Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies for non-viral vectors targeting organs beyond the liver

Abstract

In recent years, nanoparticles have evolved to a clinical modality to deliver diverse nucleic acids. Rising interest in nanomedicines comes from proven safety and efficacy profiles established by continuous efforts to optimize physicochemical properties and endosomal escape. However, despite their transformative impact on the pharmaceutical industry, the clinical use of non-viral nucleic acid delivery is limited to hepatic diseases and vaccines due to liver accumulation. Overcoming liver tropism of nanoparticles is vital to meet clinical needs in other organs. Understanding the anatomical structure and physiological features of various organs would help to identify potential strategies for fine-tuning nanoparticle characteristics. In this Review, we discuss the source of liver tropism of non-viral vectors, present a brief overview of biological structure, processes and barriers in select organs, highlight approaches available to reach non-liver targets, and discuss techniques to accelerate the discovery of non-hepatic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barriers to non-viral gene delivery in the eyes and lungs.
Fig. 2: Anatomy of extrahepatic targets.
Fig. 3: Toolbox for non-viral gene delivery research.
Fig. 4: Schematic of directed evolution of NP formulation for extrahepatic targeting.

Similar content being viewed by others

References

  1. Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    CAS  Google Scholar 

  2. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    CAS  PubMed  Google Scholar 

  3. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    CAS  PubMed  Google Scholar 

  4. Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    CAS  PubMed  Google Scholar 

  5. Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Haasteren, J. et al. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38, 845–855 (2020).

    PubMed  Google Scholar 

  7. Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020). This Review thoroughly discusses the characteristics of NPs required for effective delivery within a biological context.

    CAS  PubMed  Google Scholar 

  8. Patel, S. et al. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev. 144, 90–111 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    CAS  PubMed  Google Scholar 

  11. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    CAS  PubMed  Google Scholar 

  13. Witzigmann, D. et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010). This study discovered that the ApoE–LDLR pathway facilitates hepatocyte transfection when LNPs contain ionizable cationic lipids but not when permanently cationic lipids are used.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    CAS  PubMed  Google Scholar 

  16. Kasiewicz, L. N. et al. GalNAc–lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ozelo, M. C. et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 386, 1013–1025 (2022).

    CAS  PubMed  Google Scholar 

  18. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 26, 431–442 (2008).

    CAS  PubMed  Google Scholar 

  19. Lawitz, E. J. et al. BMS‐986263 in patients with advanced hepatic fibrosis: 36‐week results from a randomized, placebo‐controlled phase 2 trial. Hepatology 75, 912–923 (2022).

    CAS  PubMed  Google Scholar 

  20. Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mrna to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, 1807748 (2019).

    Google Scholar 

  22. Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    CAS  PubMed  Google Scholar 

  23. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Viger-Gravel, J. et al. Structure of lipid nanoparticles containing sirna or mrna by dynamic nuclear polarization-enhanced NMR spectroscopy. J. Phys. Chem. B 122, 2073–2081 (2018).

    CAS  PubMed  Google Scholar 

  25. Goula, D. et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5, 1291–1295 (1998).

    CAS  Google Scholar 

  26. Green, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Joubert, F. et al. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J. Control. Release 356, 580–594 (2023).

    CAS  Google Scholar 

  28. Yang, W., Mixich, L., Boonstra, E. & Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 12, 2202688 (2023).

    CAS  Google Scholar 

  29. Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    CAS  PubMed  Google Scholar 

  30. He, D. & Wagner, E. Defined polymeric materials for gene delivery. Macromol. Biosci. 15, 600–612 (2015).

    CAS  PubMed  Google Scholar 

  31. Reinhard, S. & Wagner, E. How to tackle the challenge of siRNA delivery with sequence-defined oligoamino amides. Macromol. Biosci. 17, 1600152 (2017).

    Google Scholar 

  32. DeSimone, J. M. Co-opting Moore’s law: therapeutics, vaccines and interfacially active particles manufactured via PRINT®. J. Control. Release 240, 541–543 (2016).

    CAS  Google Scholar 

  33. Patel, A. K. et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv. Mater. 31, 1805116 (2019). This study explored the application of polymeric NPs for inhaled mRNA delivery, highlighting the potential advantage of polymers for nebulization through their self-assembly.

    Google Scholar 

  34. Kalra, H. et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 10, e1001450 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wahlgren, J. et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 40, e130–e130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  PubMed  Google Scholar 

  37. Ståhl, A. et al. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles. PLoS Pathog. 11, e1004619 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Melamed, J. R. et al. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci. Adv. 9, eade1444 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Q. et al. ARMMs as a versatile platform for intracellular delivery of macromolecules. Nat. Commun. 9, 960 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Segel, M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882–889 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Elsharkasy, O. M. et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    CAS  PubMed  Google Scholar 

  42. Klein, D. et al. Centyrin ligands for extrahepatic delivery of siRNA. Mol. Ther. 29, 2053–2066 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown, K. M. et al. Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates. Nat. Biotechnol. 40, 1500–1508 (2022).

    CAS  PubMed  Google Scholar 

  44. Wels, M., Roels, D., Raemdonck, K., De Smedt, S. C. & Sauvage, F. Challenges and strategies for the delivery of biologics to the cornea. J. Control. Release 333, 560–578 (2021).

    CAS  Google Scholar 

  45. Baran-Rachwalska, P. et al. Topical siRNA delivery to the cornea and anterior eye by hybrid silicon-lipid nanoparticles. J. Control. Release 326, 192–202 (2020).

    CAS  Google Scholar 

  46. Bogaert, B. et al. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J. Control. Release 350, 256–270 (2022).

    CAS  Google Scholar 

  47. Kim, H. M. & Woo, S. J. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics 13, 108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yiu, G. et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol. Ther. Methods Clin. Dev. 16, 179–191 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weng, C. Y. Bilateral subretinal voretigene neparvovec-rzyl (Luxturna) gene therapy. Ophthalmol. Retin. 3, 450 (2019).

    Google Scholar 

  50. Jaskolka, M. C. et al. Exploratory safety profile of EDIT-101, a first-in-human in vivo CRISPR gene editing therapy for CEP290-related retinal degeneration. Invest. Ophthalmol. Vis. Sci. 63, 2836–A0352 (2022).

    Google Scholar 

  51. Chirco, K. R., Martinez, C. & Lamba, D. A. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vis. Res. 209, 108257 (2023).

    PubMed  Google Scholar 

  52. Leroy, B. P. et al. Efficacy and safety of sepofarsen, an intravitreal RNA antisense oligonucleotide, for the treatment of CEP290-associated Leber congenital amaurosis (LCA10): a randomized, double-masked, sham-controlled, phase 3 study (ILLUMINATE). Invest. Ophthalmol. Vis. Sci. 63, 4536-F0323 (2022).

    Google Scholar 

  53. Ammar, M. J., Hsu, J., Chiang, A., Ho, A. C. & Regillo, C. D. Age-related macular degeneration therapy: a review. Curr. Opin. Ophthalmol. 31, 215–221 (2020).

    PubMed  Google Scholar 

  54. Goldberg, R. et al. Efficacy of intravitreal pegcetacoplan in patients with geographic atrophy (GA): 12-month results from the phase 3 OAKS and DERBY studies. Invest. Ophthalmol. Vis. Sci. 63, 1500–1500 (2022).

    Google Scholar 

  55. Shen, J. et al. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 6, eaba1606 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tan, G. et al. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater. 134, 605–620 (2021).

    CAS  PubMed  Google Scholar 

  57. Jin, J. et al. Anti-inflammatory and antiangiogenic effects of nanoparticle-mediated delivery of a natural angiogenic inhibitor. Investig. Opthalmol. Vis. Sci. 52, 6230 (2011).

    CAS  Google Scholar 

  58. Keenan, T. D. L., Cukras, C. A. & Chew, E. Y. Age-related macular degeneration: epidemiology and clinical aspects. Adv. Exp. Med. Biol. 1256, 1–31 (2021).

    CAS  PubMed  Google Scholar 

  59. Chen, G. et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14, 974–980 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mirjalili Mohanna, S. Z. et al. LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea. J. Control. Release 350, 401–413 (2022).

    CAS  Google Scholar 

  61. Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    CAS  Google Scholar 

  62. Sun, D. et al. Non-viral gene therapy for stargardt disease with ECO/pRHO-ABCA4 self-assembled nanoparticles. Mol. Ther. 28, 293–303 (2020).

    CAS  PubMed  Google Scholar 

  63. Herrera-Barrera, M. et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci. Adv. 9, eadd4623 (2023).

    PubMed  PubMed Central  Google Scholar 

  64. Huertas, A. et al. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases: highlights from basic research to therapy. Eur. Respir. J. 51, 1700745 (2018).

    PubMed  Google Scholar 

  65. Hong, K.-H. et al. Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118, 722–730 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020). This groundbreaking study found that incorporating differently charged (SORT) lipids into the conventional four-component LNPs shifts the location of mRNA transfection among the liver, spleen and lungs.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021). This work thoroughly investigated the impact of SORT lipids added to LNPs on the formation of the biomolecular corona on the NP surface and its role in achieving organ-specific transfection.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kimura, S. & Harashima, H. On the mechanism of tissue-selective gene delivery by lipid nanoparticles. J. Control. Release https://doi.org/10.1016/j.jconrel.2023.03.052 (2023).

  70. Qiu, M. et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA 119, e2116271119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaczmarek, J. C. et al. Polymer–lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem. Int. Ed. 55, 13808–13812 (2016).

    CAS  Google Scholar 

  72. Shen, A. M. & Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J. Control. Release 326, 222–244 (2020).

    CAS  Google Scholar 

  73. Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 3, 684–691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, J. et al. Engineering lipid nanoparticles for enhanced intracellular delivery of mRNA through inhalation. ACS Nano 16, 14792–14806 (2022).

    CAS  Google Scholar 

  75. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiu, Y. et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J. Control. Release 314, 102–115 (2019).

    CAS  Google Scholar 

  77. Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Telko, M. J. & Hickey, A. J. Dry powder inhaler formulation. Respir. Care 50, 1209 (2005).

    Google Scholar 

  79. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

  80. Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N. Engl. J. Med. 363, 2233–2247 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schneider, C. S. et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3, e1601556 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Wang, J. et al. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 367, eaau0810 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545–556 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Getts, D. R. et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat. Biotechnol. 30, 1217–1224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bevers, S. et al. mRNA–LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed  Google Scholar 

  90. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 29, 1606944 (2017).

    Google Scholar 

  92. Zhao, X. et al. Imidazole‐based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew. Chem. Int. Ed. 59, 20083–20089 (2020).

    CAS  Google Scholar 

  93. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    CAS  Google Scholar 

  94. McKinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ben-Akiva, E. et al. Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination. Proc. Natl Acad. Sci. USA 120, e2301606120 (2023).

    PubMed  PubMed Central  Google Scholar 

  97. Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA–LNPs. Mol. Ther. 29, 3293–3304 (2021).

    PubMed  PubMed Central  Google Scholar 

  98. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Adv. Drug Deliv. Rev. 170, 83–112 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lindsay, K. E. et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat. Biomed. Eng. 3, 371–380 (2019). This pioneering study delved into the biodistribution of lipid-based mRNA vaccines after their intramuscular injection into non-human primates using a dual radionuclide–near-infrared probe.

    CAS  PubMed  Google Scholar 

  101. Alberer, M. et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 390, 1511–1520 (2017).

    CAS  PubMed  Google Scholar 

  102. Assessment Report: Comirnaty EMA/707383/2020 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/comirnaty-epar-public-assessment-report_en.pdf

  103. Assessment Report: COVID-19 Vaccine Moderna EMA/15689/2021 (European Medicines Agency, 2021); https://www.ema.europa.eu/en/documents/assessment-report/spikevax-previously-covid-19-vaccine-moderna-epar-public-assessment-report_en.pdf

  104. Ke, X. et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Deliv. Rev. 151–152, 72–93 (2019).

    PubMed  Google Scholar 

  105. Hansen, K. C., D’Alessandro, A., Clement, C. C. & Santambrogio, L. Lymph formation, composition and circulation: a proteomics perspective. Int. Immunol. 27, 219–227 (2015).

    CAS  PubMed  Google Scholar 

  106. Chen, J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 21321–21330 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    CAS  PubMed  Google Scholar 

  109. Kreiter, S. et al. Intranodal vaccination with naked antigen-encoding rna elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70, 9031–9040 (2010).

    CAS  PubMed  Google Scholar 

  110. Fan, C.-H. et al. Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood–brain barrier opening and local gene delivery. Biomaterials 106, 46–57 (2016).

    CAS  PubMed  Google Scholar 

  111. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44 (2011).

    PubMed  Google Scholar 

  112. Yu, Y. J. et al. Therapeutic bispecific antibodies cross the blood–brain barrier in nonhuman primates. Sci. Transl. Med. 6, 261ra154 (2014).

    PubMed  Google Scholar 

  113. Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood–brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    CAS  PubMed  Google Scholar 

  114. Ullman, J. C. et al. Brain delivery and activity of a lysosomal enzyme using a blood–brain barrier transport vehicle in mice. Sci. Transl. Med. 12, eaay1163 (2020).

    CAS  PubMed  Google Scholar 

  115. Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020). This study suggests that designing lipids to mimic neurotransmitters and incorporating them into NPs can enhance the delivery of nucleic acids and proteins to the brain following IV injection.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhou, Y. et al. Blood–brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 6, eabc7031 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li, W. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim, M. et al. Delivery of self-replicating messenger RNA into the brain for the treatment of ischemic stroke. J. Control. Release 350, 471–485 (2022).

    CAS  Google Scholar 

  121. Willerth, S. M. & Sakiyama-Elbert, S. E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Deliv. Rev. 59, 325–338 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Saucier-Sawyer, J. K. et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J. Control. Release 232, 103–112 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Dhaliwal, H. K., Fan, Y., Kim, J. & Amiji, M. M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm. 17, 1996–2005 (2020).

    CAS  PubMed  Google Scholar 

  124. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    CAS  PubMed  Google Scholar 

  125. Hirabayashi, H. & Fujisaki, J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin. Pharmacokinet. 42, 1319–1330 (2003).

    CAS  PubMed  Google Scholar 

  126. Wang, G., Mostafa, N. Z., Incani, V., Kucharski, C. & Uludağ, H. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. J. Biomed. Mater. Res. A 100, 684–693 (2012).

    PubMed  Google Scholar 

  127. Giger, E. V. et al. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. J. Control. Release 150, 87–93 (2011).

    CAS  Google Scholar 

  128. Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022). This study proposes that improving lipid design to mimic bisphosphates can improve LNP-mediated mRNA delivery to the bone microenvironment after IV injection.

    CAS  PubMed  Google Scholar 

  129. Liang, C. et al. Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat. Med. 21, 288–294 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Zhang, Y., Wei, L., Miron, R. J., Shi, B. & Bian, Z. Anabolic bone formation via a site-specific bone-targeting delivery system by interfering with semaphorin 4D expression. J. Bone Miner. Res. 30, 286–296 (2015).

    CAS  PubMed  Google Scholar 

  131. Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    PubMed  Google Scholar 

  132. Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    CAS  Google Scholar 

  133. Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 17095–17105 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, X., Li, Y., Chen, Y. E., Chen, J. & Ma, P. X. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 7, 10376 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, P. et al. In vivo bone tissue induction by freeze-dried collagen–nanohydroxyapatite matrix loaded with BMP2/NS1 mRNAs lipopolyplexes. J. Control. Release 334, 188–200 (2021).

    CAS  Google Scholar 

  136. Athirasala, A. et al. Matrix stiffness regulates lipid nanoparticle-mRNA delivery in cell-laden hydrogels. Nanomed. Nanotechnol. Biol. Med. 42, 102550 (2022).

    CAS  Google Scholar 

  137. Nims, R. J., Pferdehirt, L. & Guilak, F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr. Opin. Biotechnol. 73, 374–379 (2022).

    CAS  PubMed  Google Scholar 

  138. O’Driscoll, C. M., Bernkop-Schnürch, A., Friedl, J. D., Préat, V. & Jannin, V. Oral delivery of non-viral nucleic acid-based therapeutics—do we have the guts for this? Eur. J. Pharm. Sci. 133, 190–204 (2019).

    PubMed  Google Scholar 

  139. Ball, R. L., Bajaj, P. & Whitehead, K. A. Oral delivery of siRNA lipid nanoparticles: fate in the GI tract. Sci. Rep. 8, 2178 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Attarwala, H., Han, M., Kim, J. & Amiji, M. Oral nucleic acid therapy using multi-compartmental delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10, e1478 (2018).

    Google Scholar 

  141. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 975–987 (2022). This study shows the potential for delivery of mRNA-loaded PBAE NPs directly to the submucosa of the stomach using orally ingested robotic pills.

    CAS  Google Scholar 

  143. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    PubMed  PubMed Central  Google Scholar 

  144. Xin, M., Olson, E. N. & Bassel-Duby, R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 14, 529–541 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tang, R., Long, T., Lui, K. O., Chen, Y. & Huang, Z.-P. A roadmap for fixing the heart: RNA regulatory networks in cardiac disease. Mol. Ther. Nucleic Acids 20, 673–686 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102–106 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    CAS  PubMed  Google Scholar 

  149. Täubel, J. et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 42, 178–188 (2021).

    PubMed  Google Scholar 

  150. Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rubin, J. D. & Barry, M. A. Improving molecular therapy in the kidney. Mol. Diagn. Ther. 24, 375–396 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Oroojalian, F. et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Control. Release 321, 442–462 (2020).

    CAS  Google Scholar 

  155. Jiang, D. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2, 865–877 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, Y. et al. NIR-II photoacoustic-active DNA origami nanoantenna for early diagnosis and smart therapy of acute kidney injury. J. Am. Chem. Soc. 144, 23522–23533 (2022).

    CAS  PubMed  Google Scholar 

  157. Stribley, J. M., Rehman, K. S., Niu, H. & Christman, G. M. Gene therapy and reproductive medicine. Fertil. Steril. 77, 645–657 (2002).

    PubMed  Google Scholar 

  158. Boekelheide, K. & Sigman, M. Is gene therapy for the treatment of male infertility feasible? Nat. Clin. Pract. Urol. 5, 590–593 (2008).

    CAS  PubMed  Google Scholar 

  159. Rodríguez-Gascón, A., del Pozo-Rodríguez, A., Isla, A. & Solinís, M. A. Vaginal gene therapy. Adv. Drug Deliv. Rev. 92, 71–83 (2015).

    PubMed  Google Scholar 

  160. Lindsay, K. E. et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol. Ther. 28, 805–819 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Poley, M. et al. Nanoparticles accumulate in the female reproductive system during ovulation affecting cancer treatment and fertility. ACS Nano 16, 5246–5257 (2022).

    CAS  Google Scholar 

  162. DeWeerdt, S. Prenatal gene therapy offers the earliest possible cure. Nature 564, S6–S8 (2018).

    CAS  PubMed  Google Scholar 

  163. Palanki, R., Peranteau, W. H. & Mitchell, M. J. Delivery technologies for in utero gene therapy. Adv. Drug Deliv. Rev. 169, 51–62 (2021).

    CAS  PubMed  Google Scholar 

  164. Riley, R. S. et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 7, 1028–1041 (2021).

    Google Scholar 

  165. Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    CAS  Google Scholar 

  166. Ricciardi, A. S. et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 9, 2481 (2018). This study presents in utero gene editing of a disease-causing β-thalassemia mutation in foetal mice.

    PubMed  PubMed Central  Google Scholar 

  167. Chaudhary, N. et al. Lipid nanoparticle structure and delivery route during pregnancy dictates mRNA potency, immunogenicity, and health in the mother and offspring. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528720 (2023).

  168. Young, R. E. et al. Lipid nanoparticle composition drives mRNA delivery to the placenta. Preprint at bioRxiv https://doi.org/10.1101/2022.12.22.521490 (2022).

  169. Swingle, K. L. et al. Ionizable lipid nanoparticles for in vivo mRNA delivery to the placenta during pregnancy. J. Am. Chem. Soc. 145, 4691–4706 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lan, Y. et al. Recent development of AAV-based gene therapies for inner ear disorders. Gene Ther. 27, 329–337 (2020).

    CAS  Google Scholar 

  171. Delmaghani, S. & El-Amraoui, A. Inner ear gene therapies take off: current promises and future challenges. J. Clin. Med. 9, 2309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, L., Kempton, J. B. & Brigande, J. V. Gene therapy in mouse models of deafness and balance dysfunction. Front. Mol. Neurosci. 11, 300 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Du, X. et al. Regeneration of cochlear hair cells and hearing recovery through Hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol. Ther. 26, 1313–1326 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2018).

    CAS  PubMed  Google Scholar 

  175. Jero, J. et al. Cochlear gene delivery through an intact round window membrane in mouse. Hum. Gene Ther. 12, 539–548 (2001).

    CAS  Google Scholar 

  176. Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018).

    CAS  Google Scholar 

  178. Hansen, A. E. et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9, 6985–6995 (2015).

    CAS  Google Scholar 

  179. Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    CAS  PubMed  Google Scholar 

  180. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    CAS  PubMed  Google Scholar 

  181. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). This Review deeply explores the possible factors behind the ineffective tumour-targeting of NPs, uncovering that only a small fraction of the administered NP dose reaches a solid tumour.

    CAS  Google Scholar 

  182. Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2012).

    CAS  Google Scholar 

  183. Chan, W. C. W. Principles of nanoparticle delivery to solid tumors. BME Front. 4, 0016 (2023). This Review delineates key principles for designing tumour-targeting NPs, considering both macro- and micro-level analysis of the environment surrounding NPs and their physicochemical attributes.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    CAS  Google Scholar 

  185. Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    CAS  PubMed  Google Scholar 

  188. Li, W. et al. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 12, 7264 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Van Lint, S. et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol. Res. 4, 146–156 (2016).

    PubMed  Google Scholar 

  190. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS  Google Scholar 

  191. Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Release 357, 394–403 (2023).

    CAS  Google Scholar 

  192. Vetter, V. C. & Wagner, E. Targeting nucleic acid-based therapeutics to tumors: challenges and strategies for polyplexes. J. Control. Release 346, 110–135 (2022).

    CAS  Google Scholar 

  193. Yong, S. et al. Dual‐targeted lipid nanotherapeutic boost for chemo‐immunotherapy of cancer. Adv. Mater. 34, 2106350 (2022).

    CAS  Google Scholar 

  194. Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018). This study developed a modular, ligand-based RNA delivery platform that avoids the chemical conjugation of antibodies by using linkers that bind to the Fc region, ensuring precise antibody orientation on the NP surface.

    CAS  PubMed  Google Scholar 

  195. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    CAS  PubMed  Google Scholar 

  196. Adachi, K., Enoki, T., Kawano, Y., Veraz, M. & Nakai, H. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5, 3075 (2014).

    PubMed  Google Scholar 

  197. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017). This work presents the remarkable capabilities of DNA barcoding and deep sequencing in conducting high-throughput screening of NPs, assessing their effectiveness in target-specific gene delivery in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Da Silva Sanchez, A. J. et al. Universal barcoding predicts in vivo ApoE-independent lipid nanoparticle delivery. Nano Lett. 22, 4822–4830 (2022).

    Google Scholar 

  199. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Release 316, 404–417 (2019).

    CAS  Google Scholar 

  200. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    CAS  PubMed  Google Scholar 

  201. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    CAS  PubMed  Google Scholar 

  202. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Keenum, M. C. et al. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 297, 122097 (2023).

    CAS  PubMed  Google Scholar 

  204. Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Rao, N., Clark, S. & Habern, O. Bridging genomics and tissue pathology: 10x Genomics explores new frontiers with the Visium Spatial Gene Expression Solution. Genet. Eng. Biotechnol. News 40, 50–51 (2020).

    Google Scholar 

  206. Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    CAS  Google Scholar 

  207. Shao, D. et al. HBFP: a new repository for human body fluid proteome. Database 2021, baab065 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    CAS  PubMed  Google Scholar 

  209. Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    CAS  PubMed  Google Scholar 

  211. Xu, Y. et al. AGILE platform: a deep learning-powered approach to accelerate LNP development for mRNA delivery. Preprint at bioRxiv https://doi.org/10.1101/2023.06.01.543345 (2023). This work implements artificial intelligence in ionizable lipid design for intramuscular mRNA delivery.

  212. Gong, D. et al. Machine learning guided structure function predictions enable in silico nanoparticle screening for polymeric gene delivery. Acta Biomater. 154, 349–358 (2022).

    CAS  PubMed  Google Scholar 

  213. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    CAS  Google Scholar 

  216. Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Google Scholar 

  217. Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Google Scholar 

  218. De Backer, L., Cerrada, A., Pérez-Gil, J., De Smedt, S. C. & Raemdonck, K. Bio-inspired materials in drug delivery: exploring the role of pulmonary surfactant in siRNA inhalation therapy. J. Control. Release 220, 642–650 (2015).

    Google Scholar 

Download references

Acknowledgements

We thank funding from the National Eye Institute 1R01EY033423-01A1 (G.S.), the National Heart Lung and Blood Institute (NHLBI) R01HL146736-01 (G.S) and SAHAY 19XX0 (G.S), and the National Cancer Institute 1R01CA270783-01 (G.S).

Author information

Authors and Affiliations

Authors

Contributions

G.S. conceived the idea and provided critical feedback. J.K. and Y.E. drafted the initial manuscript. J.K., Y.E., R.C.R. and A.J. created the figures and tables. All authors contributed to the writing of the paper. J.K. and Y.E. revised the paper with input from all authors. All authors have given approval to the entire content of this paper and its submission.

Corresponding author

Correspondence to Gaurav Sahay.

Ethics declarations

Competing interests

G.S. serves as an advisor to Rare Air Inc and RNAvax Bio. G.S. is a co-founder of EnterX Bio and Y.E. has stock options and an advisory role with EnterX Bio. EnterX Bio has a scientific research agreement with OSU. G.S. has a conflict management plan at OSU. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Mitchell, Ernst Wagner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Eygeris, Y., Ryals, R.C. et al. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2024). https://doi.org/10.1038/s41565-023-01563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01563-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research