Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Navigating metabolic pathways to enhance antitumour immunity and immunotherapy

Abstract

The development of immunotherapies over the past decade has resulted in a paradigm shift in the treatment of cancer. However, the majority of patients do not benefit from immunotherapy, presumably owing to insufficient reprogramming of the immunosuppressive tumour microenvironment (TME) and thus limited reinvigoration of antitumour immunity. Various metabolic machineries and nutrient-sensing mechanisms orchestrate the behaviour of immune cells in response to nutrient availability in the TME. Notably, tumour-infiltrating immune cells typically experience metabolic stress as a result of the dysregulated metabolic activity of tumour cells, leading to impaired antitumour immune responses. Moreover, the immune checkpoints that are often exploited by tumour cells to evade immunosurveillance have emerging roles in modulating the metabolic and functional activity of T cells. Thus, repurposing of drugs targeting cancer metabolism might synergistically enhance immunotherapy via metabolic reprogramming of the TME. In addition, interventions targeting the metabolic circuits that impede antitumour immunity have been developed, with several clinical trials underway. Herein, we discuss how these metabolic circuits regulate antitumour immunity and the possible approaches to targeting these pathways in the context of anticancer immunotherapy. We also describe hypothetical combination treatments that could be used to better unleash the potential of adoptive cell therapies by enhancing T cell metabolism.

Key points

  • Conditions in the tumour microenvironment (TME) can impose metabolic stress on infiltrating immune cells, which can result in local immunosuppression and tumour immune evasion.

  • Immune checkpoints mediated by either co-activatory or inhibitory receptors modulate T cell activation and function, in part, by influencing metabolic reprogramming and mitochondrial fitness in these cells.

  • Agents targeting the interacting and competing metabolic pathways that are active in the TME might synergize with immune-checkpoint inhibitors by alleviating metabolic stress in tumour-infiltrating lymphocytes (TILs).

  • Thus, interventions targeting aberrant metabolic properties of tumour cells might reprogramme the immune state of the TME, in particular, via direct and indirect effects on myeloid cells.

  • Modulation of the metabolic programme of T cells during ex vivo TIL expansion or the manufacturing of chimeric antigen receptor (CAR) T cells is a promising strategy to improve efficacy of adoptive T cell-based immunotherapies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metabolic stress in the tumour microenvironment and its impact on antitumour immunity.
Fig. 2: Modulation of metabolic pathways by immune-checkpoint receptors and ligands.
Fig. 3: Metabolic approaches to enhancing adoptive T cell therapy.

References

  1. 1.

    Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lorendeau, D., Christen, S., Rinaldi, G. & Fendt, S.-M. Metabolic control of signaling pathways and metabolic auto-regulation. Biol. Cell 107, 251–272 (2015).

    CAS  PubMed  Google Scholar 

  3. 3.

    Rinaldi, G., Rossi, M. & Fendt, S.-M. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1397 (2018).

    Google Scholar 

  4. 4.

    Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Geeraerts, X., Bolli, E., Fendt, S.-M. & Van Ginderachter, J. A. Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front. Immunol. 8, 289 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Sullivan, L. B., Gui, D. Y. & Heiden, M. G. V. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680 (2016).

    CAS  PubMed  Google Scholar 

  7. 7.

    Sciacovelli, M. & Frezza, C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic. Biol. Med. 100, 175–181 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Haas, R. et al. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem. Sci. 41, 460–471 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Murphy, M. P. & O’Neill, L. A. J. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174, 780–784 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    CAS  PubMed  Google Scholar 

  11. 11.

    Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bi, J., Wu, S., Zhang, W. & Mischel, P. S. Targeting cancer’s metabolic co-dependencies: a landscape shaped by genotype and tissue context. Biochim. Biophys. Acta 1870, 76–87 (2018).

    CAS  Google Scholar 

  13. 13.

    Elia, I., Schmieder, R., Christen, S. & Fendt, S.-M. Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol. 233, 321–353 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Elia, I. & Fendt, S.-M. In vivo cancer metabolism is defined by the nutrient microenvironment. Transl Cancer Res. 5, S1284–S1287 (2016).

    CAS  Google Scholar 

  15. 15.

    Muir, A., Danai, L. V. & Vander Heiden, M. G. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis. Model. Mech. 11, dmm035758 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Elia, I., Doglioni, G. & Fendt, S.-M. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 28, 673–684 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Lunt, S. Y. & Fendt, S.-M. Metabolism — a cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr. Opin. Syst. Biol. 8, 67–72 (2018).

    Google Scholar 

  18. 18.

    Heiden, M. G. V. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    PubMed Central  Google Scholar 

  19. 19.

    Teoh, S. T. & Lunt, S. Y. Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1406 (2018).

    Google Scholar 

  20. 20.

    Warburg, O. On the origin of cancer cells. Science 123, 309 (1956).

    CAS  PubMed  Google Scholar 

  21. 21.

    Halestrap, A. P. The monocarboxylate transporter family — structure and functional characterization. IUBMB Life 64, 1–9 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Dietl, K. et al. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J. Immunol. 184, 1200–1209 (2010).

    CAS  PubMed  Google Scholar 

  26. 26.

    Gottfried, E. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013–2021 (2006).

    CAS  PubMed  Google Scholar 

  27. 27.

    Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Husain, Z., Huang, Y., Seth, P. & Sukhatme, V. P. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J. Immunol. 191, 1486–1495 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Shime, H. et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J. Immunol. 180, 7175–7183 (2008).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Liu, R. et al. Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumor Biol. 37, 14083–14088 (2016).

    CAS  Google Scholar 

  36. 36.

    Walenta, S. et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000).

    CAS  PubMed  Google Scholar 

  37. 37.

    Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    CAS  PubMed  Google Scholar 

  38. 38.

    Elf, S. E. & Chen, J. Targeting glucose metabolism in patients with cancer. Cancer 120, 774–780 (2014).

    PubMed  Google Scholar 

  39. 39.

    Kung, C. et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem. Biol. 19, 1187–1198 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Palsson-McDermott, E. M. et al. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front. Immunol. 8, 1300 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Li, F.-L. et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat. Commun. 9, 508 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Li, H.-M. et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 36, 7 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chesney, J. A., Telang, S., Yaddanapudi, K. & Grewal, J. S. Targeting 6-phosphofructo-2-kinase (PFKFB3) as an immunotherapeutic strategy. J. Clin. Oncol. 34, e14548 (2016).

    Google Scholar 

  44. 44.

    Yang, M. et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol. 88, 165–171 (2010).

    CAS  PubMed  Google Scholar 

  45. 45.

    Deck, L. M. et al. Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite plasmodium falciparum. J. Med. Chem. 41, 3879–3887 (1998).

    CAS  PubMed  Google Scholar 

  46. 46.

    Weide, B. et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin. Cancer Res. 22, 5487–5496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Murray, C. M. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 1, 371–376 (2005).

    CAS  PubMed  Google Scholar 

  48. 48.

    Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  49. 49.

    Pérez-Escuredo, J. et al. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle 15, 72–83 (2016).

    PubMed  Google Scholar 

  50. 50.

    Ko, Y.-H. et al. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Cancer Biol. Ther. 12, 1085–1097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Xiang, Y. et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125, 2293–2306 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Wang, J. B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Gross, M. I. et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890–901 (2014).

    CAS  PubMed  Google Scholar 

  54. 54.

    DeLaBarre, B., Hurov, J., Cianchetta, G., Murray, S. & Dang, L. Action at a distance: allostery and the development of drugs to target cancer cell metabolism. Chem. Biol. 21, 1143–1161 (2014).

    CAS  PubMed  Google Scholar 

  55. 55.

    Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Newsholme, P., Gordon, S. & Newsholme, E. A. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem. J. 242, 631–636 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Liu, P.-S. et al. α-Ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Nabe, S. et al. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction. Cancer Sci. 109, 3737–3750 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 (2018).

    CAS  PubMed  Google Scholar 

  60. 60.

    Tannir, N. M. et al. CANTATA: a randomized phase 2 study of CB-839 in combination with cabozantinib versus placebo with cabozantinib in patients with advanced/metastatic renal cell carcinoma. J. Clin. Oncol. 36, TPS4601 (2018).

    Google Scholar 

  61. 61.

    Klysz, D. et al. Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    PubMed  Google Scholar 

  62. 62.

    Shanker, A., de Aquino, M. T. P., Hodo, T. & Uzhachenko, R. Glutamate receptors provide costimulatory signals to improve T cell immune response. J. Immunol. 200 (Suppl), 47.24 (2018).

    Google Scholar 

  63. 63.

    Poulopoulou, C. et al. Modulation of voltage-gated potassium channels in human T lymphocytes by extracellular glutamate. Mol. Pharmacol. 67, 856–867 (2005).

    CAS  PubMed  Google Scholar 

  64. 64.

    Grohmann, U. et al. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 35, 37–45 (2017).

    CAS  PubMed  Google Scholar 

  65. 65.

    Speiser, D. E., Ho, P. C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599–611 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    He, X., Lin, H., Yuan, L. & Li, B. Combination therapy with L-arginine and alpha-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol. Ther. 18, 94–100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 101 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Qiu, F. et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci. Signal. 7, ra31 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Kelly, M. P. et al. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br. J. Cancer 106, 324–332 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Tsai, H.-J. et al. A phase II study of arginine deiminase (ADI-PEG20) in relapsed/refractory or poor-risk acute myeloid leukemia patients. Sci. Rep. 7, 11253 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Brin, E. et al. PEGylated arginine deiminase can modulate tumor immune microenvironment by affecting immune checkpoint expression, decreasing regulatory T cell accumulation and inducing tumor T cell infiltration. Oncotarget 8, 58948–58963 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Liu, H. et al. Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci. Rep. 6, 21319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Mbongue, J. C. et al. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 3, 703–729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  76. 76.

    Li, R. et al. IDO inhibits T-cell function through suppressing Vav1 expression and activation. Cancer Biol. Ther. 8, 1402–1408 (2009).

    CAS  PubMed  Google Scholar 

  77. 77.

    Cronin, S. J. F. et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Minhas, P. S. et al. Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat. Immunol. 20, 50–63 (2019).

    CAS  PubMed  Google Scholar 

  79. 79.

    Zheng, X. et al. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int. J. Cancer 132, 967–977 (2013).

    CAS  PubMed  Google Scholar 

  80. 80.

    Yen, M.-C. et al. A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin. Cancer Res. 15, 641–649 (2009).

    CAS  PubMed  Google Scholar 

  81. 81.

    Huang, T.-T. et al. Skin delivery of short hairpin RNA of indoleamine 2,3 dioxygenase induces antitumor immunity against orthotopic and metastatic liver cancer. Cancer Sci. 102, 2214–2220 (2011).

    CAS  PubMed  Google Scholar 

  82. 82.

    Soliman, H., Mediavilla-Varela, M. & Antonia, S. Indoleamine 2,3-dioxygenase: is it an immune suppressor? Cancer J. 16, 354–359 (2010).

    CAS  PubMed  Google Scholar 

  83. 83.

    Zakharia, Y. et al. Results of phase 1b trial of the indoleamine 2,3-dioxygenase (IDO) pathway inhibitor indoximod plus ipilimumab for the treatment of unresectable stage III or IV melanoma. Eur. J. Cancer 51, S108 (2015).

    Google Scholar 

  84. 84.

    Yue, E. W. et al. INCB24360 (epacadostat), a highly potent and selective indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology. ACS Med. Chem. Lett. 8, 486–491 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Mullard, A. IDO takes a blow. Nat. Rev. Drug Discov. 17, 307 (2018).

    PubMed  Google Scholar 

  86. 86.

    Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Hartmann, C. et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 118, 469–474 (2009).

    PubMed  Google Scholar 

  90. 90.

    Kang, M. R. et al. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int. J. Cancer 125, 353–355 (2009).

    CAS  PubMed  Google Scholar 

  91. 91.

    Sonoda, Y. et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci. 100, 1996–1998 (2009).

    CAS  PubMed  Google Scholar 

  92. 92.

    Medeiros, B. C. et al. Isocitrate dehydrogenase mutations in myeloid malignancies. Leukemia 31, 272 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Carbonneau, M. et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat. Commun. 7, 12700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Popovici-Muller, J. et al. Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers. ACS Med. Chem. Lett. 9, 300–305 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Quivoron, C. et al. AG-221, an oral, selective, first-in-class, potent IDH2-R140Q mutant inhibitor, induces differentiation in a xenotransplant model. Blood 124, 3735 (2014).

    Google Scholar 

  96. 96.

    DiNardo, C. D. et al. Mutant IDH (mIDH) inhibitors, ivosidenib or enasidenib, with azacitidine (AZA) in patients with acute myeloid leukemia (AML). J. Clin. Oncol. 36, 7042 (2018).

    Google Scholar 

  97. 97.

    DiNardo, C. D. et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 378, 2386–2398 (2018).

    CAS  PubMed  Google Scholar 

  98. 98.

    Agarwal, P. et al. Elucidating immunometabolic targets in glioblastoma. Am. J. Cancer Res. 7, 1990–1995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018).

    CAS  PubMed  Google Scholar 

  100. 100.

    Kohanbash, G. et al. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Invest. 127, 1425–1437 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Amankulor, N. M. et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev. 31, 774–786 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Cordes, T. et al. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem. 291, 14274–14284 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Bambouskova, M. et al. Electrophilic properties of itaconate and derivatives regulate the IκBζ–ATF3 inflammatory axis. Nature 556, 501–504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Weiss, J. M. et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Invest. 128, 3794–3805 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. 108.

    Miller, W. L., Thomas, R. A., Berne, R. M. & Rubio, R. Adenosine production in the ischemic kidney. Circ. Res. 43, 390–397 (1978).

    CAS  PubMed  Google Scholar 

  109. 109.

    Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709–724 (2017).

    CAS  PubMed  Google Scholar 

  110. 110.

    Antonioli, L., Blandizzi, C., Pacher, P. & Haskó, G. Immunity, inflammation and cancer: a leading role for adenosine. Nat. Rev. Cancer 13, 842–857 (2013).

    CAS  PubMed  Google Scholar 

  111. 111.

    Cai, X.-Y. et al. High expression of CD39 in gastric cancer reduces patient outcome following radical resection. Oncol. Lett. 12, 4080–4086 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Lu, X.-X. et al. Expression and clinical significance of CD73 and hypoxia-inducible factor-1α in gastric carcinoma. World J. Gastroenterol. 19, 1912–1918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Turcotte, M. et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 75, 4494 (2015).

    CAS  PubMed  Google Scholar 

  114. 114.

    Inoue, Y. et al. Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer. Oncotarget 8, 8738–8751 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Zanin, R. F. et al. Differential macrophage activation alters the expression profile of NTPDase and Ecto-5′nucleotidase. PLOS ONE 7, e31205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Csóka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26, 376–386 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Huang, S., Apasov, S., Koshiba, M. & Sitkovsky, M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T cell activation and expansion. Blood 90, 1600–1610 (1997).

    CAS  PubMed  Google Scholar 

  120. 120.

    Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    CAS  PubMed  Google Scholar 

  121. 121.

    Ohta, A. et al. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Frontiers Immunol. 3, 190 (2012).

    CAS  Google Scholar 

  122. 122.

    Li, L. et al. Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury. J. Clin. Invest. 122, 3931–3942 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Sorrentino, C., Miele, L., Porta, A., Pinto, A. & Morello, S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 6, 27478–27489 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Jackson, S. W. et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am. J. Pathol. 171, 1395–1404 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Merighi, S. et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol. 119, 923–933 (2002).

    CAS  PubMed  Google Scholar 

  126. 126.

    Zhi, X. et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci. 101, 2561–2569 (2010).

    CAS  PubMed  Google Scholar 

  127. 127.

    Zhou, P. et al. Overexpression of Ecto-5′-nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol. Ther. 6, 426–431 (2007).

    CAS  PubMed  Google Scholar 

  128. 128.

    Wang, L. et al. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol. 134, 365–372 (2008).

    CAS  PubMed  Google Scholar 

  129. 129.

    Iannone, R., Miele, L., Maiolino, P., Pinto, A. & Morello, S. Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am. J. Cancer Res. 4, 172–181 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Beavis, P. A. et al. Adenosine receptor 2A blockade increases the efficacy of anti–PD-1 through enhanced antitumor T cell responses. Cancer Immunol. Res. 3, 506 (2015).

    CAS  PubMed  Google Scholar 

  131. 131.

    Mittal, D. et al. Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor. Cancer Res. 74, 3652 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Corvus Pharmaceuticals. Corvus Pharmaceuticals announces interim results from ongoing phase 1/1b study demonstrating safety and clinical activity of lead checkpoint inhibitor CPI-444 in patients with advanced cancers. GlobeNewsWire https://globenewswire.com/news-release/2017/04/04/954192/0/en/Corvus-Pharmaceuticals-Announces-Interim-Results-from-Ongoing-Phase-1-1b-Study-Demonstrating-Safety-and-Clinical-Activity-of-Lead-Checkpoint-Inhibitor-CPI-444-in-Patients-with-Adva.html (2017).

  133. 133.

    Martínez-Colón, G. J. & Moore, B. B. Prostaglandin E2 as a regulator of immunity to pathogens. Pharmacol. Ther. 185, 135–146 (2018).

    PubMed  Google Scholar 

  134. 134.

    Peebles, R. S. Jr Prostaglandins in asthma and allergic diseases. Pharmacol. Ther. 193, 1–19 (2018).

    PubMed  Google Scholar 

  135. 135.

    Furuyashiki, T. & Narumiya, S. Stress responses: the contribution of prostaglandin E(2) and its receptors. Nat. Rev. Endocrinol. 7, 163–175 (2011).

    CAS  PubMed  Google Scholar 

  136. 136.

    Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Sharma, S. et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 65, 5211–5220 (2005).

    CAS  PubMed  Google Scholar 

  138. 138.

    Baratelli, F. et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J. Immunol. 175, 1483–1490 (2005).

    CAS  PubMed  Google Scholar 

  139. 139.

    Mahic, M., Yaqub, S., Johansson, C. C., Taskén, K. & Aandahl, E. M. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 177, 246–254 (2006).

    CAS  PubMed  Google Scholar 

  140. 140.

    Snijdewint, F. G., Kalinski, P., Wierenga, E. A., Bos, J. D. & Kapsenberg, M. L. Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150, 5321–5329 (1993).

    CAS  PubMed  Google Scholar 

  141. 141.

    Demeure, C. E., Yang, L. P., Desjardins, C., Raynauld, P. & Delespesse, G. Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur. J. Immunol. 27, 3526–3531 (1997).

    CAS  PubMed  Google Scholar 

  142. 142.

    Larsson, K. et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc. Natl Acad. Sci. USA 112, 8070–8075 (2015).

    CAS  PubMed  Google Scholar 

  143. 143.

    Obermajer, N. et al. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol. Invest. 41, 635–657 (2012).

    CAS  PubMed  Google Scholar 

  144. 144.

    Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. 145.

    Chen, J. H. et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Chia, W. K., Ali, R. & Toh, H. C. Aspirin as adjuvant therapy for colorectal cancer — reinterpreting paradigms. Nat. Rev. Clin. Oncol. 9, 561–570 (2012).

    CAS  PubMed  Google Scholar 

  147. 147.

    Drew, D. A., Cao, Y. & Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer 16, 173–186 (2016).

    CAS  PubMed  Google Scholar 

  148. 148.

    Li, Y. et al. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. OncoImmunology 5, e1074374 (2016).

    PubMed  Google Scholar 

  149. 149.

    Chell, S. D. et al. Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence. Cancer Res. 66, 3106–3113 (2006).

    CAS  PubMed  Google Scholar 

  150. 150.

    Buchanan, F. G. et al. Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc. Natl Acad. Sci. USA 103, 1492–1497 (2006).

    CAS  PubMed  Google Scholar 

  151. 151.

    Xu, S. et al. An EP4 antagonist ONO-AE3-208 suppresses cell invasion, migration, and metastasis of prostate cancer. Cell Biochem. Biophys. 70, 521–527 (2014).

    CAS  PubMed  Google Scholar 

  152. 152.

    Kashiwagi, E. et al. Prostaglandin receptors induce urothelial tumourigenesis as well as bladder cancer progression and cisplatin resistance presumably via modulating PTEN expression. Br. J. Cancer 118, 213–223 (2018).

    CAS  PubMed  Google Scholar 

  153. 153.

    Majumder, M., Xin, X., Liu, L., Girish, G. V. & Lala, P. K. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 105, 1142–1151 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Majumder, M. et al. COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis. Stem Cells 34, 2290–2305 (2016).

    CAS  PubMed  Google Scholar 

  155. 155.

    O’Callaghan, G. & Houston, A. Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets? Br. J. Pharmacol. 172, 5239–5250 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. 156.

    Markovic, T., Jakopin, Ž., Dolenc, M. S. & Mlinaric-Rašcan, I. Structural features of subtype-selective EP receptor modulators. Drug Discov. Today 22, 57–71 (2017).

    CAS  PubMed  Google Scholar 

  157. 157.

    Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Bochet, L. et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73, 5657–5668 (2013).

    CAS  PubMed  Google Scholar 

  159. 159.

    Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).

    CAS  PubMed  Google Scholar 

  160. 160.

    Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Al-Khami, A. A. et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncoimmunology 6, e1344804 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Niu, Z. et al. Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat. Commun. 8, 766 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. 164.

    Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165.

    McDonald, G. et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J. Clin. Invest. 124, 712–724 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Bettencourt, I. A. & Powell, J. D. Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J. Immunol. 198, 999 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Zech, T. et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Owen, D. M. et al. High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol. Membr. Biol. 27, 178–189 (2010).

    CAS  PubMed  Google Scholar 

  169. 169.

    Yang, W. et al. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Chowdhury, P. S., Chamoto, K., Kumar, A. & Honjo, T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018).

    PubMed  Google Scholar 

  172. 172.

    Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    CAS  PubMed  Google Scholar 

  173. 173.

    Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 8, 80 (2014).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Sag, D., Cekic, C., Wu, R., Linden, J. & Hedrick, C. C. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat. Commun. 6, 6354 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Kannan, Y. et al. TPL-2 regulates macrophage lipid metabolism and M2 differentiation to control TH2-mediated immunopathology. PLOS Pathog. 12, e1005783 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. 177.

    Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. 179.

    Mourits, V. P., Wijkmans, J. C., Joosten, L. A. & Netea, M. G. Trained immunity as a novel therapeutic strategy. Curr. Opin. Pharmacol. 41, 52–58 (2018).

    CAS  PubMed  Google Scholar 

  180. 180.

    Buffen, K. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLOS Pathog. 10, e1004485 (2014).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Cheng, S. C. et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. 182.

    Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. 184.

    Patsoukis, N. et al. PD-1 alters T cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Lim, S. et al. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res. 76, 2231–2242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Ferris, R. L., Lu, B. & Kane, L. P. Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J. Immunol. 193, 1525–1530 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. 188.

    Lee, J. et al. Phosphotyrosine-dependent coupling of Tim-3 to T cell receptor signaling pathways. Mol. Cell. Biol. 31, 3963–3974 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Previte, D. M. et al. Lymphocyte activation gene-3 regulates mitochondrial biogenesis and metabolism of naive CD4+ T cells. J. Immunol. 198 (Suppl), 150.1 (2017).

    Google Scholar 

  190. 190.

    Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191.

    Klein, G. R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397 (2017).

    Google Scholar 

  192. 192.

    Choi, B. K. et al. 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation. Cell. Mol. Immunol. 14, 748–757 (2017).

    CAS  PubMed  Google Scholar 

  193. 193.

    Tsurutani, N. et al. Costimulation endows immunotherapeutic CD8 T cells with IL-36 responsiveness during aerobic glycolysis. J. Immunol. 196, 124–134 (2016).

    CAS  PubMed  Google Scholar 

  194. 194.

    Sabharwal, S. S. et al. GITR agonism enhances cellular metabolism to support CD8+ T cell proliferation and effector cytokine production in a mouse tumor model. Cancer Immunol. Res. 6, 1199–1211 (2018).

    CAS  PubMed  Google Scholar 

  195. 195.

    Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. 196.

    Gigoux, M. et al. Inducible costimulator facilitates T-dependent B cell activation by augmenting IL-4 translation. Mol. Immunol. 59, 46–54 (2014).

    CAS  PubMed  Google Scholar 

  197. 197.

    Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. 198.

    Desdin-Mico, G., Soto-Heredero, G. & Mittelbrunn, M. Mitochondrial activity in T cells. Mitochondrion 41, 51–57 (2018).

    CAS  PubMed  Google Scholar 

  199. 199.

    Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    CAS  Google Scholar 

  201. 201.

    Bantug, G. R. et al. Mitochondria-endoplasmic reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8+ T cells. Immunity 48, 542–555 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202.

    Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. 203.

    Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, 93411 (2017).

    PubMed  Google Scholar 

  204. 204.

    Xu, X. et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15, 1152–1161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Pearce, E. L. et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Murera, D. et al. CD4 T cell autophagy is integral to memory maintenance. Sci. Rep. 8, 5951 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. 207.

    Green, D. R., Galluzzi, L. & Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–1112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. 208.

    O’Sullivan, T. E., Johnson, L. R., Kang, H. H. & Sun, J. C. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory. Immunity 43, 331–342 (2015).

    PubMed  PubMed Central  Google Scholar 

  209. 209.

    Hinrichs, C. S. & Rosenberg, S. A. Exploiting the curative potential of adoptive T cell therapy for cancer. Immunol. Rev. 257, 56–71 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Klebanoff, C. A. et al. Determinants of successful CD8+ T cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    CAS  PubMed  Google Scholar 

  212. 212.

    van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    PubMed  Google Scholar 

  213. 213.

    Araki, K. et al. mTOR regulates memory CD8 T cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214.

    Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    CAS  PubMed  Google Scholar 

  215. 215.

    Zhang, L. et al. Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a foxo1-dependent manner. Cell Rep. 14, 1206–1217 (2016).

    CAS  PubMed  Google Scholar 

  216. 216.

    Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, 95103 (2017).

    PubMed  Google Scholar 

  218. 218.

    Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  220. 220.

    Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. 221.

    Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 712 (2016).

    CAS  PubMed  Google Scholar 

  222. 222.

    de Lima Thomaz, L. et al. The impact of metabolic reprogramming on dendritic cell function. Int. Immunopharmacol. 63, 84–93 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of P.R. is supported in part by the Swiss National Science Foundation (CRSII3_160708 and 31003A_156469 grants) and a research grant from Roche Pharma Research and Early Development (pRED). The work of S.C.-C.H. is supported by a Case Comprehensive Cancer Center ASC Pilot Award (IRG-91-022-19). S.-M.F. acknowledges research funding from the European Research Council (ERC) (ERC Consolidator Grant agreement number 771486 — MetaRegulation), the Research Foundation — Flanders (FWO; Odysseus Group II, Research Grants and Research Projects) and KU Leuven (Methuselah Co-Funding). The work of P.-C.H. is supported in part by the Swiss National Science Foundation (31003A_163204 and 31003A_182470 grants), the Melanoma Research Alliance, the Cancer Research Institute (CLIP award), Roche pRED and the Swiss Cancer League (grant KFS-3949-08-2016).

Author information

Affiliations

Authors

Contributions

All authors made substantial contributions to researching the data, discussions of content and writing of the manuscript and reviewed and edited the manuscript.

Corresponding author

Correspondence to Ping-Chih Ho.

Ethics declarations

Competing interests

P.R. is a member of the scientific advisory board of Immatics and NexImmune and has received speaker honoraria from AstraZeneca, Bristol-Myers Squibb and Roche and research funding from Roche in the form of a Pharma Research and Early Development (pRED) grant. S.-M.F. has received funding from Bayer and Merck. P.-C.H. has received research funding from Idorsia, Novartis and Roche (pRED grant) and speaker honoraria from Chugai and Pfizer and is a member of the scientific advisory board of Elixiron Immunotherapeutics. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wenes, M., Romero, P. et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol 16, 425–441 (2019). https://doi.org/10.1038/s41571-019-0203-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing