Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleic acid-based drugs for patients with solid tumours

Abstract

The treatment of patients with advanced-stage solid tumours typically involves a multimodality approach (including surgery, chemotherapy, radiotherapy, targeted therapy and/or immunotherapy), which is often ultimately ineffective. Nucleic acid-based drugs, either as monotherapies or in combination with standard-of-care therapies, are rapidly emerging as novel treatments capable of generating responses in otherwise refractory tumours. These therapies include those using viral vectors (also referred to as gene therapies), several of which have now been approved by regulatory agencies, and nanoparticles containing mRNAs and a range of other nucleotides. In this Review, we describe the development and clinical activity of viral and non-viral nucleic acid-based treatments, including their mechanisms of action, tolerability and available efficacy data from patients with solid tumours. We also describe the effects of the tumour microenvironment on drug delivery for both systemically administered and locally administered agents. Finally, we discuss important trends resulting from ongoing clinical trials and preclinical testing, and manufacturing and/or stability considerations that are expected to underpin the next generation of nucleic acid agents for patients with solid tumours.

Key points

  • Nucleic acid drugs being developed for the treatment of patients with solid tumours can be subdivided into either viral vector-mediated or non-viral nanocarrier-type approaches, with distinct safety and efficacy profiles.

  • New technologies designed to advance drug development, improve tissue tropism and optimize immune responses are rapidly emerging.

  • The tumour microenvironment poses several barriers to both intratumoural and systemically administered nucleic acid-based therapies.

  • When developing nucleic acid treatments, various translational aspects including route of administration, optimal preclinical testing, manufacturing-related aspects and scalability are all important considerations.

  • Clinical trials investigating anticancer nucleic acid-based agents typically involve repeat dosing and are often tested in combination with standard-of-care therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Viral nucleic acid drugs for solid tumours typically utilize HSV and adenoviral vectors.
Fig. 2: Non-viral nucleic acid drugs for solid tumours comprise various payloads and nanocarriers.
Fig. 3: Models of non-viral delivery of nucleotides to tumour tissue.
Fig. 4: TME-related delivery barriers that influence intratumoural and intravenous drug administration.
Fig. 5: Summary features of clinical trials testing nucleic acid-based therapies in patients with solid tumours.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. National Cancer Institute. SEER Training modules: Cancer classification. NIH training.seer.cancer.gov/disease/categories/classification.html (2023).

  3. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  4. Hager, S., Fittler, F. J., Wagner, E. & Bros, M. Nucleic acid-based approaches for tumor therapy. Cells 9, 2061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Q., Qian, W., Sun, X. & Jiang, S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J. Hematol. Oncol. 15, 143 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kahvejian, A., Quackenbush, J. & Thompson, J. F. What would you do if you could sequence everything? Nat. Biotechnol. 26, 1125–1133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 526, 135–140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Paunovska, K., Loughrey, D., Sago, C. D., Langer, R. & Dahlman, J. E. Using large datasets to understand nanotechnology. Adv. Mater. 31, e1902798 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Radmand, A. et al. The transcriptional response to lung-targeting lipid nanoparticles in vivo. Nano Lett. 23, 993–1002 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, Z., Anselmo, A. C. & Mitragotri, S. Viral vector-based gene therapies in the clinic. Bioeng. Transl. Med. 7, e10258 (2022).

    Article  PubMed  Google Scholar 

  16. Curreri, A., Sankholkar, D., Mitragotri, S. & Zhao, Z. RNA therapeutics in the clinic. Bioeng. Transl. Med. 8, e10374 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Dooling, K. et al. The Advisory Committee on Immunization Practices’ updated interim recommendation for allocation of COVID-19 vaccine – United States, December 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 1657–1660 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Lorentzen, C. L., Haanen, J. B., Met, Ö. & Svane, I. M. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23, e450–e458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug. Discov. 20, 85–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Mullard, A. Cancer drug approvals and setbacks in 2021. Nat. Cancer 2, 1246–1247 (2021).

    Article  PubMed  Google Scholar 

  25. Huayamares, S. G., Lokugamage, M. P., Da Silva Sanchez, A. J. & Dahlman, J. E. A systematic analysis of biotech startups that went public in the first half of 2021. Curr. Res. Biotechnol. 4, 392–401 (2022).

    Article  CAS  Google Scholar 

  26. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Food and Drug Administration. Cellular & gene therapy guidances. FDA https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances (2024).

  28. Gene therapy needs a long-term approach. Nat. Med. 27, 563 (2021).

  29. Food and Drug Administration. Establishment of the Office of Therapeutic Products. FDA https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/establishment-office-therapeutic-products (2023).

  30. Wang, L. L. et al. Cell therapies in the clinic. Bioeng. Transl. Med. 6, e10214 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bashor, C. J., Hilton, I. B., Bandukwala, H., Smith, D. M. & Veiseh, O. Engineering the next generation of cell-based therapeutics. Nat. Rev. Drug. Discov. 21, 655–675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–675 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, W. W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Daley, J. Gene therapy arrives. Nature 576, S12–S13 (2019).

    Article  CAS  Google Scholar 

  35. Cattaneo, R., Miest, T., Shashkova, E. V. & Barry, M. A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat. Rev. Microbiol. 6, 529–540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gordon, E. M. & Hall, F. L. Noteworthy clinical case studies in cancer gene therapy: tumor-targeted Rexin-G advances as an efficacious anti-cancer agent. Int. J. Oncol. 36, 1341–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Rehman, H., Silk, A. W., Kane, M. P. & Kaufman, H. L. Into the clinic: talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer 4, 53 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maruyama, Y. et al. Regulatory issues: PMDA – review of Sakigake designation products: oncolytic virus therapy with delytact injection (Teserpaturev) for malignant glioma. Oncologist 28, 664–670 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Food and Drug Administration. Highlights of prescribing information: ADSTILADRIN® (nadofaragene firadenovec-vncg). FDA www.fda.gov/media/164029/download (2022).

  40. Sibbald, B. Death but one unintended consequence of gene-therapy trial. CMAJ 164, 1612 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Maetzig, T., Galla, M., Baum, C. & Schambach, A. Gammaretroviral vectors: biology, technology and application. Viruses 3, 677–713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hayward, A. Origin of the retroviruses: when, where, and how? Curr. Opin. Virol. 25, 23–27 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yi, Y., Noh, M. J. & Lee, K. H. Current advances in retroviral gene therapy. Curr. Gene Ther. 11, 218–228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morse, M. A. et al. Tumor protein p53 mutation in archived tumor samples from a 12-year survivor of stage 4 pancreatic ductal adenocarcinoma may predict long-term survival with DeltaRex-G: a case report and literature review. Mol. Clin. Oncol. 15, 186 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pellinen, R. et al. Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy. Int. J. Oncol. 25, 1753–1762 (2004).

    CAS  PubMed  Google Scholar 

  48. Yi, Y., Hahm, S. H. & Lee, K. H. Retroviral gene therapy: safety issues and possible solutions. Curr. Gene Ther. 5, 25–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Benihoud, K., Yeh, P. & Perricaudet, M. Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lynch, J. P. 3rd & Kajon, A. E. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin. Respir. Crit. Care Med. 37, 586–602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sakhuja, K. et al. Optimization of the generation and propagation of gutless adenoviral vectors. Hum. Gene Ther. 14, 243–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Hudry, E. & Vandenberghe, L. H. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101, 839–862 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Goswami, R. et al. Gene therapy leaves a vicious cycle. Front. Oncol. 9, 297 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ail, D., Malki, H., Zin, E. A. & Dalkara, D. Adeno-associated virus (AAV)-based gene therapies for retinal diseases: where are we? Appl. Clin. Genet. 16, 111–130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuzmin, D. A. et al. The clinical landscape for AAV gene therapies. Nat. Rev. Drug. Discov. 20, 173–174 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Frampton, A. R. Jr., Goins, W. F., Nakano, K., Burton, E. A. & Glorioso, J. C. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther. 12, 891–901 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Miyagawa, Y. et al. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc. Natl Acad. Sci. USA 112, E1632–E1641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manservigi, R., Argnani, R. & Marconi, P. HSV recombinant vectors for gene therapy. Open. Virol. J. 4, 123–156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kremer, L. P. M. et al. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. Mol. Ther. Methods Clin. Dev. 23, 33–50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Westhaus, A. et al. High-throughput in vitro, ex vivo, and in vivo screen of adeno-associated virus vectors based on physical and functional transduction. Hum. Gene Ther. 31, 575–589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jang, M. J. et al. Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nat. Biotechnol. 41, 1272–1286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lawler, S. E., Speranza, M.-C., Cho, C.-F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017).

    Article  PubMed  Google Scholar 

  65. Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article  PubMed  Google Scholar 

  66. Andtbacka, R. H. I. et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 7, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Food and Drug Administration. Highlights of prescribing information: IMLYGIC® (talimogene laherparepvec). FDA. www.fda.gov/media/94129/download (2015).

  68. Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 41, 528–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Ferrucci, P. F., Pala, L., Conforti, F. & Cocorocchio, E. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma. Cancers 13, 1386 (2021).

    Article  Google Scholar 

  70. Georgina, L. et al. 429 long-term analysis of MASTERKEY-265 phase 1b trial of talimogene laherparepvec (T-VEC) plus pembrolizumab in patients with unresectable stage IIIB-IVM1c melanoma. J. Immunother. Cancer 8, A261 (2020).

    Google Scholar 

  71. Sobol, R. E. et al. Analysis of adenoviral p53 gene therapy clinical trials in recurrent head and neck squamous cell carcinoma. Front. Oncol. 11, 645745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yao, M. et al. Prognostic comparison between cTACE and H101-TACE in unresectable hepatocellular carcinoma (HCC): a propensity-score matching analysis. Appl. Bionics Biomech. 2022, 9084852 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. GeoVax. Gedeptin Technology Overview. GeoVax www.geovax.com/our-technology/gedeptin-technology-overview (2024).

  74. Rosenthal, E. L. et al. Phase I dose-escalating trial of Escherichia coli purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors. Ann. Oncol. 26, 1481–1487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie, Y. et al. Alpha-herpesvirus thymidine kinase genes mediate viral virulence and are potential therapeutic targets. Front. Microbiol. 10, 941 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Deswal, P. Hookipa debuts phase I/II data. ClinicalTrials Arena www.clinicaltrialsarena.com/news/hookipa-debuts-phase-1-2-data/?cf-view (2023).

  77. Palmer, C. D. et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 28, 1619–1629 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Shigdar, S., Schrand, B., Giangrande, P. H. & de Franciscis, V. Aptamers: cutting edge of cancer therapies. Mol. Ther. 29, 2396–2411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Agnello, L. et al. Aptamer-based strategies to boost immunotherapy in TNBC. Cancers 15, 2010 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sorscher, E. J., Hong, J. S., Allan, P. W., Waud, W. R. & Parker, W. B. In vivo antitumor activity of intratumoral fludarabine phosphate in refractory tumors expressing E. coli purine nucleoside phosphorylase. Cancer Chemother. Pharmacol. 70, 321–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dvorak, H. F., Nagy, J. A., Dvorak, J. T. & Dvorak, A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133, 95–109 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug. Discov. Today 11, 812–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Zhen, Z. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 8, 6004–6013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lazarovits, J., Chen, Y. Y., Sykes, E. A. & Chan, W. C. Nanoparticle-blood interactions: the implications on solid tumour targeting. Chem. Commun. 51, 2756–2767 (2015).

    Article  CAS  Google Scholar 

  88. Chan, W. C. W. Principles of nanoparticle delivery to solid tumors. BME Front. 4, 0016 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  91. Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Rel. 357, 394–403 (2023).

    Article  CAS  Google Scholar 

  92. Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Lammers, T., Kiessling, F., Hennink, W. E. & Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-)clinical progress. J. Control. Rel. 161, 175–187 (2012).

    Article  CAS  Google Scholar 

  94. Schlich, M. et al. Cytosolic delivery of nucleic acids: the case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 6, e10213 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Sheth, V., Wang, L., Bhattacharya, R., Mukherjee, P. & Wilhelm, S. Strategies for delivering nanoparticles across tumor blood vessels. Adv. Funct. Mater. 31, 2007363 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Rel. 316, 404–417 (2019).

    Article  CAS  Google Scholar 

  99. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Santinha, A. J. et al. Transcriptional linkage analysis with in vivo AAV-Perturb-seq. Nature 622, 367–375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huayamares, S. G. et al. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun. (in the press, 2024).

  102. Noble, R. et al. Spatial structure governs the mode of tumour evolution. Nat. Ecol. Evol. 6, 207–217 (2022).

    Article  PubMed  Google Scholar 

  103. Lomakin, A. et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611, 594–602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ota, Y. et al. A practical spatial analysis method for elucidating the biological mechanisms of cancers with abdominal dissemination in vivo. Sci. Rep. 12, 20303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsieh, W.-C. et al. Spatial multi-omics analyses of the tumor immune microenvironment. J. Biomed. Sci. 29, 96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  107. Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mullard, A. COVID-19 vaccine success enables a bolder vision for mRNA cancer vaccines, says BioNTech CEO. Nat. Rev. Drug Discov. 20, 500–501 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, J. et al. Targeting CLDN18.2 in cancers of the gastrointestinal tract: new drugs and new indications. Front. Oncol. 13, 1132319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qu, H., Jin, Q. & Quan, C. CLDN6: from traditional barrier function to emerging roles in cancers. Int. J. Mol. Sci. 22, 13416 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doherty, K. CLDN6 CAR T-cell therapy shows encouraging efficacy in relapsed/refractory advanced solid tumours. OncLive www.onclive.com/view/cldn6-car-t-cell-therapy-shows-encouraging-efficacy-in-relapsed-refractory-advanced-solid-tumors (2022).

  113. Qian Wei, Z.-Y. F., Zhang, Z.-M. & Zhang, T.-F. Therapeutic tumor vaccines – a rising star to benefit cancer patients. Artif. Intell. Cancer 2, 25–41 (2021).

    Article  Google Scholar 

  114. BioNTech. BioNTech expands clinical oncolocgy portfolio with first patient dosed in phase 2 trial of mRNA-based individualized immunotherapy BNT122 in colorectal cancer patients. BioNTech investors.biontech.de/news-releases/news-release-details/biontech-expands-clinical-oncology-portfolio-first-patient-dosed (2021).

  115. Lopez, J. S. et al. A phase Ib study to evaluate RO7198457, an individualized neoantigen specific immunotherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors [abstract]. Cancer Res. 80 (Suppl. 16), CT301 (2020).

    Article  Google Scholar 

  116. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dolgin, E. Personalized cancer vaccines pass first major clinical test. Nat. Rev. Drug Discov. 22, 607–609 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Burris, H. A. et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 2523 (2019).

    Article  Google Scholar 

  120. Bauman, J. et al. Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): an update [abstract 798]. J. Immunother. Cancer 8 (Suppl. 3), A477 (2020).

    Google Scholar 

  121. Moderna. Moderna and Merck announce mRNA-4157/V940, an investigational personalized mRNA cancer vaccine, in combination with KEYTRUDA(R) (pembrolizumab), met primary efficacy endpoint in phase 2b KEYNOTE-942 trial. moderna investors.modernatx.com/news/news-details/2022/Moderna-and-Merck-Announce-mRNA-4157V940-an-Investigational-Personalized-mRNA-Cancer-Vaccine-in-Combination-with-KEYTRUDAR-pembrolizumab-Met-Primary-Efficacy-Endpoint-in-Phase-2b-KEYNOTE-942-Trial/default.aspx (2022).

  122. Khattak, A. et al. A personalized cancer vaccine, mRNA-4157, combined with pembrolizumab versus pembrolizumab in patients with resected high-risk melanoma: efficacy and safety results from the randomized, open-label Phase 2 mRNA-4157-P201/Keynote-942 trial [abstract]. Cancer Res. 83 (Suppl. 8), CT001–CT001 (2023).

    Article  Google Scholar 

  123. Ryan, C. FDA grants breakthrough therapy designation to mRNA-4157/V940 plus pembrolizumab in high-risk melanoma. OncLive www.onclive.com/view/fda-grants-breakthrough-therapy-designation-to-mrna-4157-v940-plus-pembrolizumab-in-high-risk-melanoma (2023).

  124. Patel, M. et al. Phase 1 study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ, for intratumoral (ITu) injection +/- durvalumab in advanced solid tumors and lymphoma [abstract 539]. J. Immunother. Cancer 9 (Suppl. 2), A569 (2021).

    Article  Google Scholar 

  125. Hamid, O. et al. Preliminary safety, antitumor activity and pharmacodynamics results of HIT-IT MEDI1191 (mRNA IL-12) in patients with advanced solid tumours and superficial lesions [abstract 19O]. Ann. Oncol. 32 (Suppl. 1), S9 (2021).

    Article  Google Scholar 

  126. Carneiro, B. A. et al. First-in-human study of MEDI1191 (mRNA encoding IL-12) plus durvalumab in patients (pts) with advanced solid tumors [abstract]. Cancer Res. 82 (Suppl. 12), CT183 (2022).

    Article  Google Scholar 

  127. Taylor, N. P. AstraZeneca discards Moderna-partnered solid tumor prospect, kidney disease asset in pipeline clear-out. Fierce Biotech www.fiercebiotech.com/biotech/astrazeneca-discards-moderna-partnered-solid-tumor-prospect-kidney-disease-asset-pipeline (2022).

  128. Chen, H., Liu, H. & Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal. Transduct. Target. Ther. 3, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Biospace. Omega Therapeutics announces promising preliminary clinical data for OTX-2002 from ongoing MYCHELANGELO™ I trial. BioSpace www.biospace.com/article/releases/omega-therapeutics-announces-promising-preliminary-clinical-data-for-otx-2002-from-ongoing-mychelangelo-i-trial/ (2023).

  130. Omega Therapeutics. MYCHELANGELO™ I: preliminary phase 1 clinical update. Omega Therapeutics ir.omegatherapeutics.com/static-files/19eca20b-260d-4f30-8a13-16b05a5cb26b (2023).

  131. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Bavli, Y. et al. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Control. Rel. 354, 316–322 (2023).

    Article  CAS  Google Scholar 

  133. Sanchez, A. J. D. S. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202304033 (2024).

    Article  PubMed  Google Scholar 

  134. Hattab, D., Gazzali, A. M. & Bakhtiar, A. Clinical advances of siRNA-based nanotherapeutics for cancer treatment. Pharmaceutics 13, 1009 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Molyneaux, M., Berman, B., Xu, J., Evans, D. M. & Lu, P. Y. Effect of TGF-B1/COX-2 small interfering RNA combination product (STP705) on cell viability and tumor growth in a human squamous carcinoma xenograft tumor model in nude mice [abstract 15580]. J. Am. Acad. Dermatol. 83 (Suppl. 6), AB156 (2020).

    Article  Google Scholar 

  136. Sirnaomics. Sirnaomics achieves 100% complete response in phase II clinical trial of STP705 for treatment of cutaneous basal cell carcinoma. Sirnaomics sirnaomics.com/en/news-room/press-release/20220829sirnaomics-achieves-100-complete-response-in-phase-ii-clinical-trial-of-stp705-for-treatment-of-cutaneous-basal-cell-carcinoma/ (2022).

  137. Sirnaomics. Pipeline. Sirnaomics sirnaomics.com/en/science-pipeline/pipeline/ (2023).

  138. Sirnaomics. Sirnaomics launches phase I clinical trial of RNAi therapeutic STP707 delivered systemically for the treatment of solid tumors. Sirnaomics sirnaomics.com/en/news-room/press-release/20220209sirnaomics-launches-phase-i-clinical-trial-of-rnai-therapeutic-stp707-delivered-systemically-for-the-treatment-of-solid-tumors-1/ (2022).

  139. Zhou, J. et al. Simultaneous silencing of TGF-β1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis. Oncotarget 8, 80651–80665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yan, Z. et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol. Cancer Ther. 7, 1355–1364 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Leng, Q., Scaria, P., Lu, P., Woodle, M. C. & Mixson, A. J. Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther. 15, 485–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tandon, M., Vemula, S. V. & Mittal, S. K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert. Opin. Ther. Targets 15, 31–51 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cina, C. et al. A novel glutathione S-transferase P (GSTP) siRNA (NDT-05-1040) for the treatment of KRAS-driven non-small cell lung cancer [abstract]. Cancer Res. 78 (Suppl. 13), 5918 (2018).

    Article  Google Scholar 

  144. Jiao, L. et al. Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer 109, 840–848 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Bio-Path Holdings. Bio-Path Holdings presents data from ongoing phase 2 study of prexigebersen at 2021 American Society of Hematology Annual Meeting. Bio-Path Holdings www.sec.gov/Archives/edgar/data/1133818/000155837021016703/bpth-20211213xex99d1.htm (2021).

  146. Anderluzzi, G. et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J. Control. Rel. 342, 388–399 (2022).

    Article  CAS  Google Scholar 

  147. Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Rel. 217, 345–351 (2015).

    Article  CAS  Google Scholar 

  148. De Lombaerde, E., De Wever, O. & De Geest, B. G. Delivery routes matter: safety and efficacy of intratumoral immunotherapy. Biochim. Biophys. Acta Rev. Cancer 1875, 188526 (2021).

    Article  PubMed  Google Scholar 

  149. Wu, L. et al. Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles. Eur. J. Pharm. Biopharm. 152, 108–115 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, J. Q. et al. Is AAV-delivered IL-27 a potential immunotherapeutic for cancer? Am. J. Cancer Res. 10, 3565–3574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Tousignant, J. D. et al. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum. Gene Ther. 11, 2493–2513 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Liu, J. Q. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Rel. 345, 306–313 (2022).

    Article  CAS  Google Scholar 

  154. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Li, H.-J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Scheetz, L. et al. Engineering patient-specific cancer immunotherapies. Nat. Biomed. Eng. 3, 768–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Naumenko, V. A. et al. Extravasating neutrophils open vascular barrier and improve liposomes delivery to tumors. ACS Nano 13, 12599–12612 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Lin, Z. P., Ngo, W., Mladjenovic, S. M., Wu, J. L. Y. & Chan, W. C. W. Nanoparticles bind to endothelial cells in injured blood vessels via a transient protein corona. Nano Lett. 23, 1003–1009 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Sun, D., Zhou, S. & Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281–12290 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  162. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Price, L. S. L., Stern, S. T., Deal, A. M., Kabanov, A. V. & Zamboni, W. C. A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Sci. Adv. 6, eaay9249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McNeil, S. E. Evaluation of nanomedicines: stick to the basics. Nat. Rev. Mater. 1, 16073 (2016).

    Article  Google Scholar 

  165. Ding, H. et al. Long distance from microvessel to cancer cell predicts poor prognosis in non-small cell lung cancer patients. Front. Oncol. 11, 632352 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Miar, A. et al. Hypoxia induces transcriptional and translational downregulation of the type I IFN pathway in multiple cancer cell types. Cancer Res. 80, 5245–5256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tang, Y., Weng, X., Liu, C., Li, X. & Chen, C. Hypoxia enhances activity and malignant behaviors of colorectal cancer cells through the STAT3/microRNA-19a/PTEN/PI3K/AKT axis. Anal. Cell Pathol. 2021, 4132488 (2021).

    Article  Google Scholar 

  168. Durymanov, M. O., Rosenkranz, A. A. & Sobolev, A. S. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5, 1007–1020 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gerweck, L. E., Kozin, S. V. & Stocks, S. J. The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells. Br. J. Cancer 79, 838–842 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Huayamares, S. G. et al. Constructing a biomaterial to simulate extracellular drug transport in solid tumors. Macromol. Biosci. 20, 2000251 (2020).

    Article  CAS  Google Scholar 

  171. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mohanty, R. P., Liu, X. & Ghosh, D. Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix. Acta Biomater. 113, 240–251 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Pressnall, M. M. et al. Glatiramer acetate enhances tumor retention and innate activation of immunostimulants. Int. J. Pharmaceutics 605, 120812 (2021).

    Article  CAS  Google Scholar 

  174. Huang, A. et al. Human intratumoral therapy: linking drug properties and tumor transport of drugs in clinical trials. J. Control. Rel. 326, 203–221 (2020).

    Article  CAS  Google Scholar 

  175. Pressnall, M. M., Huayamares, S. G. & Berkland, C. J. Immunostimulant complexed with polylysine limits transport and maintains immune cell activation. J. Pharm. Sci. 109, 2836–2846 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Henke, E., Nandigama, R. & Ergün, S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front. Mol. Biosci. 6, 160 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Hartmann, N. et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin. Cancer Res. 20, 3422–3433 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Gordon-Weeks, A. & Yuzhalin, A. E. Cancer extracellular matrix proteins regulate tumour immunity. Cancers 12, 3331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tan, T. et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat. Commun. 10, 3322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Miao, L., Lin, C. M. & Huang, L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J. Control. Rel. 219, 192–204 (2015).

    Article  CAS  Google Scholar 

  181. Hall, C., Lueshen, E., Mošat, A. & Linninger, A. A. Interspecies scaling in pharmacokinetics: a novel whole-body physiologically based modeling framework to discover drug biodistribution mechanisms in vivo. J. Pharm. Sci. 101, 1221–1241 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm. 7, 27–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Elmeliegy, M., Udata, C., Liao, K. & Yin, D. Considerations on the calculation of the human equivalent dose from toxicology studies for biologic anticancer agents. Clin. Pharmacokinetics 60, 563–567 (2021).

    Article  Google Scholar 

  184. Li, Y., Wang, J., Wientjes, M. G. & Au, J. L. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv. Drug. Deliv. Rev. 64, 29–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure – an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  186. Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Rel. 244, 108–121 (2016).

    Article  CAS  Google Scholar 

  187. Gualdrón-López, M. et al. Multiparameter flow cytometry analysis of the human spleen applied to studies of plasma-derived EVs from Plasmodium vivax patients. Front. Cell Infect. Microbiol. 11, 596104 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bjornson-Hooper, Z. B. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 13, 867015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Europeam Medicines Agency. Assessment report: Imlygic. EMA www.ema.europa.eu/en/documents/assessment-report/imlygic-epar-public-assessment-report_en.pdf (2015).

  190. Europeam Medicines Agency. Annex I: Summary of product characteristics. Imlygic. EMA www.ema.europa.eu/en/documents/product-information/imlygic-epar-product-information_en.pdf (2015).

  191. Barrett, J. A. et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 25, 106–116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. BioNTech. US Securities and Exchange Commission. Form F-1: Registration Statement. www.sec.gov/Archives/edgar/data/1776985/000119312520022991/d838504df1.htmUS Securities and Exchange Commission (2020).

  194. Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Liu, Z. et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol. Cancer 22, 35 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Fujii, E., Kato, A. & Suzuki, M. Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J. Toxicol. Pathol. 33, 153–160 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rab, R. et al. Evaluating antitumor activity of Escherichia coli purine nucleoside phosphorylase against head and neck patient-derived xenografts. Cancer Rep. 6, e1708 (2023).

    Article  CAS  Google Scholar 

  198. Parker, W. B. et al. The use of Trichomonas vaginalis purine nucleoside phosphorylase to activate fludarabine in the treatment of solid tumors. Cancer Chemother. Pharmacol. 85, 573–583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chuprin, J. et al. Humanized mouse models for immuno-oncology research. Nat. Rev. Clin. Oncol. 20, 192–206 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dray, B. K. et al. Mismatch repair gene mutations lead to Lynch syndrome colorectal cancer in rhesus macaques. Genes. Cancer 9, 142–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Simmons, H. A. & Mattison, J. A. The incidence of spontaneous neoplasia in two populations of captive rhesus macaques (Macaca mulatta). Antioxid. Redox Signal. 14, 221–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Simon, D., Bruno, G., Jehad, C., Maurizio, C. & Cline, J. M. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J. Immunother. Cancer 11, e005514 (2023).

    Article  Google Scholar 

  203. Shah, S. B. et al. Combinatorial treatment rescues tumour-microenvironment-mediated attenuation of MALT1 inhibitors in B-cell lymphomas. Nat. Mater. 22, 511–523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlési, F. & André, N. Computational oncology – mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol. 13, 242–254 (2016).

    Article  PubMed  Google Scholar 

  205. Fotakis, G., Trajanoski, Z. & Rieder, D. Computational cancer neoantigen prediction: current status and recent advances. Immunooncol. Technol. 12, 100052 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Food and Drug Administration. Focus Area: Novel technologies to improve predictivity of non-clinical studies and replace, reduce, and refine reliance on animal testing. FDA www.fda.gov/science-research/focus-areas-regulatory-science-report/focus-area-novel-technologies-improve-predictivity-non-clinical-studies-and-replace-reduce-and (2022).

  207. Cheng, F. et al. Research advances on the stability of mRNA vaccines. Viruses 15, 668 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Polaka, S. et al. in Pharmacokinetics and Toxicokinetic Considerations Vol. 2 (ed. Tekade, R. K.) 543–567 (Academic Press, 2022).

  209. Hemmrich, E. & McNeil, S. Active ingredient vs excipient debate for nanomedicines. Nat. Nanotechnol. 18, 692–695 (2023).

    Article  CAS  PubMed  Google Scholar 

  210. Marden, E., Ntai, I., Bass, S. & Flühmann, B. Correction to: Reflections on FDA draft guidance for products containing nanomaterials: is the abbreviated new drug application (ANDA) a suitable pathway for nanomedicines? AAPS J. 20, 104 (2018).

    Article  PubMed  Google Scholar 

  211. Kiaie, S. H. et al. Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects. J. Nanobiotechnol. 20, 276 (2022).

    Article  CAS  Google Scholar 

  212. Sayedahmed, E. E., Kumari, R. & Mittal, S. K. Current use of adenovirus vectors and their production methods. Methods Mol. Biol. 1937, 155–175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kim, J. W. et al. in: Gene Therapy for Neurological Disorders: Methods and Protocols (ed. Manfredsson, F. P.) 115–130 (Springer, 2016).

  214. Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Qiu, L., Jing, Q., Li, Y. & Han, J. RNA modification: mechanisms and therapeutic targets. Mol. Biomed. 4, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Morse, M. A. et al. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 30, 803–811 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Delgado, A. & Guddati, A. K. Clinical endpoints in oncology – a primer. Am. J. Cancer Res. 11, 1121–1131 (2021).

    PubMed  PubMed Central  Google Scholar 

  222. Food and Drug Administration. Diversity plans to improve enrollment of participants from underrepresented racial and ethnic populations in clinical trials; availability: draft guidance for industry. FDA www.fda.gov/regulatory-information/search-fda-guidance-documents/diversity-plans-improve-enrollment-participants-underrepresented-racial-and-ethnic-populations (2022).

  223. Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Ilham, S. et al. Cancer incidence in immunocompromised patients: a single-center cohort study. BMC Cancer 23, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fourie Zirkelbach, J. et al. Improving dose-optimization processes used in oncology drug development to minimize toxicity and maximize benefit to patients. J. Clin. Oncol. 40, 3489–3500 (2022).

    Article  PubMed  Google Scholar 

  226. Shah, M., Rahman, A., Theoret, M. R. & Pazdur, R. The drug-dosing conundrum in oncology – when less is more. N. Engl. J. Med. 385, 1445–1447 (2021).

    Article  PubMed  Google Scholar 

  227. Khattak, A. et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA9503 (2023).

    Article  Google Scholar 

  228. Ruzzi, F. et al. Virus-like particle (VLP) vaccines for cancer immunotherapy. Int J. Mol. Sci. 24, 12963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Tornesello, A. L., Tagliamonte, M., Buonaguro, F. M., Tornesello, M. L. & Buonaguro, L. Virus-like particles as preventive and therapeutic cancer vaccines. Vaccines 10, 227 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Li, Y. et al. mRNA vaccine in cancer therapy: current advance and future outlook. Clin. Transl. Med. 13, e1384 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Perche, F. et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomed. Nanotechnol. Biol. Med. 7, 445–453 (2011).

    Article  CAS  Google Scholar 

  233. Raimondo, T. M., Reed, K., Shi, D., Langer, R. & Anderson, D. G. Delivering the next generation of cancer immunotherapies with RNA. Cell 186, 1535–1540 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Food and Drug Administration. Highlights of prescribing information: ONPATTRO® (patisiran). FDA www.accessdata.fda.gov/drugsatfda_docs/label/2018/210922s000lbl.pdf (2018).

  235. Bratman, S. V. et al. Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat. Cancer 1, 873–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Pessoa, L. S., Heringer, M. & Ferrer, V. P. ctDNA as a cancer biomarker: a broad overview. Crit. Rev. Oncol. Hematol. 155, 103109 (2020).

    Article  PubMed  Google Scholar 

  237. Wen, X., Pu, H., Liu, Q., Guo, Z. & Luo, D. Circulating tumor DNA – a novel biomarker of tumor progression and its favorable detection techniques. Cancers 14, 6025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Nassiri, F. et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat. Med. 29, 1370–1378 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Tindall (Emory University, Atlanta, GA) for copyediting the manuscript. The authors also thank B. Kinkead (University of Utah, Salt Lake City, UT) for critical review. The authors gratefully acknowledge funding support from the FDA Office of Orphan Products Division and R01 DE026941.

Author information

Authors and Affiliations

Authors

Contributions

S.G.H., D.L., E.J.S., and H.K. researched data for the article, all authors contributed substantially to discussions of content, S.G.H., D.L. and H.K. wrote the article, and all authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to James E. Dahlman or Eric J. Sorscher.

Ethics declarations

Competing interests

J.E.D. has acted as an adviser for GV, Nava Therapeutics and Edge Animal Health. E.J.S. has ownership interests in and serves on the Board of Directors for PNP Therapeutics, and is listed as a co-inventor on patents related to some of the technologies used in the research described in this Review (including Patent IDs 17/908,465, 08/122,321 and 08/702,181). The terms of this arrangement for E.J.S. have been evaluated and approved by Emory University in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks D. Peer, H. Kaufman and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huayamares, S.G., Loughrey, D., Kim, H. et al. Nucleic acid-based drugs for patients with solid tumours. Nat Rev Clin Oncol (2024). https://doi.org/10.1038/s41571-024-00883-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-024-00883-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research