Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical hydrogenation and oxidation of organic species involving water

Abstract

Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General overview of how electrochemistry powered by renewable energy can transform organic species into more valuable chemicals.
Fig. 2: Electrodes, performance metrics and characterization techniques.
Fig. 3: General processes of electrochemical hydrogenation reactions (EHRs) and electro-oxidation reactions (EORs).
Fig. 4: Electrocatalyst design regulating the selectivity of electrochemical hydrogenation reactions (EHRs).
Fig. 5: Electrocatalyst design regulating the selectivity of electro-oxidation reactions.
Fig. 6: Interfacial microenvironment regulating the performance of electrochemical hydrogenation and oxidation reactions.
Fig. 7: Paired electrochemical hydrogenation and oxidation reactions (EHORs).

Similar content being viewed by others

References

  1. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Caron, S., Dugger, R. W., Ruggeri, S. G., Ragan, J. A. & Ripin, D. H. B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 106, 2943–2989 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, D., Weinstein, A. B., White, P. B. & Stahl, S. S. Ligand-promoted palladium-catalyzed aerobic oxidation reactions. Chem. Rev. 118, 2636–2679 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, H., Sun, Z. & Hu, Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 149, 111330 (2021).

    Article  CAS  Google Scholar 

  6. Hashim, S. S., Mohamed, A. R. & Bhatia, S. Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation. Renew. Sustain. Energy Rev. 15, 1284–1293 (2011).

    Article  CAS  Google Scholar 

  7. Pang, M. et al. Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nat. Commun. 11, 1249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gunanathan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 341, 1229712 (2013).

    Article  PubMed  Google Scholar 

  9. Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 117, 11406–11459 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Ghavtadze, N., Melkonyan, F. S., Gulevich, A. V., Huang, C. & Gevorgyan, V. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C–H oxidation. Nat. Chem. 6, 122–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  13. Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    Article  Google Scholar 

  14. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Tang, C., Zheng, Y., Jaroniec, M. & Qiao, S.-Z. Electrocatalytic refinery for sustainable production of fuels and chemicals. Angew. Chem. Int. Ed. 60, 19572–19590 (2021).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Res. 16, 6444–6476 (2023).

    Article  Google Scholar 

  17. Campbell, K. N. & Young, E. E. The addition of hydrogen to multiple carbon–carbon bonds. IV. The electrolytic reduction of alkyl and aryl acetylenes. J. Am. Chem. Soc. 65, 965–967 (1943).

    Article  CAS  Google Scholar 

  18. Schlesinger, H. I. & Burg, A. B. Recent developments in the chemistry of the boron hydrides. Chem. Rev. 31, 1–41 (1942).

    Article  CAS  Google Scholar 

  19. Harnisch, F. & Morejón, M. C. Hydrogen from water is more than a fuel: hydrogenations and hydrodeoxygenations for a biobased economy. Chem. Rec. 21, 2277–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Y. & Zhang, B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 6, 3214–3226 (2019).

    Article  CAS  Google Scholar 

  21. Fuchigami, T., Inagi, S. & Atobe, M. Fundamentals and Applications of Organic Electrochemistry 1st edn (Wiley, 2015).

  22. Jiang, J., Wu, B. & Cha, C. Electrosynthesis of p-methoxybenzaldehyde on graphite/Nafion membrane composite electrodes. Electrochim. Acta 43, 2549 (1998).

    Article  CAS  Google Scholar 

  23. Zhang, P. & Sun, L. Electrocatalytic hydrogenation and oxidation in aqueous conditions. Chin. J. Chem. 38, 996–1004 (2020).

    Article  CAS  Google Scholar 

  24. Liu, C., Wu, Y., Zhao, B. & Zhang, B. Designed nanomaterials for electrocatalytic organic hydrogenation using water as the hydrogen source. Acc. Chem. Res. 56, 1872–1883 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Sun, H., Ou, W., Sun, L., Wang, B. & Su, C. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Res. 15, 10292–10315 (2022).

    Article  CAS  Google Scholar 

  26. Akhade, S. A. et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem. Rev. 120, 11370–11419 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, G., Li, X. & Feng, X. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem. Int. Ed. 61, e202209014 (2022).

    Article  CAS  Google Scholar 

  28. Heard, D. M. & Lennox, A. J. J. Electrode materials in modern organic electrochemistry. Angew. Chem. Int. Ed. 59, 18866–18884 (2020).

    Article  CAS  Google Scholar 

  29. Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 49, 1873–1883 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, B.-H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).

    Article  Google Scholar 

  31. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Inoue, H., Abe, T. & Iwakura, C. Successive hydrogenation of styrene at a palladium sheet electrode combined with electrochemical supply of hydrogen. Chem. Commun. https://doi.org/10.1039/CC9960000055 (1996).

  33. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  34. Sherbo, R. S., Kurimoto, A., Brown, C. M. & Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, T., Sato, S. & Itoh, N. Using a hydrogen-permeable palladium membrane electrode to produce hydrogen from water and hydrogenate toluene. Int. J. Hydrog. Energy 41, 5419e5427 (2016).

    Article  Google Scholar 

  36. Han, G., Li, G. & Sun, Y. Electrocatalytic dual hydrogenation of organic substrates with a faradaic efficiency approaching 200%. Nat. Catal. 6, 224–233 (2023).

    Article  CAS  Google Scholar 

  37. Yan, Y.-Q. et al. Electrochemistry-assisted selective butadiene hydrogenation with water. Nat. Commun. 14, 2106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, Y. et al. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat. Water 1, 95–103 (2023).

    Article  Google Scholar 

  39. Zhang, Y. & Kornienko, N. C≡N triple bond cleavage via trans-membrane hydrogenation. Chem. Catal. 2, 499–507 (2022).

    Article  CAS  Google Scholar 

  40. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    Article  CAS  Google Scholar 

  41. Kurimoto, A. et al. Bioelectrocatalysis with a palladium membrane reactor. Nat. Commun. 14, 1814 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurimoto, A. et al. Physical separation of H2 activation from hydrogenation chemistry reveals the specific role of secondary metal catalysts. Angew. Chem. Int. Ed. 60, 11937–11942 (2021).

    Article  CAS  Google Scholar 

  43. Conde, J. J., Maroño, M. & Sánchez-Hervás, J. M. Pd-based membranes for hydrogen separation: review of alloying elements and their influence on membrane properties. Sep. Purif. Rev. 46, 152–177 (2017).

    Article  CAS  Google Scholar 

  44. Leech, M. C. & Lam, K. A practical guide to electrosynthesis. Nat. Rev. Chem. 6, 275–286 (2022).

    Article  PubMed  Google Scholar 

  45. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

  46. Bard, A. J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. J. Am. Chem. Soc. 132, 7559–7567 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, Y. & Zhang, B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529–1541 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Zheng, Y., Jiao, Y., Vasileff, A. & Qiao, S.-Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. 57, 7568–7579 (2018).

    Article  CAS  Google Scholar 

  49. Gnaim, S. et al. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. Nature 605, 687–695 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, S. & Findlater, M. Electrochemically driven hydrogen atom transfer catalysis: a tool for C(sp3)/Si–H functionalization and hydrofunctionalization of alkenes. ACS Catal. 13, 8731–8751 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chadderdon, X. H. et al. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 139, 14120–14128 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  54. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005).

    Article  Google Scholar 

  55. Gao, W., Liu, S., Sun, G., Zhang, C. & Pan, Y. Single-atom catalysts for hydrogen activation. Small 19, 2300956 (2023).

    Article  CAS  Google Scholar 

  56. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    Article  CAS  Google Scholar 

  57. Hunter, B. M., Gray, H. B. & Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Gao, L., Cui, X., Sewell, C. D., Li, J. & Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50, 8428–8469 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Huang, Z.-F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    Article  CAS  Google Scholar 

  60. Xiao, K., Wang, Y., Wu, P., Hou, L. & Liu, Z.-Q. Activating lattice oxygen in spinel ZnCo2O4 through filling oxygen vacancies with fluorine for electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 62, e202301408 (2023).

    Article  CAS  Google Scholar 

  61. Mallat, T. & Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. 104, 3037–3058 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Ryu, J. et al. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat. Catal. 4, 742–752 (2021).

    Article  CAS  Google Scholar 

  63. Ding, H., Liu, H., Chu, W., Wu, C. & Xie, Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121, 13174–13212 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, Y., Chong, X., Liu, C., Liang, Y. & Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem. Int. Ed. 57, 13163–13166 (2018).

    Article  CAS  Google Scholar 

  65. Huang, C., Huang, Y., Liu, C., Yu, Y. & Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem. Int. Ed. 58, 12014–12017 (2019).

    Article  CAS  Google Scholar 

  66. Yan, Z. et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 9, 2373 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yang, G. et al. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat. Commun. 13, 3125 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, Z.-Y. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 22, 100–108 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Han, S. et al. Preferential adsorption of ethylene oxide on Fe and chlorine on Ni enabled scalable electrosynthesis of ethylene chlorohydrin. Angew. Chem. Int. Ed. 62, e202216581 (2023).

    Article  CAS  Google Scholar 

  70. Liu, C., Han, S., Li, M., Chong, X. & Zhang, B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode. Angew. Chem. Int. Ed. 59, 18527–18531 (2020).

    Article  CAS  Google Scholar 

  71. Lu, L., Li, H., Zheng, Y., Bu, F. & Lei, A. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides. CCS Chem. 3, 2669–2675 (2021).

    Article  CAS  Google Scholar 

  72. Li, P. et al. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat. Commun. 13, 3774 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davitt, H. J. & Albright, L. F. Electrochemical hydrogenation of ethylene, acetylene, and ethylene-acetylene mixtures. J. Electrochem. Soc. 118, 236–242 (1971).

    Article  CAS  Google Scholar 

  74. Rubinson, J. F., Behymer, T. D. & Mark, H. B. Direct reduction of acetylene at molybdenum modified polymeric sulfur nitride, (SN)x, electrodes. J. Am. Chem. Soc. 104, 1224–1229 (1982).

    Article  CAS  Google Scholar 

  75. Bu, J. et al. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 4, 557–564 (2021).

    Article  CAS  Google Scholar 

  76. Li, B. & Ge, H. Highly selective electrochemical hydrogenation of alkynes: rapid construction of mechanochromic materials. Sci. Adv. 5, eaaw2774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu, K. et al. Unraveling the role of interfacial water structure in electrochemical semihydrogenation of alkynes. ACS Catal. 12, 4840–4847 (2022).

    Article  CAS  Google Scholar 

  78. Ling, Y. et al. Selenium vacancy promotes transfer semihydrogenation of alkynes from water electrolysis. ACS Catal. 11, 9471–9478 (2021).

    Article  CAS  Google Scholar 

  79. Xing, C. et al. Highly selective electrocatalytic olefin hydrogenation in aqueous solution. Angew. Chem. Int. Ed. 62, e202310722 (2023).

    Article  CAS  Google Scholar 

  80. Liu, Z., Zhang, L., Ren, Z. & Zhang, J. Advances in selective electrocatalytic hydrogenation of alkynes to alkenes. Chem. Eur. J. 29, e202202979 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, Y., Liu, C., Wang, C., Lu, S. & Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem. Int. Ed. 59, 21170–21175 (2020).

    Article  CAS  Google Scholar 

  82. Wang, S. et al. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat. Commun. 12, 7072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

    Article  CAS  Google Scholar 

  84. Blanco, D. E., Lee, B. & Modestino, M. A. Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc. Natl Acad. Sci. USA 116, 17683–17689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, R. et al. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines. Nat. Commun. 13, 5951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xia, R. et al. Electrochemical reduction of acetonitrile to ethylamine. Nat. Commun. 12, 1949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, D. et al. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage. Chem. Catal. 1, 393–406 (2021).

    Article  CAS  Google Scholar 

  88. He, M. et al. Field-induced concentration and low coordination-enhanced adsorption boost electroreductive deuteration of nitriles over copper nanotips. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2618234/v1 (2023).

  89. Wirtanen, T., Rodrigo, E. & Waldvogel, S. R. Recent advances in the electrochemical reduction of substrates involving N–O bonds. Adv. Synth. Catal. 362, 2088–2101 (2020).

    Article  Google Scholar 

  90. Zhang, P. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem. Int. Ed. 58, 9155–9159 (2019).

    Article  CAS  Google Scholar 

  91. Qiao, W. et al. Paired electrochemical N–N coupling employing a surface-hydroxylated Ni3Fe-MOF-OH bifunctional electrocatalyst with enhanced adsorption of nitroarenes and anilines. ACS Catal. 11, 13510–13518 (2021).

    Article  CAS  Google Scholar 

  92. Xu, C., Paone, E., Rodríguez-Padrón, D., Luque, R. & Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 49, 4273–4306 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Fan, Z. et al. Recent developments in electrode materials for the selective upgrade of biomass-derived platform molecules into high-value-added chemicals and fuels. Green Chem. 24, 7818–7868 (2022).

    Article  CAS  Google Scholar 

  94. Chong, X., Liu, C., Huang, Y., Huang, C. & Zhang, B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl Sci. Rev. 7, 285–295 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Anibal, J. & Xu, B. Electroreductive C−C coupling of furfural and benzaldehyde on Cu and Pb surfaces. ACS Catal. 10, 11643–11653 (2020).

    Article  CAS  Google Scholar 

  96. Ji, K. et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem. Int. Ed. 61, e202209849 (2022).

    Article  CAS  Google Scholar 

  97. Wang, Y., Huang, Z. & Huang, Z. Catalyst as colour indicator for endpoint detection to enable selective alkyne trans-hydrogenation with ethanol. Nat. Catal. 2, 529–536 (2019).

    Article  CAS  Google Scholar 

  98. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  99. Li, X. et al. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 7, 754–767 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. He, X. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 10, 3663 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhu, Q. et al. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. J. Catal. 405, 499–507 (2022).

    Article  CAS  Google Scholar 

  102. Li, H. et al. σ-Alkynyl adsorption enables electrocatalytic semi-hydrogenation of terminal alkynes with easy-reducible/passivated groups over amorphous PdSx nanocapsules. J. Am. Chem. Soc. 144, 19456–19465 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, Y., Liu, C., Wang, C., Chong, X. & Zhang, B. Sulfur vacancy-promoted highly selective electrosynthesis of functionalized amino-arenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−X nanosheet cathode. CCS Chem. 3, 507–515 (2021).

    Article  CAS  Google Scholar 

  104. You, B. & Sun, Y. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 51, 1571–1580 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Shi, Y. et al. Unveiling the promotion of surface‐adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction. Angew. Chem. Int. Ed. 59, 22470–22474 (2020).

    Article  CAS  Google Scholar 

  106. Chong, X., Liu, C., Wang, C., Yang, R. & Zhang, B. Integrating hydrogen production and transfer hydrogenation with selenite promoted electrooxidation of α-nitrotoluenes to E-nitroethenes. Angew. Chem. Int. Ed. 60, 22010–22016 (2021).

    Article  CAS  Google Scholar 

  107. Zhao, G. et al. Electrochemical oxidation of 5-hydroxymethylfurfural on CeO2-modified Co3O4 with regulated intermediate adsorption and promoted charge transfer. Adv. Funct. Mater. 33, 2213170 (2023).

    Article  CAS  Google Scholar 

  108. Li, S. et al. Doped Mn enhanced NiS electrooxidation performance of HMF into FDCA at industrial-level current density. Adv. Funct. Mater. 33, 2214488 (2023).

    Article  CAS  Google Scholar 

  109. Wang, T. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5, 66–73 (2022).

    Article  CAS  Google Scholar 

  110. Li, G. et al. Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst. Nat. Commun. 14, 525 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tang, C. et al. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 56, 842–846 (2017).

    Article  CAS  Google Scholar 

  112. Zhang, J.-Y. et al. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57, 7649–7653 (2018).

    Article  CAS  Google Scholar 

  113. Sun, Y. et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2. J. Am. Chem. Soc. 144, 15185–15192 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, W. et al. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem. Int. Ed. 59, 16974–16981 (2020).

    Article  CAS  Google Scholar 

  115. Wang, D. et al. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat. Commun. 10, 2796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Huang, H. et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm−2. Energy Environ. Sci. 13, 4990–4999 (2020).

    Article  CAS  Google Scholar 

  117. Goetz, M. K., Bender, M. T. & Choi, K.-S. Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH. Nat. Commun. 13, 5848 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Qi, Y. et al. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, F. et al. Concerted and selective electrooxidation of PET-derived alcohol to glycolic acid at an industry-level current density over a Pd-Ni(OH)2 catalyst. Angew. Chem. Int. Ed. 62, e202300094 (2023).

    Article  CAS  Google Scholar 

  120. Zhu, B. et al. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides. Nat. Commun. 14, 1686 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fleischmann, M., Korinek, K. & Pletcher, D. The oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 31, 39–49 (1971).

    Article  CAS  Google Scholar 

  122. Chen, W. et al. Unraveling the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO. Natl Sci. Rev. 10, nwad099 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Yuan, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 52, 3309–3324 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Golden, D. L., Suh, S.-E. & Stahl, S. S. Radical C(sp3)–H functionalization and cross-coupling reactions. Nat. Rev. Chem. 6, 405–427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wen, Q. et al. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano 16, 9572–9582 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Kar, S. & Milstein, D. Oxidation of organic compounds using water as the oxidant with H2 liberation catalyzed by molecular metal complexes. Acc. Chem. Res. 55, 2304–2315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Balaraman, E., Khaskin, E., Leitus, G. & Milstein, D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat. Chem. 5, 122–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Tang, S., Ben-David, Y. & Milstein, D. Oxidation of alkenes by water with H2 liberation. J. Am. Chem. Soc. 142, 5980–5984 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, H. et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)–C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew. Chem. Int. Ed. 60, 8976–8982 (2021).

    Article  CAS  Google Scholar 

  131. Lum, Y. et al. Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nat. Catal. 3, 14–22 (2020).

    Article  CAS  Google Scholar 

  132. Jin, K. et al. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 141, 6413–6418 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Han, S. et al. Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Rep. Phys. Sci. 2, 100462 (2021).

    Article  CAS  Google Scholar 

  134. Ogura, K. & Takamagari, K. Direct conversion of methane to methanol, chloromethane and dichloromethane at room temperature. Nature 319, 308 (1986).

    Article  CAS  Google Scholar 

  135. Wang, Q. et al. Electrocatalytic methane oxidation greatly promoted by chlorine intermediates. Angew. Chem. Int. Ed. 60, 17398–17403 (2021).

    Article  CAS  Google Scholar 

  136. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and pelated N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu, N.-N., Yoo, S. J., Li, L.-J., Zeng, C.-C. & Little, R. D. A comparative study of organic electron transfer redox mediators: electron transfer kinetics for triarylimidazole and triarylamine mediators in the oxidation of 4-methoxybenzyl alcohol. Electrochim. Acta 142, 254–260 (2014).

    Article  CAS  Google Scholar 

  138. Platen, M. & Sleckhan, E. Oxidative deblocking of the 4-methoxybenzyl thioether protecting group: application to the directed synthesis of poly-cystinyl peptides. Liebigs Ann. Chem. 1984, 1563–1576 (1984).

    Article  Google Scholar 

  139. Zhao, Y. et al. Br/BrO-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3. Nat. Commun. 14, 1943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu, X. et al. Bromide-mediated photoelectrochemical epoxidation of alkenes using water as an oxygen source with conversion efficiency and selectivity up to 100%. J. Am. Chem. Soc. 144, 19770–19777 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Green, R. A., Hill-Cousins, J. T., Brown, R. C. D., Pletcher, D. & Leach, S. G. A voltammetric study of the 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) mediated oxidation of benzyl alcohol in tert-butanol/water. Electrochim. Acta 113, 550–556 (2013).

    Article  CAS  Google Scholar 

  142. Andrieux, C. P., Robert, M. & Savéant, J.-M. Role of environmental factors in the dynamics of intramolecular dissociative electron transfer. Effect of solvation and ion-pairing on cleavage rates of anion radicals. J. Am. Chem. Soc. 117, 9340–9346 (1995).

    Article  CAS  Google Scholar 

  143. Han, C. et al. Electrocatalytic hydrogenation of alkenes with Pd/carbon nanotubes at an oil–water interface. Nat. Catal. 5, 1110–1119 (2022).

    Article  CAS  Google Scholar 

  144. Wu, Y. et al. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 12, 3881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhao, Y. et al. Dopant- and surfactant-tuned electrode-electrolyte interface enabling efficient alkynol semi-hydrogenation. J. Am. Chem. Soc. 145, 6516–6525 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Gao, Y. et al. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 8, eabm9477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, Z. et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy. Nat. Commun. 13, 5009 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Guo, J. X. et al. Direct seawater electrolysis by adjusting catalyst’s local reaction environment. Nat. Energy 8, 264–272 (2023).

    CAS  Google Scholar 

  149. Huang, L. S. et al. Ethylene electrooxidation to 2-chloroethanol in acidic seawater with natural chloride participation. J. Am. Chem. Soc. 145, 15565–15571 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Marken, F., Cresswell, A. J. & Bull, S. D. Recent advances in paired electrosynthesis. Chem. Rec. 21, 2585–2600 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Llorente, M. J., Nguyen, B. H., Kubiak, C. P. & Moeller, K. D. Paired electrolysis in the simultaneous production of synthetic intermediates and substrates. J. Am. Chem. Soc. 138, 15110–15113 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article  CAS  Google Scholar 

  153. Gonglach, S. et al. Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide. Nat. Commun. 10, 3864 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kumar, A., Phillips, K. R., Cai, J., Schröder, U. & Lienhard, J. H. Integrated valorization of desalination brine through NaOH recovery: opportunities and challenges. Angew. Chem. Int. Ed. 58, 6502–6511 (2019).

    Article  CAS  Google Scholar 

  155. Schäfer, H. J. Contributions of organic electrosynthesis to green chemistry. C. R. Chim. 14, 745–765 (2011).

    Article  Google Scholar 

  156. Guo, S. et al. Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat. Commun. 13, 5297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, S. et al. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 29, 1904780 (2019).

    Article  CAS  Google Scholar 

  158. Chadderdon, X. H., Chadderdon, D. J., Pfennig, T., Shanks, B. H. & Li, W. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 21, 6210–6219 (2019).

    Article  CAS  Google Scholar 

  159. Zhang, X. et al. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Appl. Catal. B 244, 899–908 (2019).

    Article  CAS  Google Scholar 

  160. Mo, Y. et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science 368, 1352–1357 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Dong, X., Roeckl, J. L., S. Waldvogel, R. & Morandi, B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science 371, 507–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Fagnani, D. E., Kim, D., Camarero, S. I., Alfaro, J. F. & McNeil, A. J. Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination. Nat. Chem. 15, 222–229 (2023).

    Article  CAS  PubMed  Google Scholar 

  163. Yurko, Y. & Elbaz, L. Direct quinone fuel cells. J. Am. Chem. Soc. 145, 2653–2660 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, C. et al. Selectivity origin of organic electrosynthesis controlled by electrode materials: a case study on pinacols. ACS Catal. 11, 8958–8967 (2021).

    Article  CAS  Google Scholar 

  165. Hao, L. et al. Promoting electrocatalytic hydrogenation of oxalic acid to glycolic acid via an Al3+ ion adsorption strategy coupled with ethylene glycol oxidation. ACS Appl. Mater. Interfaces 15, 13176–13185 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  167. Han, S. et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nat. Catal. 6, 402–414 (2023).

    Article  CAS  Google Scholar 

  168. Huang, Y., Wang, Y., Wu, Y., Yu, Y. & Zhang, B. Electrocatalytic construction of the C–N bond from the derivates of CO2 and N2. Sci. China Chem. 65, 204–206 (2022).

    Article  CAS  Google Scholar 

  169. Wu, Y. et al. Electrosynthesis of 15N-labeled amino acids from 15N-nitrite and ketonic acids. Sci. China Chem. 66, 1854–1859 (2023).

    Article  CAS  Google Scholar 

  170. Meng, N. et al. Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat. Commun. 13, 5452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, M. et al. Electrosynthesis of amino acids from NO and α-keto acids using two decoupled flow reactor. Nat. Catal. 6, 906–915 (2023).

    Article  Google Scholar 

  172. Li, J., Al-Mahayni, H., Chartrand, D., Seifitokaldani, A. & Kornienko, N. Electrochemical formation of C–S bonds from CO2 and small molecule sulfur species. Nat. Synth. 2, 757–765 (2023).

    Article  Google Scholar 

  173. Zhang, Y. et al. Oxy-reductive C–N bond formation via pulsed electrolysis. Preprint at https://doi.org/10.26434/chemrxiv-2022-07rlk (2022).

  174. Fan, L. et al. Selective production of ethylene glycol at high rate via cascade catalysis. Nat. Catal. 6, 585–595 (2023).

    Article  CAS  Google Scholar 

  175. Ko, M. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat. Catal. 5, 37–44 (2022).

    Article  CAS  Google Scholar 

  176. Sen, R. et al. Electrocatalytic water oxidation: an overview with an example of translation from lab to market. Front. Chem. 10, 861604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shao, J. et al. Scalable electrosynthesis of formamide through C–N coupling at the industrially relevant current density of 120 mA cm−2. Angew. Chem. Int. Ed. 61, e202213009 (2022).

    Article  CAS  Google Scholar 

  178. Zhou, H. et al. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-faradaic transformations. Nat. Commun. 14, 5621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fukazawa, A. et al. A new approach to stereoselective electrocatalytic semihydrogenation of alkynes to Z-alkenes using a proton-exchange membrane reactor. ACS Sustain. Chem. Eng. 7, 11050–11055 (2019).

    Article  CAS  Google Scholar 

  180. Green, S. K., Tompsett, G. A., Kim, H. J., Kim, W. B. & Huber, G. W. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass. ChemSusChem 5, 2410–2420 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Valiente, A., Martínez-Pardo, P., Kaur, G., Johansson, M. J. & Martín-Matute, B. Electrochemical proton reduction over nickel foam for Z-stereoselective semihydrogenation/deuteration of functionalized alkynes. ChemSusChem 15, e202102221 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Jiang, M. et al. Promoted electrocatalytic hydrogenation of furfural in a bi-phasic system. Chem. Commun. 59, 3101–3106 (2023).

    Article  Google Scholar 

  183. Nilges, P. & Schröder, U. Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy Environ. Sci. 6, 2925–2931 (2013).

    Article  CAS  Google Scholar 

  184. Liu, X., Liu, R., Qiu, J., Cheng, X. & Li, G. Chemical‐reductant‐free electrochemical deuteration reaction using deuterium oxide. Angew. Chem. Int. Ed. 59, 13962–13967 (2020).

    Article  CAS  Google Scholar 

  185. Liu, J., Chen, Z., Koh, M. J. & Loh, K. P. Deuterium labelling by electrochemical splitting of heavy water. Energy Mater. 1, 100016 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2023YFA1507400 to B.Z.) and the National Natural Science Foundation of China (22371205 to C.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z. conceived the Review. C.L. conducted the literature search and prepared the manuscript. C.L., F.C. and B.Z. generated the images. Y.W. and B.H.Z. participated in discussions. B.Z. supervised the project and revised the manuscript.

Corresponding author

Correspondence to Bin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Haohong Duan, Soumyajit Roy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, F., Zhao, BH. et al. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 8, 277–293 (2024). https://doi.org/10.1038/s41570-024-00589-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-024-00589-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing