Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic barriers to cancer immunotherapy

Abstract

Several non-redundant features of the tumour microenvironment facilitate immunosuppression and limit anticancer immune responses. These include physical barriers to immune infiltration, the recruitment of suppressive immune cells and the upregulation of ligands on tumour cells that bind to inhibitory receptors on immune cells. Recent insights into the importance of the metabolic restrictions imposed by the tumour microenvironment on antitumour T cells have begun to inform immunotherapeutic anticancer strategies. Therapeutics that target metabolic restrictions, such as low glucose levels, a low pH, hypoxia and the generation of suppressive metabolites, have shown promise as combination therapies for different types of cancer. In this Review, we discuss the metabolic aspects of the antitumour T cell response in the context of immune checkpoint blockade, adoptive cell therapy and treatment with oncolytic viruses, and discuss emerging combination strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic barriers acting on different phases of immunotherapeutic response.
Fig. 2: Metabolic suppression in the tumour microenvironment.

Similar content being viewed by others

References

  1. Muir, A. & Vander Heiden, M. G. The nutrient environment affects therapy. Science 360, 962–963 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    PubMed  Google Scholar 

  4. Ho, P.-C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015). This study shows the mechanism by which glucose deprivation in the tumour can restrict antitumour T cell activity.

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Viallard, C. & Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20, 409–426 (2017).

    PubMed  CAS  Google Scholar 

  10. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Erra Díaz, F., Dantas, E. & Geffner, J. Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018, 1218297 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017). This study shows that FOXP3 can reprogramme T cells to downregulate glycolysis and upregulate OXPHOS to increase survival in low-glucose environments.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Sugiura, A. & Rathmell, J. C. Metabolic barriers to T cell function in tumors. J. Immunol. 200, 400–407 (2018).

    PubMed  CAS  Google Scholar 

  16. Andrejeva, G. & Rathmell, J. C. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26, 49–70 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Shyer, J. A., Flavell, R. A. & Bailis, W. Metabolic signaling in T cells. Cell Res. 30, 649–659 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Zhang, L. & Romero, P. Metabolic control of CD8+ T cell fate decisions and antitumor immunity. Trends Mol. Med. 24, 30–48 (2018).

    PubMed  CAS  Google Scholar 

  19. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Wahl, D. R., Byersdorfer, C. A., Ferrara, J. L. M., Opipari, A. W. & Glick, G. D. Distinct metabolic programs in activated T cells: opportunities for selective immunomodulation. Immunol. Rev. 249, 104–115 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Makowski, L., Chaib, M. & Rathmell, J. C. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011). This article shows that MYC signalling is required for the induction of glycolysis and glutaminolysis that occurs with T cell activation.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. & Waldmann, H. The role of lipid metabolism in T lymphocyte differentiation and survival. Front. Immunol. 8, 1949 (2017).

    PubMed  Google Scholar 

  27. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    PubMed  CAS  Google Scholar 

  28. Kempkes, R. W. M., Joosten, I., Koenen, H. J. P. M. & He, X. Metabolic pathways involved in regulatory T cell functionality. Front. Immunol. 10, 2839 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Marelli-Berg, F. M. & Jangani, M. Metabolic regulation of leukocyte motility and migration. J. Leukoc. Biol. 104, 285–293 (2018).

    PubMed  CAS  Google Scholar 

  30. van der Windt, G. J. W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012). This article shows that IL-15 signalling promotes mitochondrial biogenesis and induction of CPT1A to increase fatty acid oxidation and spare respiratory capacity to enable long-lived memory cells.

    PubMed  Google Scholar 

  31. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    PubMed  CAS  Google Scholar 

  33. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Riley, J. L. PD-1 signaling in primary T cells. Immunol. Rev. 229, 114–125 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Patsoukis, N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    PubMed  CAS  Google Scholar 

  37. Ogando, J. et al. PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8+ T lymphocytes. J. Immunother. Cancer 7, 151 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Tkachev, V. et al. Programmed death-1 controls T cell survival by regulating oxidative metabolism. J. Immunol. 194, 5789–5800 (2015).

    PubMed  CAS  Google Scholar 

  39. Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016). This article shows that tumour-infiltrating T cells lose their capacity to generate mitochondria through the loss of PGC1α, which controls mitochondrial biogenesis, and that restoration of PGC1α restores T cell function.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    PubMed Central  Google Scholar 

  44. Chowdhury, P. S., Chamoto, K., Kumar, A. & Honjo, T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6, 1375–1387 (2018).

    PubMed  CAS  Google Scholar 

  45. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Teijeira, A. et al. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation. cancer. Immunol. Res. 6, 798–811 (2018).

    CAS  Google Scholar 

  47. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021). Together with Yu et al. (2020) and Vardhana et al. (2020) this article shows that T cell mitochondrial reactive oxygen species, triggered by chronic antigen stimulation, drive epigenetic alterations and T cell exhaustion.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Yu, Y.-R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    PubMed  CAS  Google Scholar 

  49. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. McKeown, S. R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 87, 20130676 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Bertout, J. A., Patel, S. A. & Simon, M. C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 8, 967–975 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Najjar, Y. G. et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight 4, e124989 (2019). This article shows in patients with melanoma that oxidative tumours, which are more hypoxic than glycolytic tumours, are resistant to PD1 blockade through a more exhausted T cell phenotype.

    PubMed Central  Google Scholar 

  53. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl Med. 7, 277ra30 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    PubMed  CAS  Google Scholar 

  55. Jayaprakash, P. et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Invest. 128, 5137–5149 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    PubMed  Google Scholar 

  59. Fischer, K. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    PubMed  CAS  Google Scholar 

  60. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature https://doi.org/10.1038/s41586-020-03045-2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Renner, K. et al. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 29, 135–150.e9 (2019).

    PubMed  CAS  Google Scholar 

  62. Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e9 (2020).

    PubMed  CAS  Google Scholar 

  66. Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Tripathi, P. et al. STAT5 is critical to maintain effector CD8+ T cell responses. J. Immunol. 185, 2116–2124 (2010).

    PubMed  CAS  Google Scholar 

  68. Emran, A. A. et al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 40, 328–344 (2019).

    PubMed  CAS  Google Scholar 

  69. Rodriguez, P. C. et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).

    PubMed  CAS  Google Scholar 

  70. Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl Med. 7, 303ra139 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Lugli, E. et al. Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 123, 594–599 (2013). This article demonstrates that a pool of stem cell memory T cells are the precursors to central memory cells.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Berger, C. et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 118, 294–305 (2008).

    PubMed  CAS  Google Scholar 

  74. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Pilipow, K. et al. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 3, e122299 (2018).

    PubMed Central  Google Scholar 

  76. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016). This articles shows that elevating l-arginine levels can shift T cell metabolism from glycolysis to OXPHOS and support the antitumour function of T cells.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and eomesodermin. Immunity 32, 67–78 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    PubMed  CAS  Google Scholar 

  82. Ackermann, T. & Tardito, S. Cell culture medium formulation and its implications in cancer metabolism. Trends Cancer 5, 329–332 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987.e4 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Nabe, S. et al. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction. Cancer Sci. 109, 3737–3750 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Berahovich, R. et al. Hypoxia selectively impairs CAR-T cells in vitro. Cancers 11, 602 (2019).

    PubMed Central  CAS  Google Scholar 

  88. Gropper, Y. et al. Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep. 20, 2547–2555 (2017).

    PubMed  CAS  Google Scholar 

  89. Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic t cells regulates tumor progression. Cancer Cell 32, 669–683.e5 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Xu, Y. et al. Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J. Clin. Invest. 126, 2678–2688 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Huang, S., Apasov, S., Koshiba, M. & Sitkovsky, M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90, 1600–1610 (1997).

    PubMed  CAS  Google Scholar 

  93. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Hatfield, S. M. & Sitkovsky, M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr. Opin. Pharmacol. 29, 90–96 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Beavis, P. A. et al. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J. Clin. Invest. 127, 929–941 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Kato, Y. et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13, 89 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Kunzelmann, K. Ion channels and cancer. J. Membr. Biol. 205, 159–173 (2005).

    PubMed  CAS  Google Scholar 

  98. Kunzelmann, K. Ion channels in regulated cell death. Cell Mol. Life Sci. 73, 2387–2403 (2016).

    PubMed  CAS  Google Scholar 

  99. Eil, R. et al. Ionic immune suppression within the tumour microenvironment limits T cell effector function. Nature 537, 539–543 (2016). This article shows that necrosis within the tumour can release K+ ions into the microenvironment, which interferes with T cell receptor signalling.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Omilusik, K. et al. The CaV1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35, 349–360 (2011).

    PubMed  CAS  Google Scholar 

  101. Trebak, M. & Kinet, J.-P. Calcium signalling in T cells. Nat. Rev. Immunol. 19, 154–169 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Fultang, L. et al. Metabolic engineering against the arginine microenvironment enhances CAR-T cell proliferation and therapeutic activity. Blood 136, 1155–1160 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    PubMed  CAS  Google Scholar 

  104. Davola, M. E. & Mossman, K. L. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology 8, e1581528 (2019).

    PubMed  PubMed Central  Google Scholar 

  105. Meng, G. et al. Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma. Br. J. Cancer 122, 111–120 (2020).

    PubMed  CAS  Google Scholar 

  106. Li, C. et al. Dichloroacetate blocks aerobic glycolytic adaptation to attenuated measles virus and promotes viral replication leading to enhanced oncolysis in glioblastoma. Oncotarget 6, 1544–1555 (2015).

    PubMed  Google Scholar 

  107. Kennedy, B. E. et al. Inhibition of pyruvate dehydrogenase kinase enhances the antitumor efficacy of oncolytic reovirus. Cancer Res. 79, 3824–3836 (2019).

    PubMed  CAS  Google Scholar 

  108. Dyer, A. et al. Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells. Cancer Res. 79, 331–345 (2019).

    PubMed  CAS  Google Scholar 

  109. Pant, A., Cao, S. & Yang, Z. Asparagine is a critical limiting metabolite for vaccinia virus protein synthesis during glutamine deprivation. J. Virol. https://doi.org/10.1128/JVI.01834-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Greseth, M. D. & Traktman, P. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog. 10, e1004021 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Liang, J. et al. Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nat. Commun. 9, 1524 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Moskovskich, A. et al. The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Sci. Rep. 9, 10471 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Andtbacka, R. H. I. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    PubMed  CAS  Google Scholar 

  114. Fountzilas, C., Patel, S. & Mahalingam, D. Review: oncolytic virotherapy, updates and future directions. Oncotarget 8, 102617–102639 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Rivadeneira, D. B. et al. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity 51, 548–560.e4 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Matuszewska, K. et al. Combining vascular normalization with an oncolytic virus enhances immunotherapy in a preclinical model of advanced-stage ovarian cancer. Clin. Cancer Res. 25, 1624–1638 (2019).

    PubMed  CAS  Google Scholar 

  117. Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).

    PubMed  CAS  Google Scholar 

  118. Guo, Z. S. et al. Oncolytic immunotherapy: conceptual evolution, current strategies, and future perspectives. Front. Immunol. 8, 555 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Guedan, S. & Alemany, R. CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge. Front. Immunol. 9, 2460 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Nishio, N. et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 74, 5195–5205 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Watanabe, K. et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 3, e99573 (2018).

    PubMed Central  Google Scholar 

  122. Warmoes, M. O. & Locasale, J. W. Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochem. Pharmacol. 92, 12–21 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    PubMed  CAS  Google Scholar 

  124. Deng, T., Lyon, C. J., Bergin, S., Caligiuri, M. A. & Hsueh, W. A. Obesity, inflammation, and cancer. Annu. Rev. Pathol. 11, 421–449 (2016).

    PubMed  CAS  Google Scholar 

  125. Moore, L. L., Chadid, S., Singer, M. R., Kreger, B. E. & Denis, G. V. Metabolic health reduces risk of obesity-related cancer in Framingham study adults. Cancer Epidemiol. Biomarkers Prev. 23, 2057–2065 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  126. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018). This article, along with Cortellini et al. (2019) and Wang et al. (2019), shows that patients with obesity based on body mass index respond better to immunotherapy than patients with normal body mass index.

    PubMed  PubMed Central  Google Scholar 

  127. Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7, 57 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    PubMed  CAS  Google Scholar 

  129. Matarese, G. & La Cava, A. The intricate interface between immune system and metabolism. Trends Immunol. 25, 193–200 (2004).

    PubMed  CAS  Google Scholar 

  130. Cao, H. Adipocytokines in obesity and metabolic disease. J. Endocrinol. 220, T47–T59 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Jung, U. J. & Choi, M.-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15, 6184–6223 (2014).

    PubMed  PubMed Central  Google Scholar 

  132. Weidinger, C., Ziegler, J. F., Letizia, M., Schmidt, F. & Siegmund, B. Adipokines and their role in intestinal inflammation. Front. Immunol. 9, 1974 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. Francisco, V. et al. Adipokines and inflammation: is it a question of weight? Br. J. Pharmacol. 175, 1569–1579 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013). This article shows that butyrate produced in the gut by commensal microorganisms can induce Treg cell differentiation and maintain gut homeostasis.

    PubMed  CAS  Google Scholar 

  137. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    PubMed  CAS  Google Scholar 

  138. Luu, M. et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8, 14430 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019). This article shows that germ-free mice have impaired memory T cell responses and that microbially derived butyrate promotes CD8+ T cell memory formation by shifting the metabolism of CD8+ T cells to OXPHOS.

    PubMed  CAS  Google Scholar 

  140. Sun, M. et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9, 3555 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    PubMed  CAS  Google Scholar 

  142. Castaner, O. et al. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018, 4095789 (2018).

    PubMed  PubMed Central  Google Scholar 

  143. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    PubMed  CAS  Google Scholar 

  144. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). The clinical trial results in this article resulted in the approval of ipilimumab for treatment of patients with melanoma.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    PubMed  CAS  Google Scholar 

  147. Brunet, J. F. et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature 328, 267–270 (1987).

    CAS  PubMed  Google Scholar 

  148. Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    PubMed  CAS  Google Scholar 

  149. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    PubMed  CAS  Google Scholar 

  150. Lenschow, D. J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257, 789–792 (1992).

    PubMed  CAS  Google Scholar 

  151. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    PubMed  CAS  Google Scholar 

  154. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    PubMed  CAS  Google Scholar 

  155. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    PubMed  CAS  Google Scholar 

  156. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  157. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    PubMed  Google Scholar 

  158. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Nishimura, H., Honjo, T. & Minato, N. Facilitation of beta selection and modification of positive selection in the thymus of PD-1-deficient mice. J. Exp. Med. 191, 891–898 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  160. Nishimura, H. et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int. Immunol. 8, 773–780 (1996).

    PubMed  CAS  Google Scholar 

  161. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    PubMed  CAS  Google Scholar 

  162. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  163. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    PubMed  CAS  Google Scholar 

  164. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    PubMed  CAS  Google Scholar 

  165. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  168. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    PubMed  CAS  Google Scholar 

  169. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5, 677–685 (1999).

    PubMed  CAS  Google Scholar 

  172. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  173. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018). This article shows the correlation of TCF7+ T cells and response to immunotherapy.

    PubMed  PubMed Central  CAS  Google Scholar 

  176. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019). This article, along with Miller et al. (2019) and Sade-Feldman (2018), demonstrates the importance of a TCF7+ progenitor CD8+ T cell population in response to anti-PD1 therapy (TCF7 is also known as TCF1).

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Sadelain, M. CD19 CAR T cells. Cell 171, 1471 (2017).

    PubMed  CAS  Google Scholar 

  178. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    PubMed  CAS  Google Scholar 

  180. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl Med. 3, 95ra73 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl Med. 5, 177ra38 (2013).

    PubMed  PubMed Central  Google Scholar 

  183. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  184. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic Leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    PubMed  CAS  Google Scholar 

  187. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy — update 2019. Oncologist 25, e423–e438 (2020).

    PubMed  Google Scholar 

  190. Filley, A. C. & Dey, M. Immune system, friend or foe of oncolytic virotherapy? Front. Oncol. 7, 106 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Lemos de Matos, A., Franco, L. S. & McFadden, G. Oncolytic viruses and the immune system: the dynamic duo. Mol. Ther. Methods Clin. Dev. 17, 349–358 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39, 209–221 (2018).

    PubMed  CAS  Google Scholar 

  193. Rojas, J. J., Sampath, P., Hou, W. & Thorne, S. H. Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin. Cancer Res. 21, 5543–5551 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Woller, N. et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol. Ther. 23, 1630–1640 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  195. Ricca, J. M. et al. Pre-existing immunity to oncolytic virus potentiates its immunotherapeutic efficacy. Mol. Ther. 26, 1008–1019 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Liu, Z., Ravindranathan, R., Kalinski, P., Guo, Z. S. & Bartlett, D. L. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun. 8, 14754 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Nakao, S. et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci. Transl Med. 12, eaax7992 (2020).

    PubMed  CAS  Google Scholar 

  198. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med. 6, 226ra32 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Oh, E., Choi, I.-K., Hong, J. & Yun, C.-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 8, 4730–4746 (2017).

    PubMed  Google Scholar 

  200. Fend, L. et al. Oncolytic virotherapy with an armed vaccinia virus in an orthotopic model of renal carcinoma is associated with modification of the tumor microenvironment. Oncoimmunology 5, e1080414 (2016).

    PubMed  Google Scholar 

  201. Patel, M. R. et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget 6, 33165–33177 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Delgoffe laboratory for helpful discussions during the course of writing this Review. K.D. was supported by T32CA082084 and 1F31CA247129. G.M.D. is supported by an NIH Director’s New Innovator Award (DP2AI136598), the Mark Foundation for Cancer Research Emerging Leader Award, the Cancer Research Institute Lloyd J. Old STAR Award and the Sy Holzer Endowed Immunotherapy Fund.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Greg M. Delgoffe.

Ethics declarations

Competing interests

G.M.D. declares competing financial interests and has submitted patents covering the use of PGC1α in cell therapies, metabolic manipulation of culture conditions for cell therapies, and the use of leptin and other adipokines in oncolytic viruses that are licensed or pending and is entitled to a share in net income generated from the licencing of these patent rights for commercial development. G.M.D. consults for and/or is on the scientific advisory boards of BlueSphere Bio, Century Therapeutics, Novasenta, Pieris Pharmaceuticals and Kalivir, has grants from bluebird bio, Novasenta, Pfizer, Pieris Pharmaceuticals, TCR2 and Western Oncolytics/Kalivir, and owns stock in Novasenta and BlueSphere Bio. K.D. declares no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks Jeffrey Rathmell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Immune editing

The process by which tumour cells mutate and evolve to evade detection and elimination by the immune system.

Tumoural escape

The ability of tumour cells to escape from elimination by immune cells, for example through immune editing.

Glycolysis

The process by which cytosolic glucose is converted into pyruvate, which is then shuttled into the mitochondria, where it feeds into the tricarboxylic acid cycle. However, under conditions of low oxygen, pyruvate is usually fermented into lactic acid, which regenerates oxidized nicotinamide adenine dinucleotide (NAD+) and accelerates upstream glycolysis. Otto Warburg discovered that in tumour cells this fermentation can also occur under oxygen-sufficient conditions. This phenomenon is termed ‘aerobic glycolysis’ or the ‘Warburg effect’.

Oxidative phosphorylation

(OXPHOS). The process by which metabolic intermediates from the tricarboxylic acid cycle are oxidized, generating a proton gradient that powers ATP synthase to produce ATP.

Tricarboxylic acid (TCA) cycle

A series of biochemical reactions in which acetyl-CoA is metabolized to generate reducing intermediates for the electron transport chain (generating ATP through oxidative phosphorylation), as well as numerous metabolic intermediates for various synthetic pathways. Acetyl-CoA can be fed into the TCA cycle by the decarboxylation of pyruvate, β-oxidation of fatty acids or α-ketoglutarate through the production of amino acids.

Fatty acid oxidation

The process by which fatty acid chains are broken down by β-oxidation and subsequently combined with CoA to form acetyl-CoA and enter the tricarboxylic acid cycle.

PI3K–AKT–mTOR axis

A signalling pathway that is activated through extracellular or intracellular stimulation of phosphoinositide-3 kinase (PI3K), which leads to the activation of AKT (also known as protein kinase B) and mechanistic target of rapamycin (mTOR). The manner in which PI3K and AKT are activated can alter the downstream effects of mTOR activation and the activity of its various ternary complexes. This axis controls proliferation, translation, the cell cycle, glucose metabolism, autophagy and cell survival.

Flux analysis

The analysis of the oxygen consumption rate and extracellular acidification rate of a cell population to determine its rate of glycolysis or oxidative phosphorylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DePeaux, K., Delgoffe, G.M. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 21, 785–797 (2021). https://doi.org/10.1038/s41577-021-00541-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00541-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer