Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects

Abstract

Harnessing mRNA–lipid nanoparticles (LNPs) to treat patients with cancer has been an ongoing research area that started before these versatile nanoparticles were successfully used as COVID-19 vaccines. Currently, efforts are underway to harness this platform for oncology therapeutics, mainly focusing on cancer vaccines targeting multiple neoantigens or direct intratumoural injections of mRNA–LNPs encoding pro-inflammatory cytokines. In this Review, we describe the opportunities of using mRNA–LNPs in oncology applications and discuss the challenges for successfully translating the findings of preclinical studies of these nanoparticles into the clinic. We critically appraise the potential of various mRNA–LNP targeting and delivery strategies, considering physiological, technological and manufacturing challenges. We explore these approaches in the context of the potential clinical applications best suited to each approach and highlight the obstacles that currently need to be addressed to achieve these applications. Finally, we provide insights from preclinical and clinical studies that are leading to this powerful platform being considered the next frontier in oncology treatment.

Key points

  • mRNA–lipid nanoparticles (LNPs) are a powerful, versatile platform that hold great potential as anticancer therapies; LNPs have been tested in clinical applications and can successfully and safely deliver mRNA payloads designed to target various tissues and cell types.

  • mRNA–LNPs can be administered to specific tissues through various routes and using different approaches for targeting specific tissues and cell types.

  • Passive targeting approaches do not involve modifications of mRNA–LNPs for delivery to specific tissues and cells; these approaches typically rely on inherent tendencies of different particles to accumulate in different tissues or tumours.

  • Active targeting approaches involve modification of the surface of mRNA–LNPs for their delivery to a specific cell type; improvements in the ability to target nanoparticles to specific cell types is key for expanding their applications in clinical oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mRNA–LNP delivery into cells.
Fig. 2: Strategies for targeting mRNA–LNPs to tumours.
Fig. 3: Strategies to functionalize antibodies on LNPs.
Fig. 4: Future directions for improved targeting strategies.
Fig. 5: Considerations and potential applications of passive and active strategies for targeting tumours with mRNA–LNPs.

Similar content being viewed by others

References

  1. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Kon, E., Elia, U. & Peer, D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 73, 329–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Tam, Y. Y. C., Chen, S. & Cullis, P. R. Advances in lipid nanoparticles for siRNA delivery. Pharmaceutics 5, 498–507 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Rel. 357, 394–403 (2023).

    Article  CAS  Google Scholar 

  10. Morais, P., Adachi, H. & Yu, Y. T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang, A. et al. Human intratumoral therapy: linking drug properties and tumor transport of drugs in clinical trials. J. Control. Rel. 326, 203–221 (2020).

    Article  CAS  Google Scholar 

  12. Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Lei, S. et al. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm. 17, 3378–3391 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, J. et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol. Ther. Nucleic Acids 30, 184–197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, J.-Q. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Rel. 345, 306–313 (2022).

    Article  CAS  Google Scholar 

  18. Rosenblum, D. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777–787 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huai, Y., Hossen, M. N., Wilhelm, S., Bhattacharya, R. & Mukherjee, P. Nanoparticle interactions with the tumor microenvironment. Bioconjug. Chem. 30, 2247–2263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Shurin, M. R., Lu, L., Kalinski, P., Stewart-Akers, A. M. & Lotze, M. T. Th1/Th2 balance in cancer, transplantation and pregnancy. Springe. Semin. Immunopathol. 21, 339–359 (1999).

    Article  CAS  Google Scholar 

  23. Luheshi, N. et al. MEDI1191, a novel IL-12 mRNA therapy for intratumoral injection to promote TH1 transformation of the patient tumor microenvironment [abstract]. Cancer Res. 79 (Suppl. 13), 5017–5017 (2019).

    Article  Google Scholar 

  24. Lai, I. et al. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer 6, 125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Porciuncula, A. et al. Spatial mapping and immunomodulatory role of the OX40/OX40L pathway in human non-small cell lung cancer. Clin. Cancer Res. 27, 6174–6183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carneiro, B. A. First-in-human study of MEDI1191 (mRNA encoding IL-12) plus durvalumab in patients (pts) with advanced solid tumors [abstract CT183]. Cancer Res. 82 (Suppl. 12), CT183 (2022).

    Article  Google Scholar 

  27. Patel, M. R. et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 3092 (2020).

    Article  Google Scholar 

  28. Sebastiani, F. et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano 15, 6709–6722 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sebastiani, F., Yanez Arteta, M., Lindfors, L. & Cárdenas, M. Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment. J. Colloid Interface Sci. 610, 766–774 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Neagu, M. et al. Protein bio-corona: critical issue in immune nanotoxicology. Arch. Toxicol. https://doi.org/10.1007/s00204-016-1797-5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leung, A. K. K., Tam, Y. Y. C. & Cullis, P. R. Lipid nanoparticles for short interfering RNA delivery. Adv. Genet. 88, 71–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 18, 1357–1364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids https://doi.org/10.1038/mtna.2013.66 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ibrahim, M. et al. Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Rel. 351, 215–230 (2022).

    Article  CAS  Google Scholar 

  36. Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154–155, 163–175 (2020).

    Article  PubMed  Google Scholar 

  37. Szebeni, J., Simberg, D., González-Fernández, Á., Barenholz, Y. & Dobrovolskaia, M. A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 13, 1100–1108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fülöp, T. et al. Liposome-induced hypersensitivity reactions: risk reduction by design of safe infusion protocols in pigs. J. Control. Rel. 309, 333–338 (2019).

    Article  Google Scholar 

  39. Sundararaghavan, H. G. & Burdick, J. A. Cell encapsulation. Compr. Biomater. 5, 115–130 (2011).

    Article  Google Scholar 

  40. Liu, M. et al. Accelerated blood clearance of nanoemulsions modified with PEG-cholesterol and PEG-phospholipid derivatives in rats: the effect of PEG-lipid linkages and PEG molecular weights. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acs.molpharmaceut.9b00770 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    Article  CAS  Google Scholar 

  42. Adams, D. et al. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 17, 181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against chikungunya virus. Nat. Med. 27, 2224–2233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282–300 (2020).

    Article  Google Scholar 

  46. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01146-9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paunovska, K. et al. Nanoparticles containing oxidized cholesterol deliver mRNA to the liver microenvironment at clinically relevant doses. Adv. Mater. 31, e1807748 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjug. Chem. 31, 2046–2059 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Rel. 316, 404–417 (2019).

    Article  CAS  Google Scholar 

  52. Mckinlay, C. J., Benner, N. L., Haabeth, O. A., Waymouth, R. M. & Wender, P. A. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fenton, O. S. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. https://doi.org/10.1002/adma.201606944 (2017).

    Article  PubMed  Google Scholar 

  54. Lokugamage, M. P., Sago, C. D., Gan, Z., Krupczak, B. R. & Dahlman, J. E. Constrained nanoparticles deliver siRNA and sgRNA to T cells in vivo without targeting ligands. Adv. Mater. 31, e1902251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shen, Y. & Bae, Y. H. Tumour extravasation of nanomedicine: the EPR and alternative pathways. Adv. Drug Deliv. Rev. https://doi.org/10.1016/j.addr.2023.114707 (2023).

    Article  PubMed  Google Scholar 

  56. Belfiore, L. et al. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. J. Control. Rel. 277, 1–13 (2018).

    Article  CAS  Google Scholar 

  57. Nel, A., Ruoslahti, E. & Meng, H. New insights into ‘permeability’ as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 11, 9567–9569 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Ouyang, B. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19, 1362–1371 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Stillman, N. R., Kovacevic, M., Balaz, I. & Hauert, S. In silico modelling of cancer nanomedicine, across scales and transport barriers. npj Comput. Mater. 6, 92 (2020).

    Article  CAS  Google Scholar 

  61. Lammers, T., Kiessling, F., Hennink, W. E. & Storm, G. Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Rel. 161, 175–187 (2012).

    Article  CAS  Google Scholar 

  62. Popović, Z. et al. A nanoparticle size series for in vivo fluorescence imaging. Angew. Chem. 122, 8831–8834 (2010).

    Article  Google Scholar 

  63. Zhigaltsev, I. V. et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28, 3633–3640 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Kimura, N. et al. Development of the iLiNP device: fine tuning the lipid nanoparticle size within 10 nm for drug delivery. ACS Omega 3, 5044–5051 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, H. J. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl Acad. Sci. USA 113, 4164–4169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sebastian, M. et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother. 68, 799–812 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, J. et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Invest. 130, 5976–5988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, H. et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc. Natl Acad. Sci. USA 118, e2005191118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sasaki, K., Sato, Y., Okuda, K., Iwakawa, K. & Harashima, H. mRNA-loaded lipid nanoparticles targeting dendritic cells for cancer immunotherapy. Pharmaceutics 14, 1572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Y., Zhang, L., Xu, Z., Miao, L. & Huang, L. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 26, 420–434 (2018).

    Article  PubMed  Google Scholar 

  72. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis e Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Bevers, S. et al. mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells. Mol. Ther. 30, 3078–3094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Chung, S., Lee, C. M. & Zhang, M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. Nanoscale Horiz. 8, 10–28 (2022).

    Article  PubMed  Google Scholar 

  76. Rybakova, Y. et al. mRNA delivery for therapeutic anti-HER2 antibody expression in vivo. Mol. Ther. 27, 1415–1423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Guimarães, P. P. G. et al. In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy. Proc. Natl Acad. Sci. USA 120, e2215711120 (2023).

    Article  PubMed  Google Scholar 

  78. Naidu, G. S. et al. A combinatorial library of lipid nanoparticles for cell type-specific mRNA delivery. Adv. Sci. 10, e2301929 (2023).

    Article  Google Scholar 

  79. Kim, M. et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci. Adv. 7, eabf4398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Granot-Matok, Y., Kon, E., Dammes, N., Mechtinger, G. & Peer, D. Therapeutic mRNA delivery to leukocytes. J. Control. Release 305, 165–175 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Kon, E. et al. Resveratrol enhances mRNA and siRNA lipid nanoparticles primary CLL cell transfection. Pharmaceutics 12, 520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hayward, S. L., Wilson, C. L. & Kidambi, S. Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells. Oncotarget 7, 34158–34171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yong, S. B. et al. Dual-targeted lipid nanotherapeutic boost for chemo-immunotherapy of cancer. Adv. Mater. 34, e2106350 (2022).

    Article  PubMed  Google Scholar 

  85. Kampel, L. et al. Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. J. Control. Rel. 337, 378–389 (2021).

    Article  CAS  Google Scholar 

  86. Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Weinstein, S. et al. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc. Natl Acad. Sci. USA 113, E16–E22 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Kandela, I., Chou, J. & Chow, K. Registered report: coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Elife 4, e06959 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Alberici, L. et al. De novo design of a tumor-penetrating peptide. Cancer Res. 73, 804–812 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Scodeller, P. et al. Precision targeting of tumor macrophages with a CD206 binding peptide. Sci. Rep. 7, 14655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sofias, A. M. et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS Nano 14, 7832–7846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kheirolomoom, A. et al. In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift. Biomaterials 281, 121339 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Houdaihed, L., Evans, J. C. & Allen, C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: a novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res. 37, 39 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Bae, Y. H. Drug targeting and tumor heterogeneity. J. Control. Rel. 133, 2–3 (2009).

    Article  CAS  Google Scholar 

  96. Muro, S. Challenges in design and characterization of ligand-targeted drug delivery systems. J. Control. Rel. 164, 125–137 (2012).

    Article  CAS  Google Scholar 

  97. Hartmann, L. C. et al. Folate receptor overexpression is associated with poor outcome in breast cancer. Int. J. Cancer 121, 938–942 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Herdt, D. et al. The occurrence of MET ectodomain shedding in oral cancer and its potential impact on the use of targeted therapies. Cancers 14, 1491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Miller, M. A. et al. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 6, 383–399 (2016).

    Article  Google Scholar 

  100. Athauda, G. et al. c-Met ectodomain shedding rate correlates with malignant potential. Clin. Cancer Res. 12, 4154–4162 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Peiris, D. et al. Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci. Rep. 7, 43006 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bergeron, A. et al. Anticipating changes in the HER2 status of breast tumours with disease progression – towards better treatment decisions in the new era of HER2-low breast cancers. Br. J. Cancer 129, 122–134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kufe, D. W. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 32, 1073–1081 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sato, J., van Osdol, W., Weinstein, J. N. & Perez-Bacete, M. J. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 52, 5144–5153 (1992).

    PubMed  Google Scholar 

  105. Barrow, C. et al. Tumor antigen expression in melanoma varies according to antigen and stage. Clin. Cancer Res. 12, 764–771 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Curk, T., Dobnikar, J. & Frenkel, D. Design principles for super selectivity using multivalent interactions. Multivalency https://doi.org/10.1002/9781119143505.ch3 (2017).

    Article  Google Scholar 

  107. Tjandra, K. C. & Thordarson, P. Multivalency in drug delivery–when is it too much of a good thing? Bioconjug. Chem. 30, 503–514 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Duncan, G. A. & Bevan, M. A. Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7, 15332–15340 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Dalal, C., Saha, A. & Jana, N. R. Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C. 120, 6778–6786 (2016).

    Article  CAS  Google Scholar 

  110. Bandara, N. A., Hansen, M. J. & Low, P. S. Effect of receptor occupancy on folate receptor internalization. Mol. Pharm. 11, 1007–1013 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Sayers, E. J. et al. Endocytic profiling of cancer cell models reveals critical factors influencing LNP-mediated mRNA delivery and protein expression. Mol. Ther. 27, 1950–1962 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu, S. Internalization, trafficking, intracellular processing and actions of antibody–drug conjugates. Pharm. Res. 32, 3577–3583 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Nath, N. et al. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye. J. Immunol. Methods 431, 11–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Mazor, Y., Barnea, I., Keydar, I. & Benhar, I. Antibody internalization studied using a novel IgG binding toxin fusion. J. Immunol. Methods 321, 41–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Gong, H. & Urlacher, T. A homogeneous fluorescence-based method to measure antibody internalization in tumor cells. Anal. Biochem. 469, 1–3 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Rios de la Rosa, J. M. et al. Binding and internalization in receptor-targeted carriers: the complex role of CD44 in the uptake of hyaluronic acid-based nanoparticles (siRNA delivery). Adv. Healthc. Mater. 8, e1901182 (2019).

    Article  PubMed  Google Scholar 

  117. Wang, D., Sun, Y., Liu, Y., Meng, F. & Lee, R. J. Clinical translation of immunoliposomes for cancer therapy: recent perspectives. Expert. Opin. Drug Deliv. 15, 893–903 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Nobs, L., Buchegger, F., Gurny, R. & Allémann, E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93, 1980–1992 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Su, F. Y. et al. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. Sci. Adv. 8, eabm7950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ramishetti, S. et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9, 6706–6716 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Swart, L. E. et al. A robust post-insertion method for the preparation of targeted siRNA LNPs. Int. J. Pharm. 620, 121741 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Grabbe, S. et al. Translating nanoparticulate-personalized cancer vaccines into clinical applications: case study with RNA-lipoplexes for the treatment of melanoma. Nanomedicine 11, 2723–2734 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kubota, K. et al. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation. Int. J. Nanomed. 12, 5121–5133 (2017).

    Article  CAS  Google Scholar 

  128. Buyens, K. et al. A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J. Control. Rel. 126, 67–76 (2008).

    Article  CAS  Google Scholar 

  129. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Webb, C. et al. Current status and future perspectives on mRNA drug manufacturing. Mol. Pharm. 19, 1047–1058 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. BioNTech. Next generation immunotherapy. BioNTech https://investors.biontech.de/static-files/c1206b60-d11e-4eb3-badf-51ce1c68335e (2021).

  133. Moderna. OX40L/IL-23/IL-36γ (triplet) (mRNA 2752). Moderna https://s29.q4cdn.com/435878511/files/doc_downloads/program_detail/2023/05/Triplet-05-04-23.pdf (2023).

  134. Haanen, J. B. et al. BNT211: a phase I trial to evaluate safety and efficacy of CLDN6 CAR-T cells and CARVac-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumors (abstract CT002). Cancer Res. 82 (Suppl. 12), CT002 (2022).

    Article  Google Scholar 

  135. Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lam, K. et al. Optimizing lipid nanoparticles for delivery in primates. Adv. Mater. https://doi.org/10.1002/ADMA.202211420 (2023).

    Article  PubMed  Google Scholar 

  140. Crommelin, D. J. A., Anchordoquy, T. J., Volkin, D. B., Jiskoot, W. & Mastrobattista, E. Addressing the cold reality of mRNA vaccine stability. J. Pharm. Sci. 110, 997–1001 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. US Food and Drug Admininstration. Onpattro: Product Quality Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210922Orig1s000MultiR.pdf (FDA, 2017).

  142. Hussey, C. First participants dosed in phase 1 study evaluating mRNA-1283, Moderna’s next generation COVID-19 vaccine (Bloomberg, 2021).

  143. Lball, R., Bajaj, P. & Whitehead, K. A. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int. J. Nanomed. 12, 305–315 (2017).

    Google Scholar 

  144. Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kozma, G. T. et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano https://doi.org/10.1021/acsnano.9b03942 (2019).

    Article  PubMed  Google Scholar 

  146. Bedőcs, P. & Szebeni, J. The critical choice of animal models in nanomedicine safety assessment: a lesson learned from hemoglobin-based oxygen carriers. Front. Immunol. 11, 584966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bavli, Y. et al. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Control. Rel. 354, 316–322 (2022).

    Article  Google Scholar 

  148. Estapé Senti, M. et al. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Rel. 341, 475–486 (2022).

    Article  Google Scholar 

  149. Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 21, 1570–1578 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang, X., Goel, V. & Robbie, G. J. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J. Clin. Pharmacol. 60, 573–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Ramishetti, S. et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv. Mater. 32, e1906128 (2020).

    Article  PubMed  Google Scholar 

  153. Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid Ther. 28, 285–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Żak, M., Yoo, J. & Zangi, L. Therapeutic potential of systemically delivered breast cancer specific modified mRNA. Eur. J. Cancer 174, S102 (2022).

    Article  Google Scholar 

  156. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao, E. M. et al. RNA-responsive elements for eukaryotic translational control. Nat. Biotechnol. 40, 539–545 (2021).

    Article  PubMed  Google Scholar 

  158. Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2, e221 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc. Natl Acad. Sci. USA 101, 12588–12591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chu, D. et al. Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO J. 33, 21–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhou, J. et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J. Control. Rel. 350, 298–307 (2022).

    Article  CAS  Google Scholar 

  163. Liuzzo, G. & Patrono, C. In vivo generated chimeric antigen receptor T cells reduce fibrosis and restore cardiac function in experimental heart failure. Eur. Heart J. 43, 1531–1532 (2022).

    Article  PubMed  Google Scholar 

  164. Chen, Y. et al. CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed. Pharmacother. 139, 111605 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, W. et al. Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm. Acta Pharm. Sin. B 12, 2950–2962 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Linch, M. et al. A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT [abstract 421]. J. Immunother. Cancer 9 (Suppl. 2), A451 (2021).

    Article  Google Scholar 

  169. Klinghammer, K. et al. BNT113 + pembrolizumab as first-line treatment in patients with unresectable recurrent/metastatic HNSCC: preliminary safety data from AHEAD-MERIT [abstract 155P]. Ann. Oncol. 16 (Suppl. 1), 100104 (2022).

    Google Scholar 

  170. Bauman, J. et al. Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): an update [abstract 798]. J. Immunother. Cancer 8 (Suppl. 3), A477 (2020).

    Google Scholar 

  171. Weber, J. S. et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial [abstract]. J. Clin. Oncol. 41 (Suppl. 17), LBA9503 (2023).

    Google Scholar 

  172. Mackensen, A. et al. BNT211-01: a phase I trial to evaluate safety and efficacy of CLDN6 CAR T cells and CLDN6-encoding mRNA vaccine-mediated in vivo expansion in patients with CLDN6-positive advanced solid tumours [abstract LBA38]. Ann. Oncol. 33 (Suppl. 7), S808–S869 (2022).

    Google Scholar 

  173. Patel, M. et al. Phase 1 study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ, for intratumoral (ITu) injection +/− durvalumab in advanced solid tumors and lymphoma [abstract 539]. J. Immunother. Cancer 9 (Suppl. 2), A569 (2021).

    Article  Google Scholar 

  174. Álvarez-Benedicto, E. et al. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 10, 549–559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Eygeris, Y., Gupta, M., Kim, J. & Sahay, G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55, 2–12 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Patel, S. et al. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun. 11, 983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Eygeris, Y., Patel, S., Jozic, A., Sahay, G. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Kumar, V. et al. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids 3, e210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Waggoner, L. E., Miyasaki, K. F. & Kwon, E. J. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury. Biomater. Sci. https://doi.org/10.1039/D2BM01846B (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01679-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  182. Vermeulen, L. M. P. et al. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano 12, 2332–2345 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Rel. 217, 337–344 (2015).

    Article  CAS  Google Scholar 

  184. Karikó, K., Ni, H., Capodici, J., Lamphier, M. & Weissman, D. mRNA is an endogenous ligand for toll-like receptor 3. J. Biol. Chem. 279, 12542–12550 (2004).

    Article  PubMed  Google Scholar 

  185. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  PubMed  Google Scholar 

  186. Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Baiersdörfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Karikó, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wan, C., Allen, T. M. & Cullis, P. R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. https://doi.org/10.1007/s13346-013-0161-z (2013).

    Article  Google Scholar 

  190. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.K. is the recipient of a fellowship from the Yoran Institute for Human Genome Research. D.P. receives funding support from the European Research Council (advanced grant 101055029), The EXPERT project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 825828, ISF grant 2012/20, the Innovation Authority in Israel (Kamin-Corona), and the Shmunis Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.K. and N.A.-E. researched data for this article. All authors contributed substantially to the discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dan Peer.

Ethics declarations

Competing interests

D.P. receives licensing fees (to patents on which he was an inventor), has invested, has consulted, has been on the scientific advisory boards or boards of directors, given paid lectures or conducted research at Tel Aviv University sponsored by ART Biosciences, BioNTech, Earli, Kernal Biologics, Merck, NeoVac, Newphase, Roche, SirTLabs Corporation and Teva Pharmaceuticals. All other authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks C. Radu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kon, E., Ad-El, N., Hazan-Halevy, I. et al. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 20, 739–754 (2023). https://doi.org/10.1038/s41571-023-00811-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00811-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer