Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular networks controlling T cell persistence in adoptive cell therapy

Abstract

The antitumour activity of endogenous or adoptively transferred tumour-specific T cells is highly dependent on their differentiation status. It is now apparent that less differentiated T cells compared with fully differentiated effector T cells have better antitumour therapeutic effects owing to their enhanced capacity to expand and their long-term persistence. In patients with cancer, the presence of endogenous or adoptively transferred T cells with stem-like memory or precursor phenotype correlates with improved therapeutic outcomes. Advances in our understanding of T cell differentiation states at the epigenetic and transcriptional levels have led to the development of novel methods to generate tumour-specific T cells — namely, chimeric antigen receptor T cells — that are more persistent and resistant to the development of dysfunction. These include the use of novel culture methods before infusion, modulation of transcriptional, metabolic and/or epigenetic programming, and strategies that fine-tune antigen receptor signalling. This Review discusses existing barriers and strategies to overcome them for successful T cell expansion and persistence in the context of adoptive T cell immunotherapy for solid cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T cell subsets in infection, cancer and adoptive cell therapy.
Fig. 2: Methods to maintain T cell persistence and stemness.
Fig. 3: Enhancing resistance to immunosuppression and targeting metabolic pathways during adoptive cell therapy.

Similar content being viewed by others

References

  1. Yang, J. C. & Rosenberg, S. A. Adoptive T-cell therapy for cancer. Adv. Immunol. 130, 279–294 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Figlin, R. A. et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8+ selected tumor infiltrating lymphocytes from primary tumor. J. Urol. 158, 740–745 (1997).

    PubMed  CAS  Google Scholar 

  3. Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

    PubMed  CAS  Google Scholar 

  4. Mullard, A. FDA approves first CAR T therapy. Nat. Rev. Drug Discov. 16, 669–669 (2017).

    PubMed  Google Scholar 

  5. US Food & Drug Administration. FDA approves new treatment for adults with relapsed or refractory large-B-cell lymphoma. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-adults-relapsed-or-refractory-large-b-cell-lymphoma (2021).

  6. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014). This landmark study reports a remarkable response rate of 90% complete remission in patients with acute lymphoblastic leukaemia treated with CD19-targeting CAR T cells.

    PubMed  PubMed Central  Google Scholar 

  7. Long, K. B. et al. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front. Immunol. 9, 2740–2740 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. Yong, C. S. M. et al. CAR T-cell therapy of solid tumors. Immunol. Cell Biol. 95, 356–363 (2017).

    PubMed  CAS  Google Scholar 

  9. Ando, M., Ito, M., Srirat, T., Kondo, T. & Yoshimura, A. Memory T cell, exhaustion, and tumor immunity. Immunol. Med. 43, 1–9 (2020).

    PubMed  Google Scholar 

  10. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011). This is the first demonstration of a stem-like human CD8+ memory T cell population, which is phenotypically and functionally distinct from other memory T cell subsets.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018). This is the first report of a patient with chronic lymphocytic leukaemia who experienced complete remission following CD19-directed CAR T cell treatment as a result of having 94% of CAR T cells derived from a single clone with a TET2 gene disruption during peak treatment response.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Willinger, T., Freeman, T., Hasegawa, H., McMichael, A. J. & Callan, M. F. C. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895–5903 (2005).

    PubMed  CAS  Google Scholar 

  14. Martin, M. D. & Badovinac, V. P. Defining memory CD8 T cell. Front. Immunol. 9, 2692–2692 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    PubMed  CAS  Google Scholar 

  17. Cieri, N. et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 121, 573–584 (2013).

    PubMed  CAS  Google Scholar 

  18. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2015).

    Google Scholar 

  19. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    PubMed  CAS  Google Scholar 

  20. He, R. et al. Follicular CXCR5-expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–416 (2016).

    PubMed  CAS  Google Scholar 

  21. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    PubMed  CAS  Google Scholar 

  23. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    PubMed  CAS  Google Scholar 

  24. Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020).

    CAS  PubMed  Google Scholar 

  26. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e1125 (2017).

    PubMed  CAS  Google Scholar 

  27. Siddiqui, I. et al. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e110 (2019).

    PubMed  CAS  Google Scholar 

  28. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    PubMed  CAS  Google Scholar 

  29. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058.e1044 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e1024 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e1020 (2019).

    Google Scholar 

  32. Galletti, G. et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat. Immunol. 21, 1552–1562 (2020). This is the first study identifying previously unrecognized subsets of stem-like CD8+ memory T cells that are functionally, epigenetically, phenotypically, transcriptionally and clonally distinct.

    PubMed  PubMed Central  Google Scholar 

  33. Brummelman, J. et al. High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors. J. Exp. Med. 215, 2520–2535 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Hinrichs, C. S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl Acad. Sci. USA 106, 17469–17474 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, Q. et al. Akt inhibition at the initial stage of CAR-T preparation enhances the CAR-positive expression rate, memory phenotype and in vivo efficacy. Am. J. Cancer Res. 9, 2379–2396 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017). This is a seminal study showing high-efficiency targeting of the CD19 CAR transgene to the TRAC locus that resulted in reduced T cell exhaustion and improved antitumour outcomes.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev. 211, 214–224 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Guo, Y. et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin. Cancer Res. 24, 1277–1286 (2018).

    PubMed  CAS  Google Scholar 

  41. Chapuis, A. G. et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc. Natl Acad. Sci. USA 109, 4592–4597 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019). This is a landmark study demonstrating that low-affinity CD19-targeting CAR T cells could increase T cell persistence in the absence of overt toxic effects, leading to more than 80% of patients achieving molecular remission.

    PubMed  CAS  Google Scholar 

  43. Liu, X. et al. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 75, 3596–3607 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    PubMed  CAS  Google Scholar 

  45. Watanabe, K., Kuramitsu, S., Posey, A. D. & June, C. H. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front. Immunol. 9, 2486 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Ghorashian, S. et al. A novel low affinity CD19CAR results in durable disease remissions and prolonged CAR T cell persistence without severe CRS or neurotoxicity in patients with paediatric ALL. Blood 130, 806–806 (2017).

    Google Scholar 

  47. Caruso, H. G. et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 75, 3505–3518 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

    PubMed  CAS  Google Scholar 

  49. Wang, X. & Riviere, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16, 1241–1246 (2005).

    PubMed  CAS  Google Scholar 

  51. Magee, M. S. et al. Gene editing of TRAC locus utilizing megatal nucleases increases expression of transgenic TCRs delivered via lentiviral vector-mediated gene transfer. Blood 130, 1906–1906 (2017).

    Google Scholar 

  52. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020). This is a seminal study using multiplex CRISPR–Cas9 to target TCR transgenes to the TRAC, TRBC and PDCD1 loci in patient T cells, resulting in extended persistence of T cells that was well tolerated.

    PubMed  CAS  Google Scholar 

  53. Ajina, A. & Maher, J. Strategies to address chimeric antigen receptor tonic signaling. Mol. Cancer Ther. 17, 1795–1815 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Hale, M. et al. Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol. Ther. 25, 570–579 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Davoodzadeh Gholami, M. et al. Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms. Cell. Immunol. 322, 1–14 (2017).

    PubMed  CAS  Google Scholar 

  57. Song, D.-G. et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Guedan, S. et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 3, e96976 (2018).

    PubMed Central  Google Scholar 

  59. Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl Immunol. 8, e1049 (2019).

    Google Scholar 

  60. Finney, H. M., Akbar, A. N. & Lawson, A. D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J. Immunol. 172, 104–113 (2004).

    PubMed  CAS  Google Scholar 

  61. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    PubMed  CAS  Google Scholar 

  62. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl Med. 3, 95ra73–95ra73 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Ying, Z. et al. Parallel comparison of 4-1BB or CD28 Co-stimulated CD19-targeted CAR-T cells for B cell non-hodgkin’s lymphoma. Mol. Ther. Oncolytics 15, 60–68 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Anagnostou, T., Riaz, I. B., Hashmi, S. K., Murad, M. H. & Kenderian, S. S. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematol. 7, e816–e826 (2020).

    PubMed  Google Scholar 

  66. Guedan, S. et al. Single residue in CD28-costimulated CAR T cells limits long-term persistence and antitumor durability. J. Clin. Invest. 130, 3087–3097 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Boucher, J. C. et al. Mutation of the CD28 costimulatory domain confers increased CAR T cell persistence and decreased exhaustion. J. Immunol. 200, 57.28 (2018).

    Google Scholar 

  68. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    PubMed  CAS  Google Scholar 

  71. Gaffen, S. L. & Liu, K. D. Overview of interleukin-2 function, production and clinical applications. Cytokine 28, 109–123 (2004).

    PubMed  CAS  Google Scholar 

  72. Giuffrida, L. et al. IL-15 preconditioning augments CAR T cell responses to checkpoint blockade for improved treatment of solid tumors. Mol. Ther. 28, 2379–2393 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Wieman, H. L., Wofford, J. A. & Rathmell, J. C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell 18, 1437–1446 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. van der, W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Google Scholar 

  75. Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Loschinski, R. et al. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 9, 13125–13138 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Gong, W. et al. Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunol. Immunother. 68, 1195–1209 (2019).

    PubMed  CAS  Google Scholar 

  78. Gargett, T. & Brown, M. P. Different cytokine and stimulation conditions influence the expansion and immune phenotype of third-generation chimeric antigen receptor T cells specific for tumor antigen GD2. Cytotherapy 17, 487–495 (2015).

    PubMed  CAS  Google Scholar 

  79. Ghassemi, S. et al. 203. Shortened T cell culture with IL-7 and IL-15 provides the most potent chimeric antigen receptor (CAR)-modified T cells for adoptive immunotherapy. Mol. Ther. 24, S79 (2016).

    Google Scholar 

  80. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    PubMed  CAS  Google Scholar 

  81. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory Cd8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Cha, E., Graham, L., Manjili, M. H. & Bear, H. D. IL-7 + IL-15 are superior to IL-2 for the ex vivo expansion of 4T1 mammary carcinoma-specific T cells with greater efficacy against tumors in vivo. Breast Cancer Res. Treat. 122, 359–369 (2010).

    PubMed  CAS  Google Scholar 

  84. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Markley, J. C. & Sadelain, M. IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115, 3508–3519 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Chen, Y. et al. Adoptive transfer of interleukin-21-stimulated human CD8+ T memory stem cells efficiently inhibits tumor growth. J. Immunother. 41, 274–283 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Singh, H. et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res. 71, 3516–3527 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Medvec, A. R. et al. Improved expansion and in vivo function of patient T cells by a serum-free medium. Mol. Ther. Methods Clin. Dev. 8, 65–74 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Ghassemi, S. et al. Enhancing chimeric antigen receptor T cell anti-tumor function through advanced media design. Mol. Ther. Methods Clin. Dev. 18, 595–606 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Gargett, T., Truong, N., Ebert, L. M., Yu, W. & Brown, M. P. Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype. Cytotherapy 21, 593–602 (2019).

    PubMed  CAS  Google Scholar 

  93. Lucas, C. L., Chandra, A., Nejentsev, S., Condliffe, A. M. & Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol. 16, 702–714 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Zheng, W., Jones, L. L. & Geiger, T. L. Modulation of PI3K signaling to improve CAR T cell function. Oncotarget 9, 35807–35808 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Utzschneider, D. T. et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 22, 3454–3467 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Bowers, J. S. et al. PI3Kδ inhibition enhances the antitumor fitness of adoptively transferred CD8+ T cells. Front. Immunol. 8, 1221–1221 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Abu Eid, R. et al. Enhanced therapeutic efficacy and memory of tumor-specific CD8 T cells by ex vivo PI3K-δ inhibition. Cancer Res. 77, 4135–4145 (2017).

    PubMed  CAS  Google Scholar 

  99. Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017).

    PubMed Central  Google Scholar 

  100. Zhang, X., Tang, N., Hadden, T. J. & Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 1813, 1978–1986 (2011).

    CAS  Google Scholar 

  101. Urak, R. et al. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J. ImmunoTherapy Cancer 5, 26 (2017).

    Google Scholar 

  102. Mousset, C. M. et al. Ex vivo AKT-inhibition facilitates generation of polyfunctional stem cell memory-like CD8+ T cells for adoptive immunotherapy. OncoImmunology 7, e1488565 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  104. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Verma, V. et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2021).

    PubMed  CAS  Google Scholar 

  106. Zhao, D.-M. et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J. Immunol. 184, 1191–1199 (2010).

    PubMed  CAS  Google Scholar 

  107. Muralidharan, S. et al. Activation of Wnt signaling arrests effector differentiation in human peripheral and cord blood-derived T lymphocytes. J. Immunol. 187, 5221–5232 (2011).

    PubMed  CAS  Google Scholar 

  108. Yan, C. et al. Memory stem T cells generated by Wnt signaling from blood of human renal clear cell carcinoma patients. Cancer Biol. Med. 16, 109–124 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Chen, Y., Zander, R., Khatun, A., Schauder, D. M. & Cui, W. Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. Front Immunol 9, 2826 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Man, K. et al. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14, 1155–1165 (2013).

    PubMed  CAS  Google Scholar 

  112. Klein-Hessling, S. et al. NFATc1 controls the cytotoxicity of CD8+ T cells. Nat. Commun. 8, 511 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Grusdat, M. et al. IRF4 and BATF are critical for CD8 T-cell function following infection with LCMV. Cell Death Differ. 21, 1050–1060 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Kallies, A., Xin, A., Belz, G. T. & Nutt, S. L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    PubMed  CAS  Google Scholar 

  116. Xin, A. et al. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Yang, C. Y. et al. The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nat. Immunol. 12, 1221–1229 (2011).

    PubMed  CAS  Google Scholar 

  119. Rutishauser, R. L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891 (2004).

    PubMed  CAS  Google Scholar 

  121. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    PubMed  CAS  Google Scholar 

  124. Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498, 506–510 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Takemoto, N., Intlekofer, A. M., Northrup, J. T., Wherry, E. J. & Reiner, S. L. Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J. Immunol. 177, 7515–7519 (2006).

    PubMed  CAS  Google Scholar 

  126. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    PubMed  CAS  Google Scholar 

  127. Mackay, L. K. & Kallies, A. Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 38, 94–103 (2017).

    PubMed  CAS  Google Scholar 

  128. Oestreich, K. J., Yoon, H., Ahmed, R. & Boss, J. M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    PubMed  CAS  Google Scholar 

  129. Man, K. et al. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141 (2017).

    PubMed  CAS  Google Scholar 

  130. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    PubMed  CAS  Google Scholar 

  135. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Sekine, T. et al. TOX is expressed by exhausted and polyfunctional human effector memory CD8+ T cells. Sci. Immunol. 5, eaba7918 (2020).

    PubMed  CAS  Google Scholar 

  138. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019). This is a seminal study demonstrating that the overexpression of a transcription factor could limit CAR T cell terminal differentiation, resulting in increased antitumour efficacy.

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Danilo, M., Chennupati, V., Silva, J. G., Siegert, S. & Held, W. Suppression of Tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation. Cell Rep. 22, 2107–2117 (2018).

    PubMed  CAS  Google Scholar 

  140. Zhou, X. et al. Differentiation and persistence of memory CD8+ T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Shan, Q. et al. Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-020-0436-5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Rutishauser, R. L. et al. Transcriptional repressor blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    PubMed  CAS  Google Scholar 

  146. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079–1086 (2005).

    PubMed  CAS  Google Scholar 

  148. Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat. Immunol. 12, 1230–1237 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Cannarile, M. A. et al. Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nat. Immunol. 7, 1317–1325 (2006).

    PubMed  CAS  Google Scholar 

  150. Pace, L. et al. The epigenetic control of stemness in CD8+T cell fate commitment. Science 359, 177–186 (2018).

    PubMed  CAS  Google Scholar 

  151. Araki, Y. et al. Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8+ T cells. Immunity 30, 912–925 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157.e119 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Lee, M. et al. Disruption of TET2 dioxygenase enhances antitumor efficiency in CD8+ tumor infiltrating lymphocytes. Blood 132, 860–860 (2018).

    Google Scholar 

  154. Ladle, B. H. et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc. Natl Acad. Sci. USA 113, 10631–10636 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Kagoya, Y. et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J. Clin. Invest. 126, 3479–3494 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

    PubMed  CAS  Google Scholar 

  157. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    PubMed  CAS  Google Scholar 

  158. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Moon, E. K. et al. Blockade of programmed death 1 augments the ability of human T cells engineered to target NY-ESO-1 to Control tumor growth after adoptive transfer. Clin. Cancer Res. 22, 436–447 (2016).

    PubMed  CAS  Google Scholar 

  161. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013). This is one of the first studies to show that anti-PD1 immunotherapy can increase CAR T cell efficacy in a solid cancer setting.

    PubMed  CAS  Google Scholar 

  162. Maude, S. L. et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J. Clin. Oncol. 35, 103–103 (2017). This is one of the first studies demonstrating increased CAR T cell persistence following anti-PD1 therapy in patients with acute lymphocytic leukaemia.

    Google Scholar 

  163. Chong, E. A. et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood 129, 1039–1041 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  164. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Liu, X. et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 27, 154–157 (2017).

    PubMed  Google Scholar 

  166. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    PubMed  CAS  Google Scholar 

  167. McGowan, E. et al. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed. Pharmacother. 121, 109625 (2020).

    PubMed  CAS  Google Scholar 

  168. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Wartewig, T. et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature 552, 121–125 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Wiede, F. et al. PTPN2 phosphatase deletion in T cells promotes anti-tumour immunity and CAR T-cell efficacy in solid tumours. EMBO J. 39, e103637 (2020).

    PubMed  CAS  Google Scholar 

  171. LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Jung, I.-Y. et al. CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res. 78, 4692 (2018).

    PubMed  CAS  Google Scholar 

  177. Riese, M. J. et al. Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases. Cancer Res. 73, 3566–3577 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Kondo, T. et al. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer Sci. 109, 2130–2140 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Kondo, T. et al. Notch-mediated conversion of activated T cells into stem cell memory-like T cells for adoptive immunotherapy. Nat. Commun. 8, 15338 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Kondo, T. et al. The NOTCH–FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory–like CAR-T cells. Cancer Res. 80, 471–483 (2020).

    PubMed  CAS  Google Scholar 

  181. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Vodnala, S. K. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016). This is one of the key studies demonstrating that a defined composition of CD4+ CD19-directed CAR T cells and CD8+ CD19-directed CAR T cells can improve the clinical outcomes of adult patients with B cell acute lymphocytic leukaemia. These observations provided a basis for the recently FDA-approved CAR T cell product Breyanzi.

    PubMed  PubMed Central  Google Scholar 

  184. Diaconu, I. et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol. Ther. 25, 580–592 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Ciceri, F. et al. Impact of immune reconstitution (IR) and graft-versus-host disease (GvHD) on clinical outcomes after treatment with donor T cells transduced to express the herpes simplex virus thymidine-kinase suicide gene (TK cells) in acute leukemia patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT). Blood 128, 4599–4599 (2016).

    Google Scholar 

  186. Shen, R. R., Pham, C. D., Wu, M., Munson, D. J. & Aftab, B. T. CD19 chimeric antigen receptor (CAR) engineered Epstein-Barr virus (EBV) specific T cells - an off-the-shelf, allogeneic CAR T-cell immunotherapy platform. Cytotherapy 21, S11 (2019).

    Google Scholar 

  187. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    PubMed  CAS  Google Scholar 

  188. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Pfeiffer, A. et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol. Med. 10, e9158 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. Andersen, M. H., Schrama, D., thor Straten, P. & Becker, J. C. Cytotoxic T cells. J. Investig. Dermatol. 126, 32–41 (2006).

    PubMed  CAS  Google Scholar 

  191. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    PubMed  CAS  Google Scholar 

  192. Huster, K. M. et al. Unidirectional development of CD8+ central memory T cells into protective Listeria-specific effector memory T cells. Eur. J. Immunol. 36, 1453–1464 (2006).

    PubMed  CAS  Google Scholar 

  193. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat. Med. 24, 986–993 (2018).

    PubMed  CAS  Google Scholar 

  195. Edwards, J. et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin. Cancer Res. 24, 3036–3045 (2018).

    PubMed  CAS  Google Scholar 

  196. Wang, B. et al. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol. 194, 556–562 (2015).

    PubMed  CAS  Google Scholar 

  197. Ganesan, A. P. et al. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 18, 940–950 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  198. Wang, Z. Q. et al. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res. 22, 6290–6297 (2016).

    PubMed  CAS  Google Scholar 

  199. Cieri, N. et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood 125, 2865–2874 (2015).

    PubMed  CAS  Google Scholar 

  200. Oliveira, G. et al. Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Sci. Transl Med. 7, 317ra198 (2015).

    PubMed  Google Scholar 

  201. Yu, B. et al. Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat. Immunol. 18, 573–582 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8+ T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  203. Henning, A. N., Roychoudhuri, R. & Restifo, N. P. Epigenetic control of CD8+ T cell differentiation. Nat. Rev. Immunol. 18, 340–356 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  204. Pace, L. & Amigorena, S. Epigenetics of T cell fate decision. Curr. Opin. Immunol. 63, 43–50 (2020).

    PubMed  CAS  Google Scholar 

  205. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Health and Medical Research Council of Australia (NHMRC), the Australian National Breast Cancer Foundation, the Cancer Council of Victoria and the ClearBridge Foundation. J.D.C. is supported by an Australian Government Research Training Program scholarship and a Peter MacCallum Cancer Foundation postgraduate scholarship. J.L. is a recipient of a US Cancer Research Institute Irvington postdoctoral fellowship (award no. 3530). A.K. is supported by an NHMRC senior research fellowship (APP1139607). P.A.B. is supported by an Australian National Breast Cancer Foundation fellowship (ECF-17-005) and a Victorian Cancer Agency Research fellowship (MCRF20011). P.K.D. is supported by an NHMRC senior research fellowship (APP1136680).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. J.D.C. and J.L. contributed equally as first authors, and A.K., P.A.B. and P.K.D. contributed equally as senior authors.

Corresponding authors

Correspondence to Axel Kallies, Paul A. Beavis or Phillip K. Darcy.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Peer review information

Nature Reviews Immunology thanks J. Riley and B. A. Youngblood for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J.D., Lai, J., Slaney, C.Y. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol 21, 769–784 (2021). https://doi.org/10.1038/s41577-021-00539-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00539-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer