Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the activity of antibody–drug conjugates in primary and secondary brain tumours

Abstract

Antibody–drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood–brain or blood–tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2+ breast cancer. However, depatuxizumab mafodotin, an ADC targeting wild-type EGFR and EGFR variant III, did not provide a definitive overall survival benefit in patients with newly diagnosed or recurrent EGFR-amplified glioblastoma in phase II and III trials, despite objective radiological responses in some patients. In this Review, we summarize the available data on the central nervous system activity of ADCs from trials involving patients with primary and secondary brain tumours and discuss their clinical implications. Furthermore, we explore pharmacological determinants of intracranial activity and discuss the optimal design of clinical trials to facilitate development of ADCs for the treatment of gliomas and brain metastases.

Key points

  • Antibody–drug conjugates (ADCs) have shown promising clinical activity across several different solid tumour entities; however, data on the intracranial efficacy of these agents are scarce, especially in patients with active brain metastases.

  • Data from phase II trials suggest that the HER2-targeted ADC trastuzumab deruxtecan has substantial central nervous system activity in patients with breast cancer brain metastases.

  • By contrast, the EGFR-targeted ADC depatuxizumab mafodotin failed to produce an overall survival benefit in patients with glioblastoma.

  • Pharmacological determinants of the intracranial activity of ADCs include the linker design, payload used, and the drug-to-antibody ratio and its heterogeneity in the ADC formulation.

  • Dedicated, adequately powered clinical trials including rational end points of intracranial response are warranted to evaluate the efficacy of ADCs in patients with primary and secondary brain tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parameters influencing central nervous system delivery and activity of antibody–drug conjugates.

Similar content being viewed by others

References

  1. Ehrlich, P. The Harben Lectures, 1907. Experimental researches on specific therapeutics. J. R. Inst. Public Health 15, 321–340 (1907).

    Google Scholar 

  2. Sievers, E. L. et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol. 19, 3244–3254 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian, H. M. et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med. 375, 740–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sehn, L. H. et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol. 38, 155–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Galsky, M. D. et al. Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J. Clin. Oncol. 26, 2147–2154 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Milowsky, M. I. et al. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol. Semin. Original Investig. 34, 530.e15–530.e21 (2016).

    Article  CAS  Google Scholar 

  9. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rouse, C., Gittleman, H., Ostrom, Q. T., Kruchko, C. & Barnholtz-Sloan, J. S. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro Oncol. 18, 70–77 (2016).

    Article  PubMed  Google Scholar 

  11. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    Article  PubMed  Google Scholar 

  12. Lamba, N., Wen, P. Y. & Aizer, A. A. Epidemiology of brain metastases and leptomeningeal disease. Neuro Oncol. 23, 1447–1456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sperduto, P. W. et al. Survival in patients with brain metastases: summary report on the updated diagnosis-specific graded prognostic assessment and definition of the eligibility quotient. J. Clin. Oncol. 38, 3773–3784 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartsch, R. et al. Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial. Nat. Med. 28, 1840–1847 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pérez-García, J. M. et al. Trastuzumab deruxtecan in patients with central nervous system involvement from HER2-positive breast cancer: the DEBBRAH trial. Neuro Oncol. https://doi.org/10.1093/neuonc/noac144 (2022).

    Article  PubMed Central  Google Scholar 

  16. Kabraji, S. et al. Preclinical and clinical efficacy of trastuzumab deruxtecan in breast cancer brain metastases. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-1138 (2022).

    Article  PubMed Central  Google Scholar 

  17. Lassman, A. B. et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: a phase III randomized clinical trial. Neuro Oncol. 25, 339–350 (2023).

    Article  PubMed  Google Scholar 

  18. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Slamon, D. J. et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Robertson, K. W. et al. Quantitative estimation of epidermal growth factor receptor and c-erbB-2 in human breast cancer. Cancer Res. 56, 3823–3830 (1996).

    CAS  PubMed  Google Scholar 

  21. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khongorzul, P., Ling, C. J., Khan, F. U., Ihsan, A. U. & Zhang, J. Antibody–drug conjugates: a comprehensive review. Mol. Cancer Res. 18, 3–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Jain, N., Smith, S. W., Ghone, S. & Tomczuk, B. Current ADC linker chemistry. Pharm. Res. 32, 3526–3540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Velden, V. H. J. et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97, 3197–3204 (2001).

    Article  PubMed  Google Scholar 

  25. Cardillo, T. M., Govindan, S. V., Sharkey, R. M., Trisal, P. & Goldenberg, D. M. Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res. 17, 3157–3169 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Ogitani, Y. et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22, 5097–5108 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, D. et al. Catalytic cleavage of disulfide bonds in small molecules and linkers of antibody–drug conjugates. Drug Metab. Dispos. 47, 1156–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Li, F. et al. Intracellular released payload influences potency and bystander-killing effects of antibody–drug conjugates in preclinical models. Cancer Res. 76, 2710–2719 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Khera, E. et al. Cellular-resolution imaging of bystander payload tissue penetration from antibody–drug conjugates. Mol. Cancer Ther. 21, 310–321 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Lyon, R. P. et al. Reducing hydrophobicity of homogeneous antibody–drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33, 733–735 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, G. et al. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. Nat. Commun. 11, 5667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaempffe, A. et al. Effect of conjugation site and technique on the stability and pharmacokinetics of antibody–drug conjugates. J. Pharm. Sci. 110, 3776–3785 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Lewis Phillips, G. D. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kline, T. et al. Methods to make homogenous antibody drug conjugates. Pharm. Res. 32, 3480–3493 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Diéras, V. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 732–742 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krop, I. E. et al. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 18, 743–754 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Keith, K. C., Lee, Y., Ewend, M. G., Zagar, T. M. & Anders, C. K. Activity of trastuzumab-emtansine (TDM1) in HER2-positive breast cancer brain metastases: a case series. Cancer Treat. Commun. 7, 43–46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bartsch, R. et al. Activity of T-DM1 in Her2-positive breast cancer brain metastases. Clin. Exp. Metastasis 32, 729–737 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Jacot, W. et al. Efficacy and safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive breast cancer with brain metastases. Breast Cancer Res. Treat. 157, 307–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Krop, I. E. et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann. Oncol. 26, 113–119 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Montemurro, F. et al. Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial. Ann. Oncol. 31, 1350–1358 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. von Minckwitz, G. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380, 617–628 (2019).

    Article  Google Scholar 

  44. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Cortés, J. et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 386, 1143–1154 (2022).

    Article  PubMed  Google Scholar 

  46. Jerusalem, G. et al. Trastuzumab deruxtecan (T-DXd) in patients with HER2+ metastatic breast cancer with brain metastases: a subgroup analysis of the DESTINY-Breast01 trial. J. Clin. Oncol. 39, 526–526 (2021).

    Article  Google Scholar 

  47. Hurvitz, S. et al. Trastuzumab deruxtecan (T-DXd; DS-8201a) vs. trastuzumab emtansine (T-DM1) in patients (pts) with HER2+ metastatic breast cancer (mBC): subgroup analyses from the randomized phase 3 study DESTINY-Breast03 [abstract]. Cancer Res. 82 (Suppl. 4), GS3-01 (2022).

    Article  Google Scholar 

  48. ASCO Post. Second-line T-DXd improves progression-free survival across HER2-positive metastatic breast cancer subgroups. ASCO Post https://ascopost.com/issues/march-10-2022-supplement-conference-highlights-sabcs-2021/second-line-t-dxd-improves-progression-free-survival-across-her2-positive-metastatic-breast-cancer-subgroups/ (2022).

  49. Tarantino, P., Curigliano, G. & Tolaney, S. M. Navigating the HER2-low paradigm in breast oncology: new standards, future horizons. Cancer Discov. 12, 2026–2030 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N. Engl. J. Med. 387, 9–20 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Epaillard, N. et al. Antitumor activity of trastuzumab deruxtecan (T-DXd) in patients with metastatic breast cancer (mBC) and brain metastases (BMs) from DAISY trial [abstract 260P]. Ann. Oncol. 33 (Suppl. 7), S656 (2022).

    Article  Google Scholar 

  52. Aslan, M. et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome. NPJ Breast Cancer 7, 141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bardia, A. et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 384, 1529–1541 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Diéras, V. et al. Subgroup analysis of patients with brain metastases from the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in metastatic triple-negative breast cancer [abstract]. Cancer Res. 81 (Suppl. 4), PD13-07 (2021).

    Article  Google Scholar 

  55. Pandey, R., Gruslova, A., Chiou, J., Brenner, A. J. & Tiziani, S. Stable isotope dilution LC-HRMS assay to determine free SN-38, total SN-38, and SN-38G in a tumor xenograft model after intravenous administration of antibody–drug conjugate (sacituzumab govitecan). Anal. Chem. 92, 1260–1267 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Brenner, A. J. et al. Delivery and activity of SN-38 by sacituzumab govitecan in breast cancer brain metastases [abstract]. Cancer Res. 81 (Suppl. 4), PD13-05 (2021).

    Article  Google Scholar 

  57. Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N. Engl. J. Med. 386, 241–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Goto, K. et al. Trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutant metastatic non-small cell lung cancer (NSCLC): interim results from the phase 2 DESTINY-Lung02 trial [abstract LBA55]. Ann. Oncol. 33 (Suppl. 7), S1422 (2022).

    Article  Google Scholar 

  59. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Yoshida, J. Efficacy of trastuzumab deruxtecan in an advanced gastric cancer patient with brain metastasis. Curr. Probl. Cancer 45, 100757 (2021).

    Article  PubMed  Google Scholar 

  61. Reymond, N. et al. Nectin4/PRR4, a new Afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 276, 43205–43215 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hoffman-Censits, J. H. et al. Expression of nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl. Immunohistochem. Mol. Morphol. 29, 619–625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Powles, T. et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N. Engl. J. Med. 384, 1125–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Steindl, A. et al. Changing characteristics, treatment approaches and survival of patients with brain metastasis: data from six thousand and thirty-one individuals over an observation period of 30 years. Eur. J. Cancer 162, 170–181 (2022).

    Article  PubMed  Google Scholar 

  65. Klümper, N. et al. Membranous NECTIN-4 expression frequently decreases during metastatic spread of urothelial carcinoma and is associated with enfortumab vedotin resistance. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-22-1764 (2022).

    Article  PubMed Central  Google Scholar 

  66. Tagawa, S. T. et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J. Clin. Oncol. 39, 2474–2485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cocco, E. et al. Expression of tissue factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix: implications for immunotherapy with hI-con1, a factor VII-IgGFc chimeric protein targeting tissue factor. BMC Cancer 11, 263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Coleman, R. L. et al. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 609–619 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Matulonis, U. A. et al. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J. Clin. Oncol. https://doi.org/10.1200/JCO.22.01900 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Herrlinger, U. et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 393, 678–688 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Stupp, R. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA 318, 2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weller, M. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18, 170–186 (2021).

    Article  PubMed  Google Scholar 

  74. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231–1251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lassman, A. B. et al. Epidermal growth factor receptor (EGFR) amplification rates observed in screening patients for randomized trials in glioblastoma. J. Neurooncol 144, 205–210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. An, Z., Aksoy, O., Zheng, T., Fan, Q.-W. & Weiss, W. A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37, 1561–1575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Raizer, J. J. et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 12, 95–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Neyns, B. et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann. Oncol. 20, 1596–1603 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Weller, M. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 18, 1373–1385 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Reardon, D. A. et al. Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. Clin. Cancer Res. 26, 1586–1594 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gan, H. K., Burgess, A. W., Clayton, A. H. A. & Scott, A. M. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 72, 2924–2930 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Phillips, A. C. et al. ABT-414, an antibody–drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther. 15, 661–669 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. van den Bent, M. et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother. Pharmacol. 80, 1209–1217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reardon, D. A. et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol. https://doi.org/10.1093/neuonc/now257 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gan, H. K. et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol. 20, 838–847 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Lassman, A. B. et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol. 21, 106–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Parrozzani, R. et al. Ocular side effects of EGFR-inhibitor ABT-414 in recurrent glioblastoma: a long-term safety study. Front. Oncol. 10, 593461 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Van Den Bent, M. et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 22, 684–693 (2020).

    Article  PubMed  Google Scholar 

  90. Narita, Y. et al. Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: a nonrandomized, phase 1/2 trial. Cancer Sci. 112, 5020–5033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Padovan, M. et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: real-world experience from a multicenter study of Italian Association of Neuro-Oncology (AINO). Cancers 13, 2773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lassman, A. B. et al. Genomic profiling identifies tubulin mutations that may predict response to depatuxizumab mafodotin in patients with glioblastoma [abstract P01.071]. Neuro Oncol. 20 (Suppl. 3), iii246 (2018).

    Article  PubMed Central  Google Scholar 

  93. Ahluwalia, M. S. et al. Effect of therapeutic pressure on stability of EGFR amplification in glioblastoma [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 2033 (2018).

    Article  Google Scholar 

  94. Heimberger, A. B. et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin. Cancer Res. 9, 4247–4254 (2003).

    CAS  PubMed  Google Scholar 

  95. van den Bent, M. J. et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol. 17, 935–941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Phillips, A. C. et al. Characterization of ABBV-221, a tumor-selective EGFR-targeting antibody drug conjugate. Mol. Cancer Ther. 17, 795–805 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Cleary, J. M. et al. A phase 1 study evaluating safety and pharmacokinetics of losatuxizumab vedotin (ABBV-221), an anti-EGFR antibody-drug conjugate carrying monomethyl auristatin E, in patients with solid tumors likely to overexpress EGFR. Invest. N. Drugs 38, 1483–1494 (2020).

    Article  CAS  Google Scholar 

  98. Anderson, M. G. et al. Targeting multiple EGFR-expressing tumors with a highly potent tumor-selective antibody–drug conjugate. Mol. Cancer Ther. 19, 2117–2125 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Porath, K. A. et al. Convection enhanced delivery of EGFR targeting antibody–drug conjugates serclutamab talirine and Depatux-M in glioblastoma patient-derived xenografts. Neurooncol. Adv. 4, vdac130 (2022).

    PubMed  PubMed Central  Google Scholar 

  100. Carneiro, B. A. et al. Phase I study of anti-epidermal growth factor receptor antibody–drug conjugate serclutamab talirine: safety, pharmacokinetics, and antitumor activity in advanced glioblastoma. Neurooncol. Adv. 5, vdac183 (2023).

    PubMed  Google Scholar 

  101. Hamblett, K. J. et al. AMG 595, an anti-EGFRvIII antibody–drug conjugate, induces potent antitumor activity against EGFRvIII-expressing glioblastoma. Mol. Cancer Ther. 14, 1614–1624 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Rosenthal, M. et al. Safety, tolerability, and pharmacokinetics of anti-EGFRvIII antibody–drug conjugate AMG 595 in patients with recurrent malignant glioma expressing EGFRvIII. Cancer Chemother. Pharmacol. 84, 327–336 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. St-Amour, I. et al. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier. J. Cereb. Blood Flow. Metab. 33, 1983–1992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Banks, W. A. & Kastin, A. J. Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res. Bull. 15, 287–292 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Schinkel, A. H., Wagenaar, E., Mol, C. A. & van Deemter, L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97, 2517–2524 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Steeg, P. S. The blood–tumour barrier in cancer biology and therapy. Nat. Rev. Clin. Oncol. 18, 696–714 (2021).

    Article  PubMed  Google Scholar 

  108. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).

    Article  PubMed  Google Scholar 

  110. Wen, P. Y. et al. Response assessment in neuro-oncology clinical trials. J. Clin. Oncol. 35, 2439–2449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cha, S. et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Am. J. Neuroradiol. 28, 1078–1084 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Watkins, S. et al. Disruption of astrocyte–vascular coupling and the blood–brain barrier by invading glioma cells. Nat. Commun. 5, 4196 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Berghoff, A. S. et al. Invasion patterns in brain metastases of solid cancers. Neuro Oncol. 15, 1664–1672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Carbonell, W. S., Ansorge, O., Sibson, N. & Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4, e5857 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Kurihara, H. et al. 64Cu-DOTA-trastuzumab PET imaging and HER2 specificity of brain metastases in HER2-positive breast cancer patients. EJNMMI Res. 5, 8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Agarwal, S. et al. Active efflux of dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol. Cancer Ther. 11, 2183–2192 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Morikawa, A. et al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neuro Oncol. 17, 289–295 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Marin, B.-M. et al. Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro Oncol. 23, 2042–2053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gril, B. et al. HER2 antibody-drug conjugate controls growth of breast cancer brain metastases in hematogenous xenograft models, with heterogeneous blood–tumor barrier penetration unlinked to a passive marker. Neuro Oncol. 22, 1625–1636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mamounas, E. P. et al. Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE. Ann. Oncol. 32, 1005–1014 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Anami, Y. et al. Homogeneity of antibody–drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Rep. 39, 110839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loganzo, F. et al. Tumor cells chronically treated with a trastuzumab–maytansinoid antibody–drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther. 14, 952–963 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Rice, A. et al. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood−brain barrier in vitro and in situ. J. Med. Chem. 48, 832–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Gan, H. K. et al. Tumor volumes as a predictor of response to the anti-EGFR antibody drug conjugate depatuxizumab mafadotin. Neuro Oncol. Adv. 3, vdab102 (2021).

    Article  Google Scholar 

  127. Regina, A. et al. ANG4043, a novel brain-penetrant peptide–mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol. Cancer Ther. 14, 129–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Drappatz, J. et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin. Cancer Res. 19, 1567–1576 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Anami, Y. et al. Homogeneous antibody–angiopep 2 conjugates for effective brain targeting. RSC Adv. 12, 3359–3364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ananda, S. et al. Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J. Clin. Neurosci. 18, 1444–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Hau, P. et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100, 1199–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Mortensen, J. H. et al. Targeted antiepidermal growth factor receptor (cetuximab) immunoliposomes enhance cellular uptake in vitro and exhibit increased accumulation in an intracranial model of glioblastoma multiforme. J. Drug Deliv. 2013, 209205 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Abakumov, M. A. et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomed. Nanotechnol. Biol. Med. 11, 825–833 (2015).

    Article  CAS  Google Scholar 

  134. Xiong, J., Han, S., Ding, S., He, J. & Zhang, H. Antibody-nanoparticle conjugate constructed with trastuzumab and nanoparticle albumin-bound paclitaxel for targeted therapy of human epidermal growth factor receptor-positive gastric cancer. Oncol. Rep. https://doi.org/10.3892/or.2018.6201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang, W. et al. NEO100 enables brain delivery of blood–brain barrier impermeable therapeutics. Neuro Oncol. 23, 63–75 (2021).

    Article  PubMed  Google Scholar 

  136. Bouchet, A. et al. Permeability of brain tumor vessels induced by uniform or spatially microfractionated synchrotron radiation therapies. Int. J. Radiat. Oncol. Biol. Phys. 98, 1174–1182 (2017).

    Article  PubMed  Google Scholar 

  137. Zeng, Y. et al. Blood–brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 6, 8366–8376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Teng, F., Tsien, C. I., Lawrence, T. S. & Cao, Y. Blood–tumor barrier opening changes in brain metastases from pre to one-month post radiation therapy. Radiother. Oncol. 125, 89–93 (2017).

    Article  PubMed  Google Scholar 

  139. Salehi, A. et al. Therapeutic enhancement of blood–brain and blood–tumor barriers permeability by laser interstitial thermal therapy. Neuro Oncol. Adv. 2, vdaa071 (2020).

    Article  Google Scholar 

  140. Chiu, D. et al. A phase I trial of VEGF-A inhibition combined with PD-L1 blockade for recurrent glioblastoma. Cancer Res. Commun. https://doi.org/10.1158/2767-9764.CRC-22-0420 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hwang, H. et al. Prolonged response of recurrent IDH-wild-type glioblastoma to laser interstitial thermal therapy with pembrolizumab. CNS Oncol. 11, CNS81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Papachristodoulou, A. et al. Chemotherapy sensitization of glioblastoma by focused ultrasound-mediated delivery of therapeutic liposomes. J. Control. Rel. 295, 130–139 (2019).

    Article  CAS  Google Scholar 

  143. Brighi, C. et al. MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neuro Oncol. Adv. 2, vdaa030 (2020).

    Article  Google Scholar 

  144. Carpentier, A. et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 8, 343re2 (2016).

    Article  PubMed  Google Scholar 

  145. Arvanitis, C. D. et al. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood–tumor barrier disruption. Proc. Natl Acad. Sci. USA 115, E8717–E8726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kouhi, A. et al. Brain disposition of antibody-based therapeutics: dogma, approaches and perspectives. Int. J. Mol. Sci. 22, 6442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 14, e396–e406 (2013).

    Article  PubMed  Google Scholar 

  148. Patel, R. R. et al. Exclusion of patients with brain metastases from cancer clinical trials. Neuro Oncol. 22, 577–579 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lee, E. Q., Camidge, D. R. & Mehta, G. Extending our reach: expanding enrollment in brain metastases and primary brain tumor clinical trials. Am. Soc. Clin. Oncol. Educ. Book https://doi.org/10.1200/EDBK_349155 (2022).

    Article  PubMed  Google Scholar 

  150. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  151. Agrawal, S. et al. Use of single-arm trials for us food and drug administration drug approval in oncology, 2002–2021. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2022.5985 (2022).

    Article  Google Scholar 

  152. Mishra-Kalyani, P. S. et al. External control arms in oncology: current use and future directions. Ann. Oncol. 33, 376–383 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Rahman, R. et al. Leveraging external data in the design and analysis of clinical trials in neuro-oncology. Lancet Oncol. 22, e456–e465 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Coomans, M. et al. The added value of health-related quality of life as a prognostic indicator of overall survival and progression-free survival in glioma patients: a meta-analysis based on individual patient data from randomised controlled trials. Eur. J. Cancer 116, 190–198 (2019).

    Article  PubMed  Google Scholar 

  155. Nassif, E. F., Arsène-Henry, A. & Kirova, Y. M. Brain metastases and treatment: multiplying cognitive toxicities. Expert. Rev. Anticancer. Ther. 19, 327–341 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Clement, P. M. J. et al. Impact of depatuxizumab mafodotin on health-related quality of life and neurological functioning in the phase II EORTC 1410/INTELLANCE 2 trial for EGFR-amplified recurrent glioblastoma. Eur. J. Cancer 147, 1–12 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Nayak, L. et al. The neurologic assessment in neuro-oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro Oncol. 19, 625–635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kumthekar, P. et al. ANG1005, a brain-penetrating peptide–drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin. Cancer Res. 26, 2789–2799 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Camidge, D. R. et al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol. 19, e20–e32 (2018).

    Article  PubMed  Google Scholar 

  160. Goldberg, S. B. et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17, 976–983 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Margolin, K. et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 13, 459–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Long, G. V. et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 19, 672–681 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Reardon, D. A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma. JAMA Oncol. 6, 1003 (2020).

    Article  PubMed  Google Scholar 

  164. Lim, M. et al. Phase 3 trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. https://doi.org/10.1093/neuonc/noac116 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Omuro, A. et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase 3 trial. Neuro Oncol. https://doi.org/10.1093/neuonc/noac099 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Weiss, T. et al. Immunocytokines are a promising immunotherapeutic approach against glioblastoma. Sci. Transl. Med. 12, eabb2311 (2020).

    Article  CAS  PubMed  Google Scholar 

  167. Holzgreve, A. et al. PSMA expression in glioblastoma as a basis for theranostic approaches: a retrospective, correlational panel study including immunohistochemistry, clinical parameters and PET imaging. Front. Oncol. 11, 646387 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ostrom, Q. T. et al. Brain tumor biobanking in the precision medicine era: building a high-quality resource for translational research in neuro-oncology. Neuro Oncol. Pract. 4, 220–228 (2017).

    Article  Google Scholar 

  169. Lohmann, P. et al. Radiomics in neuro-oncological clinical trials. Lancet Digital Health 4, e841–e849 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Aaronson, N. K. et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J. Natl Cancer Inst. 85, 365–376 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.J.M, A.S.B and M.P. gratefully acknowledge financial support from the Austrian Federal Ministry for Digital and Economic Affairs, the Austrian National Foundation for Research, Technology and Development, and the Christian Doppler Research Association. The work of A.B.L. is supported in part, outside the submitted work, by The William Rhodes and Louise Tilzer-Rhodes Center for Glioblastoma at New York-Presbyterian Hospital, The Michael Weiner Glioblastoma Research Into Treatment Fund, and US National Institutes of Health (NIH)/National Cancer Institute (NCI) grants P30CA013696 and UG1CA189960. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NIH/NCI.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M. and M.P. wrote the initial draft of the manuscript. All authors provided substantial intellectual input and reviewed and/or edited the manuscript prior to submission.

Corresponding author

Correspondence to Matthias Preusser.

Ethics declarations

Competing interests

M.J.M. has received travel support from Pierre Fabre. E.LeR. has received grant/research support from Bristol Myers Squibb; and honoraria for lectures or advisory board participation from Adastra, Bayer, Janssen, Leo Pharma, Pierre Fabre and Seattle Genetics. A.S.B. has received research support from Daiichi Sankyo and Roche; honoraria for lectures, consultation or advisory board participation from Bristol Myers Squibb, Daiichi Sankyo, Merck and Roche; and travel support from AbbVie, Amgen and Roche. P.K.B. has consulted for Advice Connect Inspire, Angiochem, Axiom, Dantari, ElevateBio, Genentech/Roche, Lilly, MPM Capital, Pfizer, SK Life Sciences and Tesaro; has received institutional grant/research support (to Massachusetts General Hospital) from Bristol Myers Squibb, Lilly, Merck and Mirati; and has received honoraria from Genentech/Roche, Lilly, Merck and Pfizer (all outside the scope of this work). N.U.L. has received non-financial support from Seagen for manuscript preparation during the conduct of research studies; grants from AstraZeneca, Genentech, Merck, Olema Pharmaceuticals, Pfizer, Seagen and Zion Pharmaceuticals outside the submitted work; personal fees from Affinia Therapeutics, Aleta BioPharma, AstraZeneca, Daiichi Sankyo, Denali Therapeutics, Olema Pharmaceuticals, Pfizer, Prelude Therapeutics, Puma, Seagen and Voyager Therapeutics outside the submitted work; consulting fees from Affinia Therapeutics, Aleta BioTherapeutics, Artera, AstraZeneca, Daiichi Sankyo, Denali Therapeutics, Olema Oncology, Pfizer, Prelude Therapeutics, Seagen and Voyager Therapeutics; and royalties from UpToDate outside the submitted work. A.B.L. has received within the past 5 years travel, publication, other in-kind support, honoraria for consulting or advisory board participation and institutional research funding from Abbott and/or AbbVie, and in the past year has received travel, publication or other in-kind support from Chimerix, Karyopharm, Norwest Biotherapeutics, Pfizer, QED and VBI Vaccines; honoraria for consulting or advisory board participation from Affinia Therapeutics, Bioclinica (as an expert, blinded, independent reviewer of de-identified clinical data for a Bristol Myers Squibb-sponsored trial), Chimerix, Clinical Education Alliance, Leal Therapeutics, Novocure, Orbus and Sapience; and institutional research funding from AbbVie, Aeterna Zentaris, Bayer, Beigene, Bristol Myers Squibb, Cadmon, Chimerix, DelMar, Genentech/Roche, Kadmon, Karyopharm, Kazia, Keryx, Millennium, NextSource, Orbus, Pfizer, QED, Semus, Servier and VBI Vaccines. P.Y.W. has received honoraria for consulting or advisory board participation from AstraZeneca, Bayer, Black Diamond Therapeutics, Cellularity, Chimerix, Day One Biopharmaceuticals, Kazia, Merck, Mundipharma, Novartis, Novocure, Nuvation Bio, Prelude Therapeutics, Sapience Therapeutics, Servier, Tocagen, Vascular Biogenics and VBI Vaccines; and research funding from Agios, AstraZeneca, Bayer, Beigene, Celgene, Chimerix, Karyopharm Therapeutics, Kazia, MedicicNova, Merck, Novartis, Nuvation Bio, Oncoceutics, Puma Biotechnology, Vacular Biogenics and VBI Vaccines. M.W. has received research grants from Quercis and Versameb; and honoraria for lectures or advisory board participation or consulting from Bayer, Medac, Merck (EMD), Novartis, Orbus and Philogen. M.P. has received honoraria for lectures, consultation or advisory board participation from AbbVie, AstraZeneca, Bayer, BMJ Journals, Bristol Myers Squibb, CMC Contrast, Daiichi Sankyo, Gerson Lehrman Group, GlaxoSmithKline, Lilly, Medahead, MedMedia, Merck Sharp & Dohme, Mundipharma, Novartis, Roche, Sanofi and Tocagen; and institutional research support from AbbVie, Boehringer-Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, Merck Sharp & Dohme, Novocure and Roche. R.B., J.C., H.K.G. and M.v.d.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks P. Kumthekar, T. Johns and M. Valiente for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/ct2/home

Common Terminology Criteria for Adverse Events (CTCAE): https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm

EU Clinical Trials Register: https://www.clinicaltrialsregister.eu/ctr-search/search

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mair, M.J., Bartsch, R., Le Rhun, E. et al. Understanding the activity of antibody–drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 20, 372–389 (2023). https://doi.org/10.1038/s41571-023-00756-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-023-00756-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer