Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem-like exhausted and memory CD8+ T cells in cancer

Abstract

T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two fundamental CD8+ T cell differentiation states and their dynamics in acute and chronic responses.
Fig. 2: Precursors of exhausted T cells fuel CD8+ T cell responses to immunogenic tumours.
Fig. 3: Systemic and local cancer surveillance by CD8+ memory T cells.
Fig. 4: Stem-like CD8+ T cells in cancer immunotherapy.

Similar content being viewed by others

References

  1. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Chung, H. K., McDonald, B. & Kaech, S. M. The architectural design of CD8+ T cell responses in acute and chronic infection: parallel structures with divergent fates. J. Exp. Med. 218, e20201730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses. Nat. Immunol. 23, 836–847 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. van der Leun, A. M. & Schumacher, T. N. An atlas of intratumoral T cells. Science 374, 1446–1447 (2021).

    Article  PubMed  Google Scholar 

  8. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e25 (2022). This study describes molecularly distinct lymph node-residing memory-like CD8+ T cells in preclinical cancer models and patients with hepatocellular carcinoma that serve as upstream precursors of TPEX cells and whose activation in lymph nodes is required for efficient responses to checkpoint blockade therapy in mice.

    Article  CAS  PubMed  Google Scholar 

  14. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Connolly, K. A. et al. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci. Immunol. 6, eabg7836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schenkel, J. M. et al. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+CD8+ T cells in tumor-draining lymph nodes. Immunity 54, 2338–2353.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat. Rev. Cancer 20, 218–232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mair, F. et al. Extricating human tumour immune alterations from tissue inflammation. Nature 605, 728–735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021). This study provides the first comprehensive analysis of tumour-reactive CD8+ T cell differentiation states in human melanoma samples, confirming a strong bias of tumour-reactive CD8+ T cells towards differentiation states along the exhaustion spectrum.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, Y. et al. Non-terminally exhausted tumor-resident memory HBV-specific T cell responses correlate with relapse-free survival in hepatocellular carcinoma. Immunity 54, 1825–1840.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, C. et al. Transcriptomic profiles of neoantigen-reactive T cells in human gastrointestinal cancers. Cancer Cell 40, 410–423.e7 (2022).

    Article  PubMed  Google Scholar 

  28. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Ren, X. et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu. Rev. Immunol. 39, 583–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019). Together with Alfei et al. (2019), Scott et al. (2019) and Khan et al. (2019), this study identifies the transcriptional regulator TOX as a master regulator of the T cell exhaustion trajectory in infection and cancer, and highlights that it is critically required for the maintenance and functional tuning of chronic T cell responses to persisting antigen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giles, J. R. et al. Shared and distinct biological circuits in effector, memory and exhausted CD8+ T cells revealed by temporal single-cell transcriptomics and epigenetics. Nat. Immunol. 23, 1600–1613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338, 1220–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016). Together with Im et al. (2016), He et al. (2016) and Utzschneider et al. (2020), this study molecularly defines TPEX cells and demonstrates their important role in replenishing CD8+ T cell responses during chronic viral infection and ICB therapy.

    Article  CAS  PubMed  Google Scholar 

  47. Wu, T. et al. The TCF1–Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1–CD8+ tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019). Together with Brummelman et al. (2018), Siddiqui et al. (2019), Miller et al. (2019), Jansen et al. (2019) and Sade-Feldman et al. (2018), this study identifies tumour-associated TCF1-dependent TPEX cells in mice and humans and demonstrates their critical role in sustaining CD8+ T cell responses to cancer, including cancer vaccination and checkpoint blockade therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pritykin, Y. et al. A unified atlas of CD8 T cell dysfunctional states in cancer and infection. Mol. Cell 81, 2477–2493.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasmani, M. Y. et al. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. J. Exp. Med. 220, e20220679 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Daniel, B. et al. Divergent clonal differentiation trajectories of T cell exhaustion. Nat. Immunol. https://doi.org/10.1038/s41590-022-01337-5 (2022).

  53. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021). This study provides the most comprehensive conglomeration of single-cell transcriptomic data of tumour-infiltrating CD4+ and CD8+ T cells across 21 cancer types, emphasizing the impact of patient, tumour type and TME-specific features on the composition of TITCs.

    Article  PubMed  Google Scholar 

  56. Kourtis, N. et al. A single-cell map of dynamic chromatin landscapes of immune cells in renal cell carcinoma. Nat. Cancer 3, 885–898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Anadon, C. M. et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell 40, 545–557 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gueguen, P. et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8+ T cell populations in lung cancer. Sci. Immunol. 6, eabd5778 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Cui, C. et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Hoch, T. et al. Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy. Sci. Immunol. 7, eabk1692 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Magen, A. et al. Intratumoral dendritic cell–CD4+ T helper cell niches enable CD8+ T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat. Med. 29, 1389–1399 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 24, 267–279 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dähling, S. et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55, 656–670.e8 (2022).

    Article  PubMed  Google Scholar 

  66. Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. & Ahmed, R. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc. Natl Acad. Sci. USA 117, 4292–4299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaglia, G. et al. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell 41, 871–886.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Prokhnevska, N. et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Pai, J. A. et al. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell 41, 776–790.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Z. et al. In vivo labeling reveals continuous trafficking of TCF-1+ T cells between tumor and lymphoid tissue. J. Exp. Med. 219, e20210749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, C. et al. TGF-β promotes stem-like T cells via enforcing their lymphoid tissue retention. J. Exp. Med. 219, e20211538 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell 40, 624–638.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nixon, B. G. et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer. Immunity 55, 2044–2058.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors. Cell 184, 4996–5014.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219, e20201966 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Snell, L. M. et al. CD8+ T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49, 678–694.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ghorani, E. et al. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. Nat. Cancer 1, 546–561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hanna, B. S. et al. Interleukin-10 receptor signaling promotes the maintenance of a PD-1intTCF-1+CD8+ T cell population that sustains anti-tumor immunity. Immunity 54, 2825–2841.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698–1714.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, Y. et al. TGF-β regulates the stem-like state of PD-1+TCF-1+ virus-specific CD8 T cells during chronic infection. J. Exp. Med. 219, e20211574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marx, A.-F. et al. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1+CD8+ T cells in chronic viral infection. Immunity 56, 813–828.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Yu, Y.-R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beltra, J.-C. et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. Proc. Natl Acad. Sci. USA 113, E5444–E5453 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lukhele, S. et al. The transcription factor IRF2 drives interferon-mediated CD8+ T cell exhaustion to restrict anti-tumor immunity. Immunity 55, 2369–2385.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Acharya, N. et al. Endogenous glucocorticoid signaling regulates CD8+ T cell differentiation and development of dysfunction in the tumor microenvironment. Immunity 53, 658–671.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity 41, 802–814 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat. Immunol. 22, 370–380 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jadhav, R. R. et al. Epigenetic signature of PD-1+TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl Acad. Sci. USA 116, 14113–14118 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. et al. BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection. Nat. Immunol. 22, 996–1007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. McLane, L. M. et al. Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 T cells. Cell Rep. 35, 109120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xin, G. et al. A critical role of IL-21-induced BATF in sustaining CD8-T-cell-mediated chronic viral control. Cell Rep. 13, 1118–1124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wagle, M. V. et al. Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nat. Commun. 12, 2782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liikanen, I. et al. Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. J. Clin. Invest. 131, e143729 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Belk, J. A. et al. Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell 40, 768–786.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Collier, J. L., Weiss, S. A., Pauken, K. E., Sen, D. R. & Sharpe, A. H. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat. Immunol. 22, 809–819 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wieland, D. et al. TCF1+ hepatitis C virus-specific CD8+ T cells are maintained after cessation of chronic antigen stimulation. Nat. Commun. 8, 15050 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hensel, N. et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 22, 229–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Tonnerre, P. et al. Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory. Nat. Immunol. 22, 1030–1041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).Together with Abdel-Hakeem et al. (2021), Hensel et al. (2021) and Tonnerre et al. (2021), this study shows that exhausted CD8+ T cells responding to chronic viral infection in humans do not convert into conventional memory T cells after the infection is cured, an observation that is described as epigenetic scarring of exhausted T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kanev, K. et al. Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent. Proc. Natl Acad. Sci. USA 116, 20070–20076 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Castellino, F. & Germain, R. N. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu. Rev. Immunol. 24, 519–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Malik, B. T. et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2, eaam6346 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Molodtsov, A. K. et al. Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma. Immunity 54, 2117–2132.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alicke, B. et al. Immunization associated with primary tumor growth leads to rejection of commonly used syngeneic tumors upon tumor rechallenge. J. Immunother. Cancer 8, e000532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jackaman, C. & Nelson, D. J. Intratumoral interleukin-2/agonist CD40 antibody drives CD4+-independent resolution of treated-tumors and CD4+-dependent systemic and memory responses. Cancer Immunol. Immunother. 61, 549–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Ferris, S. T. et al. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584, 624–629 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Han, J. et al. Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat. Cancer 2, 300–311 (2021). Using single-cell RNA sequencing, this study demonstrates the persistence of circulating and resident memory tumour-associated T cell clones (up to 9 years later) in patients with metastatic melanoma with durable responses to checkpoint therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Enamorado, M. et al. Enhanced anti-tumour immunity requires the interplay between resident and circulating memory CD8+ T cells. Nat. Commun. 8, 16073 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Park, S. L. et al. Tissue-resident memory CD8+ T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl Acad. Sci. USA 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Masopust, D. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Lian, C. G. et al. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod. Pathol. 27, 788–799 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Bartolomé-Casado, R. et al. Resident memory CD8 T cells persist for years in human small intestine. J. Exp. Med. 216, 2412–2426 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Snyder, M. E. et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 4, eaav5581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Park, S. L., Gebhardt, T. & Mackay, L. K. Tissue-resident memory T cells in cancer immunosurveillance. Trends Immunol. 40, 735–747 (2019).

    Article  CAS  PubMed  Google Scholar 

  139. Amsen, D., van Gisbergen, K. P. J. M., Hombrink, P. & van Lier, R. A. W. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat. Immunol. 19, 538–546 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti–PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Webb, J. R., Milne, K., Watson, P., deLeeuw, R. J. & Nelson, B. H. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 20, 434–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, Z.-Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Banchereau, R. et al. Intratumoral CD103+CD8+ T cells predict response to PD-L1 blockade. J. Immunother. Cancer 9, e002231 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Workel, H. H. et al. CD103 defines intraepithelial CD8+PD1+ tumour-infiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer 60, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Djenidi, F. et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J. Immunol. 194, 3475–3486 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Nizard, M. et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 8, 15221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497, 494–497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Davé, V. et al. Recurrent infection transiently expands human tissue T cells while maintaining long-term homeostasis. J. Exp. Med. 220, e20210692 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. MacKie, R. M., Reid, R. & Junor, B. Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N. Engl. J. Med. 348, 567–568 (2003).

    Article  PubMed  Google Scholar 

  152. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Eyles, J. et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Invest. 120, 2030–2039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hochheiser, K. et al. Accumulation of CD103+CD8+ T cells in a cutaneous melanoma micrometastasis. Clin. Transl. Immunol. 8, e1100 (2019).

    Article  CAS  Google Scholar 

  155. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021). This study shows that transient disruption of CAR T cell signalling can mitigate exhaustion and promote memory-like features, highlighting a level of flexibility in epigenetic exhaustion that could be harnessed therapeutically to prolong antitumour responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mackay, L. K. et al. Maintenance of T cell function in the face of chronic antigen stimulation and repeated reactivation for a latent virus infection. J. Immunol. 188, 2173–2178 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Quinn, E., Hawkins, N., Yip, Y. L., Suter, C. & Ward, R. CD103+ intraepithelial lymphocytes — a unique population in microsatellite unstable sporadic colorectal cancer. Eur. J. Cancer 39, 469–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Webb, J. R., Milne, K. & Nelson, B. H. PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol. Res. 3, 926–935 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Mackay, L. K. et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Crowl, J. T. et al. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121–1131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Casey, K. A. et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Christo, S. N. et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity. Nat. Immunol. 22, 1140–1151 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med. 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Muschaweckh, A. et al. Antigen-dependent competition shapes the local repertoire of tissue-resident memory CD8+ T cells. J. Exp. Med. 213, 3075–3086 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ganesan, A.-P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Clarke, J. et al. Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer. J. Exp. Med. 216, 2128–2149 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935.e29 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gavil, N. V. et al. Chronic antigen in solid tumors drives a distinct program of T cell residence. Sci. Immunol. 84, eadd5976 (2023).

    Article  Google Scholar 

  174. Wu, J. et al. T cell factor 1 suppresses CD103+ lung tissue-resident memory T cell development. Cell Rep. 31, 107484 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li, C. et al. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. Immunity 51, 491–507.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wijeyesinghe, S. et al. Expansible residence decentralizes immune homeostasis. Nature 592, 457–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Fonseca, R. et al. Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Behr, F. M. et al. Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Hartana, C. A. et al. Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer. Clin. Exp. Immunol. 194, 39–53 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Milner, J. J. et al. Heterogenous populations of tissue-resident CD8+ T cells are generated in response to infection and malignancy. Immunity 52, 808–824.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gamradt, P. et al. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J. Allergy Clin. Immunol. 143, 2147–2157.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Wang, Z. et al. PD-1hiCD8+ resident memory T cells balance immunity and fibrotic sequelae. Sci. Immunol. 4, eaaw1217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018). Together with Simoni et al. (2018), this study reveals that co-expression of the TRM cell marker CD103 and the exhaustion marker CD39 identifies cancer-specific CD8+ T cells in several human tumour entities, and that there is an abundance of bystander CD8+ T cells with specificities to viral antigens among TITCs within the TME.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Canale, F. P. et al. CD39 expression defines cell exhaustion in tumor-infiltrating CD8+ T cells. Cancer Res. 78, 115–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Gupta, P. K. et al. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog. 11, e1005177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tallón de Lara, P. et al. CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nat. Commun. 12, 769 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Braumüller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    Article  PubMed  Google Scholar 

  193. Menares, E. et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 10, 4401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Floc’h, A. L. et al. αEβ7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. J. Exp. Med. 204, 559–570 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Corgnac, S. et al. CD103+CD8+ TRM cells accumulate in tumors of anti-PD-1-responder lung cancer patients and are tumor-reactive lymphocytes enriched with Tc17. Cell Rep. Med. 1, 100127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, Y. J. et al. CD39+ tissue-resident memory CD8+ T cells with a clonal overlap across compartments mediate antitumor immunity in breast cancer. Sci. Immunol. 7, eabn8390 (2022).

    Article  CAS  PubMed  Google Scholar 

  200. Sasson, S. C. et al. Interferon-γ-producing CD8+ tissue resident memory T cells are a targetable hallmark of immune checkpoint inhibitor-colitis. Gastroenterology 161, 1229–1244.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Luoma, A. M. et al. Molecular pathways of colon inflammation induced by cancer immunotherapy. Cell 182, 655–671.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug. Discov. 21, 509–528 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Held, W., Siddiqui, I., Schaeuble, K. & Speiser, D. E. Intratumoral CD8+ T cells with stem cell-like properties: implications for cancer immunotherapy. Sci. Transl. Med. 11, eaay6863 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Chu, Y. et al. Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).

    Article  CAS  PubMed  Google Scholar 

  208. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Jaiswal, A. et al. An activation to memory differentiation trajectory of tumor-infiltrating lymphocytes informs metastatic melanoma outcomes. Cancer Cell 40, 524–544.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Li, C. et al. A high OXPHOS CD8 T cell subset is predictive of immunotherapy resistance in melanoma patients. J. Exp. Med. 219, e20202084 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Li, K. et al. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 40, 1374–1391.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Spitzer, M. H. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 168, 487–502.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Rahim, M. K. et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 186, 1127–1143.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  223. Philipp, N. et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood 140, 1104–1118 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Lelliott, E. J. et al. CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discov. 11, 2582–2601 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    Article  CAS  PubMed  Google Scholar 

  226. Verma, V. et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021).

    Article  CAS  PubMed  Google Scholar 

  227. LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pelly, V. S. et al. Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11, 2602–2619 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu, C. et al. Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nat. Immunol. 21, 1010–1021 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Francis, D. M. et al. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci. Transl. Med. 12, eaay3575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug. Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Baharom, F. et al. Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nat. Immunol. 22, 41–52 (2021).

    Article  CAS  PubMed  Google Scholar 

  237. D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021).

    Article  CAS  PubMed  Google Scholar 

  241. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Biasco, L. et al. Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nat. Cancer 2, 629–642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 597, 544–548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    Article  CAS  PubMed  Google Scholar 

  251. Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Guedan, S. et al. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Gautam, S. et al. The transcription factor c-Myb regulates CD8+ T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat. Immunol. 12, 1230–1237 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Guo, A. et al. cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature 607, 135–141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wei, J. et al. Targeting Regnase-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Behrens, G. et al. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat. Immunol. 22, 1563–1576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Baessler, A. et al. Tet2 coordinates with Foxo1 and Runx1 to balance T follicular helper cell and T helper 1 cell differentiation. Sci. Adv. 8, eabm4982 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin–CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 610, 161–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Corria-Osorio, J. et al. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8+ T cells. Nat. Immunol. 24, 869–883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Soerens, A. G. et al. Functional T cells are capable of supernumerary cell division and longevity. Nature 614, 762–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  275. Schluns, K. S. & Lefrançois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  276. Klein Geltink, R. I., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article  PubMed Central  Google Scholar 

  277. Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  280. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Bresser, K. et al. Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nat. Immunol. 23, 791–801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  285. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Horton, B. L. et al. Lack of CD8+ T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 6, eabi8800 (2021).

    Article  CAS  PubMed  Google Scholar 

  287. Nüssing, S., Trapani, J. A. & Parish, I. A. Revisiting T cell tolerance as a checkpoint target for cancer immunotherapy. Front. Immunol. 11, 589641 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.G. is supported by an Investigator Fellowship from the National Health and Medical Research Council Australia (APP1194482). S.L.P. is supported by a Cancer Research Institute Irvington Postdoctoral Fellowship (CRI3383). I.A.P. is supported by Victorian Cancer Agency Mid-Career Fellowship (21019).

Author information

Authors and Affiliations

Authors

Contributions

T.G. and I.A.P. conceptualized the article and figures. All authors contributed to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Thomas Gebhardt or Ian A. Parish.

Ethics declarations

Competing interests

T.G. is a scientific advisory board member of oNKo Innate Pty. Ltd and has received research funding from Merck Healthcare KGaA. I.A.P. receives research funding from AstraZeneca and Bristol-Myers Squibb. S.L.P. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Roger Geiger and Hayden Kissick for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptive immune cells

Cells of the acquired arm of the immune system that mounts an antigen-specific response; these include T cells and B cells.

Chimeric antigen receptor

(CAR). A genetically engineered T cell receptor (TCR) molecule combining major histocompatibility complex (MHC)-independent specificity for cancer antigens with strong T cell activation intracellular signalling domains.

Epitope spreading

A broadening of the spectrum of antigens that immune cells target in a cancer, typically triggered by tumour destruction.

Innate immune cells

Cells of the innate arm of the immune system that generates rapid responses upon infection, typically triggered by recognition of conserved pathogen-associated or danger-associated molecular structures; these include natural killer cells and other innate lymphocytes, dendritic cells (DCs), monocytes, macrophages, granulocytes and mast cells.

Neoantigens

New proteins that arise from gene mutations in cancer cells and are recognized by T cells as foreign.

Perivascular niches

Aggregations of immune cells such as T cells and dendritic cells (DCs) in close proximity to tumour blood vessels.

Pseudotime analysis

An analysis of the differentiation trajectory of T cells based on transcriptional data.

Terminal exhaustion

A T cell differentiation state driven by chronic antigen stimulation that is characterized by diminished effector functions, poor proliferative capacity and compromised cell survival.

Tertiary lymphoid structures

Aggregation of ectopic lymphoid tissues consisting of T cells, B cells and dendritic cells (DCs) that form in chronically inflamed tissues such as tumours.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebhardt, T., Park, S.L. & Parish, I.A. Stem-like exhausted and memory CD8+ T cells in cancer. Nat Rev Cancer 23, 780–798 (2023). https://doi.org/10.1038/s41568-023-00615-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-023-00615-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer