  221. Sorelius, K. et al. Endovascular treatment of mycotic aortic aneurysms: a European multicenter study. Circulation 130, 2136–2142 (2014).

    PubMed  Google Scholar 

  222. Hsu, R. B., Chang, C. I., Wu, I. H. & Lin, F. Y. Selective medical treatment of infected aneurysms of the aorta in high risk patients. J. Vasc. Surg. 49, 66–70 (2009).

    PubMed  Google Scholar 

  223. Vallejo, N. et al. The changing management of primary mycotic aortic aneurysms. J. Vasc. Surg. 54, 334–340 (2011).

    Google Scholar 

  224. Kan, C. D., Lee, H. L., Luo, C. Y. & Yang, Y. J. The efficacy of aortic stent grafts in the management of mycotic abdominal aortic aneurysm-institute case management with systemic literature comparison. Ann. Vasc. Surg. 24, 433–440 (2010).

    PubMed  Google Scholar 

  225. Sorelius, K. et al. Nationwide study of the treatment of mycotic abdominal aortic aneurysms comparing open and endovascular repair. Circulation 134, 1822–1832 (2016).

    Google Scholar 

  226. Makrygiannis, G. et al. Extending abdominal aortic aneurysm detection to older age groups: preliminary results from the liège screening programme. Ann. Vasc. Surg. 36, 55–63 (2016).

    PubMed  Google Scholar 

  227. Nienaber, C. A. et al. Aortic dissection. Nat. Rev. Dis. Primers 2, 16053 (2003).

    Google Scholar 

  228. Meilhac, O. et al. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J. 17, 1301–1303 (2003).

    CAS  PubMed  Google Scholar 

  229. Lindquist Liljeqvist, M. et al. Neutrophil elastase-derived fibrin degradation products indicate presence of abdominal aortic aneurysms and correlate with intraluminal thrombus volume. Thromb. Haemost. 118, 329–339 (2018).

    PubMed  Google Scholar 

  230. Folkesson, M. et al. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb. Haemost. 98, 427–433 (2007).

    CAS  Google Scholar 

  231. Mayranpaa, M. I. et al. Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J. Vasc. Surg. 50, 386–388 (2009).

    Google Scholar 

  232. Dubost, C., Allary, M. & Oeconomos, N. Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch. Surg. 64, 405–408 (1952).

    CAS  Google Scholar 

  233. Schafer, P. W. & Hardin, C. A. The use of temporary polythene shunts to permit occlusion, resection, and frozen homologus graft replacement of vital vessel segments; a laboratory and clinical study. Surgery 31, 186–199 (1952).

    CAS  Google Scholar 

  234. DeBakey, M. E. & Cooley, D. A. Surgical treatment of aneurysm of abdominal aorta by resection and restoration of continuity with homograft. Surg. Gynecol. Obstet. 97, 257–266 (1953).

    CAS  Google Scholar 

  235. Volodos, N. L. The first steps in endovascular aortic repair: how it all began. J. Endovasc. Ther. 20 (Suppl. 1), 3–23 (2013).

    Google Scholar 

  236. Parodi, J. C., Palmaz, J. C. & Barone, H. D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann. Vasc. Surg. 5, 491–499 (1991).

    CAS  PubMed  Google Scholar 

  237. Feezor, R. J. et al. Perioperative differences between endovascular repair of thoracic and abdominal aortic diseases. J. Vasc. Surg. 45, 86–89 (2007).

    PubMed  Google Scholar 

  238. Resch, T. & Dias, N. Treatment of endoleaks: techniques and outcome. J. Cardiovasc. Surg. 53 (Suppl. 1), 91–99 (2012).

    CAS  Google Scholar 

  239. Wu, Z., Xu, L., Qu, L. & Raithel, D. Seventeen years’ experience of late open surgical conversion after failed endovascular abdominal aortic aneurysm repair with 13 variant devices. Cardiovasc. Interv. Radiol. 38, 53–59 (2015).

    Google Scholar 

  240. Klonaris, C. et al. Late open conversion after failed endovascular aortic aneurysm repair. J. Vasc. Surg. 59, 291–297 (2014).

    PubMed  Google Scholar 

  241. Conrad, M. F. et al. Secondary intervention after endovascular abdominal aortic aneurysm repair. Ann. Surg. 250, 383–389 (2009).

    Google Scholar 

  242. Katsargyris, A. et al. Fenestrated stent-grafts for salvage of prior endovascular abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 46, 49–56 (2013).

    CAS  Google Scholar 

  243. Adam, D. J., Fitridge, R. A., Berce, M., Hartley, D. E. & Anderson, J. L. Salvage of failed prior endovascular abdominal aortic aneurysm repair with fenestrated endovascular stent grafts. J. Vasc. Surg. 44, 1341–1344 (2006).

    Google Scholar 

  244. Veith, F. J. et al. Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference. J. Vasc. Surg. 35, 1029–1035 (2002).

    Google Scholar 

  245. Monastiriotis, S. et al. Evolution of type II endoleaks based on different ultrasound-identified patterns. J. Vasc. Surg. 67, 1074–1081 (2018).

    Google Scholar 

  246. Pineda, D. M., Calligaro, K. D., Tyagi, S., Troutman, D. A. & Dougherty, M. J. Late type II endoleaks after endovascular aneurysm repair require intervention more frequently than early type II endoleaks. J. Vasc. Surg. 67, 449–452 (2018).

    Google Scholar 

  247. Liaw, J. V. P. et al. Update: complications and management of infrarenal EVAR. Eur. J. Radiol. 71, 541–551 (2009).

    CAS  Google Scholar 

  248. Maleux, G. et al. Incidence, etiology, and management of type III endoleak after endovascular aortic repair. J. Vasc. Surg. 66, 1056–1064 (2017).

    Google Scholar 

  249. Zarins, C. K. et al. Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J. Vasc. Surg. 38, 1264–1272; discussion 1272 (2003).

    Google Scholar 

  250. Katsargyris, A., Oikonomou, K., Nagel, S., Giannakopoulos, T. & Lg Verhoeven, E. Endostaples: are they the solution to graft migration and type I endoleaks? J. Cardiovasc. Surg. 56, 363–368 (2015).

    CAS  Google Scholar 

  251. Picel, A. C. & Kansal, N. Essentials of endovascular abdominal aortic aneurysm repair imaging: postprocedure surveillance and complications. AJR Am. J. Roentgenol. 203, W358–W372 (2014).

    Google Scholar 

  252. François, F., Picard, E., Nicaud, P., Albat, B. & Thévenet, A. Femorofemoral crossover bypass for noninfective complications of aortoiliac surgery. Ann. Vasc. Surg. 5, 46–49 (1991).

    PubMed  Google Scholar 

  253. Kilic, A. et al. Management of infected vascular grafts. Vasc. Med. 21, 53–60 (2016).

    PubMed  Google Scholar 

  254. Debus, E. S. & Diener, H. Reconstructions following graft infection: an unsolved challenge. Eur. J. Vasc. Endovasc. Surg. 53, 151–152 (2017).

    CAS  PubMed  Google Scholar 

  255. Klonaris, C. et al. Neoaortoiliac system procedure to treat infected aortic grafts. Ann. Vasc. Surg. 44, 419.e19–419.e25 (2017).

    Google Scholar 

  256. Schanzer, A. et al. Predictors of abdominal aortic aneurysm sac enlargement after endovascular repair. Circulation 123, 2848–2855 (2011).

    PubMed  Google Scholar 

  257. Antoniou, G. A. et al. Late rupture of abdominal aortic aneurysm after previous endovascular repair: a systematic review and meta-analysis. J. Endovasc. Ther. 22, 734–744 (2015).

    PubMed  Google Scholar 

  258. Hallett, J. W. et al. Graft-related complications after abdominal aortic aneurysm repair: reassurance from a 36-year population-based experience. J. Vasc. Surg. 25, 277–284; discussion 285–286 (1997).

    Google Scholar 

  259. Locati, P., Socrate, A. M. & Costantini, E. Paraanastomotic aneurysms of the abdominal aorta: a 15-year experience review. Cardiovasc. Surg. 8, 274–279 (2000).

    CAS  Google Scholar 

  260. Allen, R. C., Schneider, J., Longenecker, L., Smith, R. B. 3rd & Lumsden, A. B. Paraanastomotic aneurysms of the abdominal aorta. J. Vasc. Surg. 18, 422–424 (1993).

    Google Scholar 

  261. van Herwaarden, J. A. et al. Endovascular repair of paraanastomotic aneurysms after previous open aortic prosthetic reconstruction. Ann. Vasc. Surg. 18, 280–286 (2004).

    Google Scholar 

  262. Bosanquet, D. C. et al. Systematic review and meta-regression of factors affecting midline incisional hernia rates: analysis of 14,618 patients. PLOS ONE 10, e0138745 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Courtois for her help during the preparation of this manuscript, J. Roy, M. L. Liljeqvist and C. Gasser for their contribution to Fig. 5 and P. Bonnet for providing the figure on the surgical management of AAAs.

Reviewer information

Nature Reviews Disease Primers thank H.-H. Eckstein, S. Haulon, F. Moll, C. A. Nienaber, P. Norman, C. Zarins and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (N.S. and J.T.P.); Epidemiology (R.H. and H.K.); Mechanisms/pathophysiology (J.-O.D., H.K. and J.-B.M.); Diagnosis, screening and prevention (N.S., A.N. and R.H.); Management (N.S., A.K., K.Y. and R.H.); Quality of life (A.K. and J.T.P.); Outlook (N.S., H.K. and J.T.P.); Overview of Primer (N.S. and R.H.).

Corresponding author

Correspondence to Natzi Sakalihasan.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CDC WISQARS: http://www.cdc.gov/injury/wisqars/index.html

Swedish National Board of Health and Welfare: https://www.socialstyrelsen.se/publikationer2017/2017-9-11

UK Office for National Statistics: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakalihasan, N., Michel, JB., Katsargyris, A. et al. Abdominal aortic aneurysms. Nat Rev Dis Primers 4, 34 (2018). https://doi.org/10.1038/s41572-018-0030-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0030-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing