Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical implications of T cell exhaustion for cancer immunotherapy

Abstract

Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The ‘un-exhausting’ of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy.

Key points

  • T cell exhaustion is a hypofunctional T cell state that is associated with decreased efficacy of immune-checkpoint inhibitors (ICIs) and adoptive T cell therapies.

  • Molecular features of T cell exhaustion are associated with tumour-reactive T cell receptor (TCR) clonotypes and can predict clinical benefit from ICIs.

  • The effectiveness of ICI therapy is dependent on peripheral expansion and subsequent tumour-infiltration of precursor-exhausted CD8+ T cells.

  • The T cell exhaustion programme protects CD8+ T cells from overstimulation-associated cell death; therefore, interruption of this programme might impair the persistence of tumour-reactive T cells in patients with cancer.

  • Engineering optimized receptors and downstream signalling, fine-tuning transcriptional and epigenetic states, and overcoming metabolic dysfunction can mitigate T cell exhaustion (rather than interrupting this programme per se), thereby enhancing the efficacy of chimeric antigen receptor (CAR)-engineered and TCR-engineered cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour-reactive CD8+ T cells undergo progressive exhaustion in the TME.
Fig. 2: Overview of strategies to mitigate or interrupt CAR T cell exhaustion.

Similar content being viewed by others

References

  1. Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 394 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu, X. et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567, 525–529 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

    Article  PubMed  CAS  Google Scholar 

  7. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kansy, B. A. et al. PD-1 status in CD8+ T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer. Cancer Res. 77, 6353 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mansfield, A. S. et al. B7-H1 Expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J. Thorac. Oncol. 9, 1036–1040 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thompson, R. H. et al. PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin. Cancer Res. 13, 1757–1761 (2007).

    Article  PubMed  CAS  Google Scholar 

  11. Sun, S. et al. PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol. Immunother. 63, 395–406 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Kang, M. J. et al. Tumor-infiltrating PD1-positive lymphocytes and FoxP3-positive regulatory T cells predict distant metastatic relapse and survival of clear cell renal cell carcinoma. Transl. Oncol. 6, 282 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boorjian, S. A. et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin. Cancer Res. 14, 4800–4808 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. Muenst, S. et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res. Treat. 139, 667–676 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. Mao, Y. et al. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget 6, 3452 (2015).

    Article  PubMed  Google Scholar 

  16. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  PubMed  CAS  Google Scholar 

  17. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gallimore, B. A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus – specific cytotoxic T lymphocytes visualized using class I – peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 188, 2205–2213 (2006).

    Google Scholar 

  20. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Keir, M. E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc. Natl Acad. Sci. USA 114, E2776–E2785 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Berdeja, J. G. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 398, 314–324 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  PubMed  CAS  Google Scholar 

  42. Kamdar, M. et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysi. Lancet 399, 2294–2308 (2022).

    Article  PubMed  CAS  Google Scholar 

  43. Rives, S. et al. Tisagenlecleucel in pediatric and young adult patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-All): final analyses from the Eliana study. HemaSphere 6, 13–14 (2022).

    Article  Google Scholar 

  44. Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells through the solid-tumour microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Malandro, N. et al. Clonal abundance of tumor-specific CD4+ T cells potentiates efficacy and alters susceptibility to exhaustion. Immunity 44, 179–193 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Fu, J. et al. CD4+ T cell exhaustion leads to adoptive transfer therapy failure which can be prevented by immune checkpoint blockade. Am. J. Cancer Res. 10, 4234 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Balança, C. C. et al. PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+CD4 T cells. JCI Insight 6, e142513 (2021).

    Article  PubMed Central  Google Scholar 

  48. Sommermeyer, D. et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30, 492–500 (2016).

    Article  PubMed  CAS  Google Scholar 

  49. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gros, A. et al. Selection of circulating PD-1+ lymphocytes from cancer patients enriches for tumor-reactive and mutation-specific lymphocytes. J. Immunother. Cancer 3, O2 (2015).

    Article  PubMed Central  Google Scholar 

  51. Gros, A. et al. Recognition of human gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. J. Clin. Invest. 129, 4992–5004 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  PubMed  CAS  Google Scholar 

  54. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hanada, K.-I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  61. Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).

    Article  PubMed  Google Scholar 

  62. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  PubMed  CAS  Google Scholar 

  63. Daud, A. I. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447–3452 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Terranova-Barberio, M. et al. Exhausted T cell signature predicts immunotherapy response in ER-positive breast cancer. Nat. Commun. 11, 3584 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  PubMed  CAS  Google Scholar 

  66. Yeong, J. et al. Intratumoral CD39+CD8+ T cells predict response to programmed cell death protein-1 or programmed death ligand-1 blockade in patients with NSCLC. J. Thorac. Oncol. 16, 1349–1358 (2021).

    Article  PubMed  CAS  Google Scholar 

  67. Attrill, G. H. et al. Higher proportions of CD39+ tumor-resident cytotoxic T cells predict recurrence-free survival in patients with stage III melanoma treated with adjuvant immunotherapy. J. Immunother. Cancer 10, e004771 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chow, A. et al. CD39 identifies tumor-reactive CD8 T cells in patients with lung cancer. Preprint at bioRxiv https://doi.org/10.1101/2022.01.24.477554 (2022).

    Article  Google Scholar 

  69. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. Beltra, J. C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841.e8 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Singh, N. et al. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction. Cancer Discov. 10, 552–567 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Liu, Y. N. et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front. Immunol. 11, 1906 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bannoud, N. et al. Hypoxia supports differentiation of terminally exhausted CD8 T cells. Front. Immunol. 12, 660944 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  PubMed  CAS  Google Scholar 

  79. Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  PubMed  CAS  Google Scholar 

  81. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288–2301 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  PubMed  CAS  Google Scholar 

  83. Palmer, A. C., Izar, B., Hwangbo, H. & Sorger, P. K. Predictable clinical benefits without evidence of synergy in trials of combination therapies with immune-checkpoint inhibitors. Clin. Cancer Res. 28, 368–377 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Joseph, R. W. et al. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clin. Cancer Res. 24, 4960–4967 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Matoba, T. et al. Impact of tumor burden on survival in patients with recurrent or metastatic head and neck cancer treated with immune checkpoint inhibitors. Sci. Rep. 12, 14319 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Falvo, P. et al. Cyclophosphamide and vinorelbine activate stem-like CD8+ T cells and improve anti-PD-1 efficacy in triple-negative breast cancer. Cancer Res. 81, 685–697 (2021).

    Article  PubMed  CAS  Google Scholar 

  88. Hanoteau, A. et al. Cyclophosphamide treatment regulates the balance of functional/exhausted tumor-specific CD8+ T cells. Oncoimmunology 6, 1318234 (2017).

    Article  Google Scholar 

  89. Liang, H. et al. Quantitative multiplex immunofluorescence analysis identifies infiltrating PD1+CD8+ and CD8+ T cells as predictive of response to neoadjuvant chemotherapy in breast cancer. Thorac. Cancer 11, 2941–2954 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chaft, J. E. et al. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat. Rev. Clin. Oncol. 18, 547–557 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  PubMed  CAS  Google Scholar 

  92. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502.e15 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tang, H. et al. PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. J. Clin. Invest. 128, 580–588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    Article  PubMed Central  Google Scholar 

  95. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

    Article  PubMed  CAS  Google Scholar 

  98. Francis, D. M. et al. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci. Transl Med. 12, eaay3575 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Oh, S. A. et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1, 681–691 (2020).

    Article  PubMed  CAS  Google Scholar 

  100. Peng, Q. et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11, 4835 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–416 (2016).

    Article  PubMed  CAS  Google Scholar 

  102. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–119 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    Article  PubMed  CAS  Google Scholar 

  106. Brummelman, J. et al. High-dimensional single cell analysis identifies stemlike cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  PubMed  CAS  Google Scholar 

  108. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1CD8+ tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Huang, A. C. et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nat. Med. 25, 454–461 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kamphorst, A. O. et al. Proliferation of PD-1+CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl Acad. Sci. USA 114, 4993–4998 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  PubMed  CAS  Google Scholar 

  116. Duraiswamy, J. et al. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 39, 1623–1642.e20 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2021).

    Article  PubMed  Google Scholar 

  118. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article  PubMed  CAS  Google Scholar 

  119. Kleinovink, J. W. et al. PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy. Oncoimmunology 6, 4 (2017).

    Article  Google Scholar 

  120. Lau, J. et al. Tumour and host cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. Nat. Commun. 8, 14572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Lin, H. et al. Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J. Clin. Invest. 128, 805–815 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  PubMed  CAS  Google Scholar 

  123. Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Zahran, A. M. et al. Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer. PLoS ONE 17, e0262650 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Curran, M. A. & Glisson, B. S. New hope for therapeutic cancer vaccines in the era of immune checkpoint modulation. Annu. Rev. Med. 70, 409–424 (2019).

    Article  PubMed  CAS  Google Scholar 

  126. Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    Article  PubMed  CAS  Google Scholar 

  127. Williams, J. B. et al. The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J. Exp. Med. 214, 381–400 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kraehenbuehl, L., Weng, C. H., Eghbali, S., Wolchok, J. D. & Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2021).

    Article  PubMed  Google Scholar 

  129. West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Pilipow, K. et al. IL-15 and T cell stemness in T cell-based cancer immunotherapy. Cancer Res. 75, 5187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Chong, E. A., Ruella, M. & Schuster, S. J. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N. Engl. J. Med. 38, 673–674 (2021).

    Article  Google Scholar 

  132. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  137. Zebley, C. C. et al. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep. 37, 110079 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kong, W. et al. BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhaust. J. Clin. Invest. 131, e145459 (2021).

    Article  PubMed Central  Google Scholar 

  139. Chen, P. H. et al. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight 5, e134612 (2020).

    Article  PubMed Central  Google Scholar 

  140. Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Singh, N., Perazzelli, J., Grupp, S. A. & Barrett, D. M. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl Med. 8, 320ra3 (2016).

    Article  PubMed  Google Scholar 

  143. Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Monfrini, C. et al. Phenotypic composition of commercial anti-CD19 CAR T cells affects in vivo expansion and disease response in patients with large B-cell lymphoma. Clin. Cancer Res. 28, 3378–3386 (2022).

    Article  PubMed  CAS  Google Scholar 

  145. Locke, F. L. et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 4898–4911 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Gardner, R. et al. Starting T cell and cell product phenotype are associated with durable remission of leukemia following CD19 CAR-T cell immunotherapy. Blood 132, 4022–4022 (2018).

    Article  Google Scholar 

  147. Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol. Cell 81, 2477–2493.e10 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  PubMed  CAS  Google Scholar 

  151. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. McGowan, E. et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed. Pharmacother. 121, 109625 (2020).

    Article  PubMed  CAS  Google Scholar 

  153. Chong, E. A. et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129, 1039–1041 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Maude, S. L. et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J. Clin. Oncol. 35, 103 (2017).

    Article  Google Scholar 

  155. Chong, E. A. et al. Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood 139, 1026–1038 (2022).

    Article  PubMed  CAS  Google Scholar 

  156. Jacobson, C. A. et al. Abstract CT055: phase 1/2 primary analysis of ZUMA-6: axicabtagene ciloleucel (Axi-Cel) in combination With atezolizumab (Atezo) for the treatment of patients (Pts) with refractory diffuse large B cell lymphoma (DLBCL). Cancer Res. 80, CT055 (2020).

    Article  Google Scholar 

  157. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFV by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Nakajima, M., Sakoda, Y., Adachi, K., Nagano, H. & Tamada, K. Improved survival of chimeric antigen receptor-engineered T (CAR-T) and tumor-specific T cells caused by anti-programmed cell death protein 1 single-chain variable fragment-producing CAR-T cells. Cancer Sci. 110, 3079–3088 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  PubMed  CAS  Google Scholar 

  164. Su, S. et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci. Rep. 6, 20070 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhao, Z. et al. CRISPR knock out of programmed cell death protein 1 enhances anti-tumor activity of cytotoxic T lymphocytes. Oncotarget 9, 5208–5215 (2018).

    Article  PubMed  Google Scholar 

  167. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  PubMed  CAS  Google Scholar 

  168. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+ T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    Article  PubMed  CAS  Google Scholar 

  172. Larson, R. C. et al. CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours. Nature 604, 563–570 (2022).

    Article  PubMed  CAS  Google Scholar 

  173. Vercellino, L. et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 4, 5607–5615 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Perica, K. et al. Impact of bridging chemotherapy on clinical outcome of CD19 CAR T therapy in adult ALL. Leukemia 35, 3268–3271 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Stefanski, H. et al. Higher doses of tisagenlecleucel associate with improved outcomes: a report from the pediatric real-world CAR consortium. Blood Adv. https://doi.org/10.1182/bloodadvances.2022007246 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  PubMed  CAS  Google Scholar 

  177. Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Funk, C. R. et al. PI3Kδ/γ inhibition promotes human CART cell epigenetic and metabolic reprogramming to enhance antitumor cytotoxicity. Blood 139, 523–537 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017).

    Article  PubMed Central  Google Scholar 

  182. Petersen, C. T. et al. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists. Blood Adv. 2, 210–223 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Bucks, C. M., Norton, J. A., Boesteanu, A. C., Mueller, Y. M. & Katsikis, P. D. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J. Immunol. 182, 6697–6708 (2009).

    Article  PubMed  CAS  Google Scholar 

  184. Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219, e20201966 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Dada, H. & Dustin, M. L. Goldilocks and the three TILs. J. Exp. Med. 219, e20212269 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Sim, M. J. W. et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc. Natl Acad. Sci. USA 117, 12826–12835 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Kawalekar, O. U. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  PubMed  CAS  Google Scholar 

  190. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, eaat6753 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Guedan, S. et al. Single residue in CD28-costimulated CAR T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Zhong, X. S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    Article  PubMed  CAS  Google Scholar 

  194. Hamieh, M. et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Majzner, R. G. et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  PubMed  CAS  Google Scholar 

  198. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Posey, A. D. et al. Distinct signaling by chimeric antigen receptors (CARs) containing CD28 signaling domain versus 4-1BB in primary human T cells. Blood 122, 2902 (2013).

    Article  Google Scholar 

  200. Song, D. G. et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  PubMed  CAS  Google Scholar 

  202. Salter, A. I. et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci. Signal. 14, eabe2606 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  PubMed  CAS  Google Scholar 

  204. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Watanabe, N. et al. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology 5, e1253656 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Smith, E. L. et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 26, 1447–1456 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Calderon, H., Mamonkin, M. & Guedan, S. in Methods in Molecular Biology vol. 2086 (Swiech, K., Malmegrim, K. & Picanço-Castro, V.) 223–236 (Humana, 2020).

  210. Smith, E. L. et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl Med. 11, 7746 (2019).

    Article  Google Scholar 

  211. Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Mestermann, K. et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci. Transl Med. 11, eaau5907 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Weber, E. W. et al. Pharmacologic control of CAR-T cell function using dasatinib. Blood Adv. 3, 711–717 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Müller, M. R. & Rao, A. NFAT, immunity and cancer: a transcription factor comes of age. Nat. Rev. Immunol. 10, 645–656 (2010).

    Article  PubMed  Google Scholar 

  216. Hogan, P. G. Calcium–NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium 63, 66–69 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    Article  PubMed  CAS  Google Scholar 

  219. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Jain, N. et al. Abstract LB153: emergence of a hyper-proliferative phenotype in TET2 edited human CAR T cells. Cancer Res. 81, LB153 (2021).

    Article  Google Scholar 

  221. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022).

    Article  PubMed  CAS  Google Scholar 

  222. Pace, L. et al. The epigenetic control of stemness in CD8+ T cell fate commitment. Science 359, 177–186 (2018).

    Article  PubMed  CAS  Google Scholar 

  223. Jain, N. et al. Disruption of H3K9me3-mediated gene silencing augments CAR T cell functional persistence. Mol. Ther. 30, 55–56 (2022).

    Google Scholar 

  224. Yu, Y. R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article  PubMed  CAS  Google Scholar 

  225. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016).

    Article  PubMed  CAS  Google Scholar 

  227. Shin, H. et al. A role for the transcriptional repressor blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Dumauthioz, N. et al. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell. Mol. Immunol. 18, 1761–1771 (2021).

    Article  PubMed  CAS  Google Scholar 

  229. Pilipow, K. et al. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 3, e122299 (2018).

    Article  PubMed Central  Google Scholar 

  230. Van Bruggen, J. A. C. et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T cell efficacy. Blood 132 (Suppl. 1), 235 (2018).

    Article  Google Scholar 

  231. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  PubMed  CAS  Google Scholar 

  232. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Ye, L. et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab. 34, 595–614.e14 (2022).

    Article  PubMed  CAS  Google Scholar 

  234. Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    Article  PubMed  CAS  Google Scholar 

  235. Tschumi, B. O. et al. CART cells are prone to Fas- and DR5-mediated cell death. J. Immunother. Cancer 6, 71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Kasakovski, D., Xu, L. & Li, Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J. Hematol. Oncol. 11, 91 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sanmamed, M. F. et al. A burned-out CD8+ T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov. 11, 1700–1715 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Franco, F., Jaccard, A., Romero, P., Yu, Y. R. & Ho, P. C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Schietinger of the Memorial Sloan Kettering Cancer Center (MSKCC; New York, NY, USA) for providing valuable feedback on the manuscript. They are also grateful for manuscript editing performed by C. Wilhelm of the MSKCC. The work of A.C. is supported by a Clinical Investigator Award from US NIH National Cancer Institute (NCI; K08 CA-248723), the Stony-Wold Herbert Fund, the International Association of Lung Cancer Research (IASLC)/International Lung Cancer Foundation (ILCF), and a Society of MSKCC Grant. The work of C.A.K. is supported by the NCI (grant R37 CA259177), Cancer Research Institute (grant CRI3176), the Damon Runyon Cancer Research Foundation (grant CI-96-18) and the Parker Institute for Cancer Immunotherapy. The work of J.D.W. is supported by the NCI (grant R01 CA056821), the Ludwig Collaborative and Swim Across America Laboratory, the Emerald Foundation, the Parker Institute for Cancer Immunotherapy and a Stand Up To Cancer (SU2C)–American Cancer Society Lung Cancer Translational Research Dream Team grant (SU2C-AACR-DT17-15). The work of all authors is supported in part by a US NIH/NCI Cancer Center Support Grant to the MSKCC (P30 CA008748).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Andrew Chow or Jedd D. Wolchok.

Ethics declarations

Competing interests

C.A.K. has received research grant support from Kite/Gilead and Intima Bioscience, is on the scientific and/or clinical advisory boards of Achilles Therapeutics, Aleta BioTherapeutics, Bellicum Pharmaceuticals, Catamaran Bio, Obsidian Therapeutics and T-knife, and has provided consulting services for Bristol Myers Squibb, PACT Pharma and Roche/Genentech. C.A.K. is also a co-inventor on patent-licensed applications related to T cell receptors targeting public neoantigens unrelated to the current work. J.D.W. is a consultant for Amgen, Apricity, Ascentage Pharma, Astellas, AstraZeneca, Bicara Therapeutics, Boehringer Ingelheim, Bristol Myers Squibb, CellCarta, Chugai, Daiichi Sankyo, Dragonfly, Georgiamune, Idera, Imvaq, Larkspur, Maverick Therapeutics, Merck, Psioxus, Recepta, Tizona, Trishula, Sellas, Surface Oncology, Werewolf Therapeutics. J.D.W receives grant/research support from Bristol Myers Squibb and Sephora. J.D.W has equity in Apricity, Arsenal IO, Ascentage, Beigene, Imvaq, Linneaus, Georgiamune, Maverick, Tizona Pharmaceuticals and Trieza. J.D.W is a co-inventor on the following patent applications: xenogeneic (canine) DNA vaccines, myeloid-derived suppressor cell (MDSC) assay, anti-PD-1 antibody, anti-CTLA4 antibodies, anti-GITR antibodies and methods of use thereof, Newcastle disease viruses for cancer therapy, and prediction of responsiveness to treatment with immunomodulatory therapeutics and method of monitoring abscopal effects during such treatment. A.C. and K.P. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Marabelle, who co-reviewed with A. Rubinsztajn; J. Melenhorst, who co-reviewed with Z. Zhao; I. Melero; and D. Speiser for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, A., Perica, K., Klebanoff, C.A. et al. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 19, 775–790 (2022). https://doi.org/10.1038/s41571-022-00689-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00689-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing