Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA-binding proteins in cardiovascular biology and disease: the beat goes on

Abstract

Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.

Key points

  • The number of proteins identified to have RNA-binding activity, termed RNA-binding proteins (RBPs), has more than tripled during the past decade, including many proteins with well-annotated cell functions.

  • The identified cardiomyocyte-specific RBPome has also expanded profoundly, with numerous proteins that are crucial for cardiac functions having been identified to bind to RNA.

  • Similarly to how post-translational modifications can alter protein function, the direct and specific binding of RNA can also regulate protein function — a process called riboregulation.

  • Variants in RBPs are increasingly being recognized as a cause of common cardiovascular diseases, and these RBPs have become a focus of targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiac contractility proteins identified as RNA-binding proteins.
Fig. 2: Single-bait methods to identify RBP–RNA interactions.
Fig. 3: Multi-bait approaches to identify RBP–RNA interactions.
Fig. 4: RBPs in heart failure.
Fig. 5: Heatmap of expression levels of RBPs in the human heart.

Similar content being viewed by others

References

  1. Morris, K. V. & Mattick, J. S. The rise of regulatory RNA. Nat. Rev. Genet. 15, 423–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deogharia, M. & Gurha, P. The ‘guiding’ principles of noncoding RNA function. Wiley Interdiscip. Rev. RNA 13, e1704 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Winkle, M., El-Daly, S. M., Fabbri, M. & Calin, G. A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629–651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Singh, G., Pratt, G., Yeo, G. W. & Moore, M. J. The clothes make the mRNA: past and present trends in mRNP fashion. Annu. Rev. Biochem. 84, 325–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hentze, M. W., Castelló, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 3, 195 (2018).

    Google Scholar 

  7. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Wiedner, H. J. & Giudice, J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat. Struct. Mol. Biol. 28, 465–473 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imig, J., Kanitz, A. & Gerber, A. P. RNA regulons and the RNA-protein interaction network. Biomol. Concepts 3, 403–414 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Prashad, S. & Gopal, P. P. RNA-binding proteins in neurological development and disease. RNA Biol. 18, 972–987 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Giudice, J. & Cooper, T. A. RNA-binding proteins in heart development. Adv. Exp. Med. Biol. 825, 389–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Harvey, R. P. Patterning the vertebrate heart. Nat. Rev. Genet. 3, 544–556 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Boada, C., Sukhovershin, R., Pettigrew, R. & Cooke, J. P. RNA therapeutics for cardiovascular disease. Curr. Opin. Cardiol. 36, 256–263 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lu, D. & Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol. 16, 661–674 (2019).

    Article  PubMed  Google Scholar 

  17. Santovito, D. & Weber, C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat. Rev. Cardiol. 19, 620–638 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Peters, L. J. F. et al. Small things matter: relevance of MicroRNAs in cardiovascular disease. Front. Physiol. 11, 793 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao, C. & Wang, Y. mRNA metabolism in cardiac development and disease: life after transcription. Physiol. Rev. 100, 673–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Gatsiou, A. & Stellos, K. RNA modifications in cardiovascular health and disease. Nat. Rev. Cardiol. 20, 325–346 (2022).

    Article  PubMed  Google Scholar 

  21. Gotthardt, M. et al. Cardiac splicing as a diagnostic and therapeutic target. Nat. Rev. Cardiol. 20, 517–530 (2023).

    Article  PubMed  Google Scholar 

  22. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerber, A. P. RNA-centric approaches to profile the RNA–protein interaction landscape on selected RNAs. Noncoding RNA 7, 11 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Smith, J. M., Sandow, J. J. & Webb, A. I. The search for RNA-binding proteins: a technical and interdisciplinary challenge. Biochem. Soc. Trans. 49, 393–403 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McHugh, C. A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Faoro, C. & Ataide, S. F. Ribonomic approaches to study the RNA‐binding proteome. FEBS Lett. 588, 3649–3664 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Hockensmith, J. W., Kubasek, W. L., Vorachek, W. R. & von Hippel, P. H.Laser cross-linking of proteins to nucleic acids. I. Examining physical parameters of protein-nucleic acid complexes. J. Biol. Chem. 268, 15712–15720 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Pashev, I. G., Dimitrov, S. I. & Angelov, D. Crosslinking proteins to nucleic acids by ultraviolet laser irradiation. Trends Biochem. Sci. 16, 323–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Niranjanakumari, S., Lasda, E., Brazas, R. & Garcia-Blanco, M. A. Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods 26, 182–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Patton, R. D. et al. Chemical crosslinking enhances RNA immunoprecipitation for efficient identification of binding sites of proteins that photo-crosslink poorly with RNA. RNA 26, 1216–1233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weissinger, R., Heinold, L., Akram, S., Jansen, R.-P. & Hermesh, O. RNA proximity labeling: a new detection tool for RNA–protein interactions. Molecules 26, 2270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jankowsky, E. & Harris, M. E. Specificity and nonspecificity in RNA-protein interactions. Nat. Rev. Mol. Cell Biol. 16, 533–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huppertz, I. et al. Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Mol. Cell 82, 2666–2680.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Hentze, M. W. et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238, 1570–1573 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Castelló, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  PubMed  Google Scholar 

  37. Beckmann, B. M. et al. The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nat. Commun. 6, 10127 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Wassarman, K. M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bou-Nader, C., Gordon, J. M., Henderson, F. E. & Zhang, J. The search for a PKR code-differential regulation of protein kinase R activity by diverse RNA and protein regulators. RNA 25, 539–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Buscher, M. et al. Vault RNA1-1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. RNA 28, 742–755 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liao, Y. et al. The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep. 16, 1456–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Riechert, E. et al. Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Rep. 35, 109100 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Claycomb, W. C. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat. Med. 10, 1336–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Frank, D. & Frey, N. Cardiac Z-disc signaling network. J. Biol. Chem. 286, 9897–9904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, X. et al. ASF/SF2-regulated CaMKIIδ alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Srivastava, D. Genetic regulation of cardiogenesis and congenital heart disease. Annu. Rev. Pathol. 1, 199–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Giudice, J. et al. Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nat. Commun. 5, 3603 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Bohnsack, B. L., Lai, L., Northrop, J. L., Justice, M. J. & Hirschi, K. K. Visceral endoderm function is regulated by quaking and required for vascular development. Genesis 44, 93–104 (2006).

    Article  PubMed  Google Scholar 

  53. Justice, M. J. & Hirschi, K. K. In: Post-Transcriptional Regulation by STAR Proteins: Control of RNA Metabolism in Development and Disease (eds. Volk, T. & Artzt, K.) 82–92 https://doi.org/10.1007/978-1-4419-7005-3_6 (Springer US, 2010).

  54. Ding, J.-H. et al. Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feng, Y. et al. SRp38 regulates alternative splicing and is required for Ca2+ handling in the embryonic heart. Dev. Cell 16, 528–538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gallagher, T. L. et al. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions. Dev. Biol. 359, 251–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frese, K. S. et al. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish. J. Cell Sci. 128, 3030–3040 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Misra, C. et al. Aberrant expression of a non-muscle RBFOX2 isoform triggers cardiac conduction defects in myotonic dystrophy. Dev. Cell 52, 748–763.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, M. et al. Rbm24, a target of p53, is necessary for proper expression of p53 and heart development. Cell Death Differ. 25, 1118–1130 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang, J. et al. RBM24 is a major regulator of muscle-specific alternative splicing. Dev. Cell 31, 87–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Maatz, H. et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J. Clin. Invest. 124, 3419–3430 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo, W. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 18, 766–773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Raffel, G. D. et al. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen. Mol. Cell Biol. 29, 333–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Machuca-Tzili, L. E. et al. Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Dis. Model. Mech. 4, 381–392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, K.-Y. et al. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum. Mol. Genet. 31, 3144–3160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ladd, A. N., Taffet, G., Hartley, C., Kearney, D. L. & Cooper, T. A. Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol. Cell Biol. 25, 6267–6278 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dewey, F. E. et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure. Circ. Cardiovasc. Genet. 4, 26–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Dirkx, E., da Costa Martins, P. A. & De Windt, L. J. Regulation of fetal gene expression in heart failure. Biochim. Biophys. Acta 1832, 2414–2424 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Park, J. Y. et al. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules. PLoS One 6, e22391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao, C. et al. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure. J. Clin. Invest. 126, 195–206 (2016).

    Article  PubMed  Google Scholar 

  72. Nakahata, S. & Kawamoto, S. Tissue-dependent isoforms of mammalian Fox-1 homologs are associated with tissue-specific splicing activities. Nucleic Acids Res. 33, 2078–2089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, X. et al. QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat. Commun. 12, 89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Montañés-Agudo, P. et al. The RNA-binding protein QKI governs a muscle-specific alternative splicing program that shapes the contractile function of cardiomyocytes. Cardiovasc. Res. 119, 1161–1174 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fagg, W. S. et al. Definition of germ layer cell lineage alternative splicing programs reveals a critical role for Quaking in specifying cardiac cell fate. Nucleic Acids Res. 50, 5313–5334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta, S. K. et al. Quaking inhibits doxorubicin-mediated cardiotoxicity through regulation of cardiac circular RNA expression. Circ. Res. 122, 246–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Guo, W. et al. RNA binding protein QKI inhibits the ischemia/reperfusion-induced apoptosis in neonatal cardiomyocytes. Cell Physiol. Biochem. 28, 593–602 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Verma, S. K. et al. RBFOX2 is required for establishing RNA regulatory networks essential for heart development. Nucleic Acids Res. 50, 2270–2286 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wei, C. et al. Repression of the central splicing regulator Rbfox2 is functionally linked to pressure overload-induced heart failure. Cell Rep. 10, 1521–1533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang, M. et al. Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome. Nat. Commun. 13, 5877 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Verma, S. K. et al. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci. Rep. 6, 30896 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, X. Q., Soo, S. Y., Sun, W. & Zweigerdt, R. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27, 2163–2174 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Haas, J. et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur. Heart J. 36, 1123–1135 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Wells, Q. S. et al. Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 317–326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den Hoogenhof, M. M. G. et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation 138, 1330–1342 (2018).

    Article  PubMed  Google Scholar 

  86. Fenix, A. M. et al. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat. Commun. 12, 6324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, Y. et al. RBM20 phosphorylation and its role in nucleocytoplasmic transport and cardiac pathogenesis. FASEB J. 36, e22302 (2022).

    CAS  PubMed  Google Scholar 

  89. Ladd, A. N., Charlet-B, N. & Cooper, T. A. The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing. Mol. Cell. Biol. 21, 1285–1296 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Masuda, A. et al. CUGBP1 and MBNL1 preferentially bind to 3’ UTRs and facilitate mRNA decay. Sci. Rep. 2, 209 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kress, C., Gautier-Courteille, C., Osborne, H. B., Babinet, C. & Paillard, L. Inactivation of CUG-BP1/CELF1 causes growth, viability, and spermatogenesis defects in mice. Mol. Cell Biol. 27, 1146–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Giudice, J., Xia, Z., Li, W. & Cooper, T. A. Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Sci. Rep. 6, 35550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuyumcu-Martinez, N. M., Wang, G.-S. & Cooper, T. A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Morriss, G. R., Rajapakshe, K., Huang, S., Coarfa, C. & Cooper, T. A. Mechanisms of skeletal muscle wasting in a mouse model for myotonic dystrophy type 1. Hum. Mol. Genet. 27, 2789–2804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, J. W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Artero, R. et al. The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2. Dev. Biol. 195, 131–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, K.-Y. et al. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol. Med. 5, 1887–1900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matia-González, A. M., Laing, E. E. & Gerber, A. P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat. Struct. Mol. Biol. 22, 1027–1033 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Bibli, S.-I. et al. Cystathionine γ lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139, 101–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Ford, L. P., Watson, J., Keene, J. D. & Wilusz, J. ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system. Genes Dev. 13, 188–201 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dean, J. L. E. et al. The 3′ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol. Cell. Biol. 21, 721–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fu, X., Zhai, S. & Yuan, J. Endothelial HuR deletion reduces the expression of proatherogenic molecules and attenuates atherosclerosis. Int. Immunopharmacol. 65, 248–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, C. et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat. Commun. 11, 3812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wardman, R. et al. RNA-binding proteins regulate post-transcriptional responses to TGF-β to coordinate function and mesenchymal activation of murine endothelial cells. Arterioscler. Thromb. Vasc. Biol. 43, 1967–1989 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R. & Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16, 727–744 (2019).

    Article  PubMed  Google Scholar 

  108. Sachse, M. et al. RNA-binding proteins in vascular inflammation and atherosclerosis. Atherosclerosis 374, 55–73 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, S. et al. Smooth muscle-specific HuR knockout induces defective autophagy and atherosclerosis. Cell Death Dis. 12, 385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van der Veer, E. P. et al. Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype. Circ. Res. 113, 1065–1075 (2013).

    Article  PubMed  Google Scholar 

  111. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yoshinaga, M. & Takeuchi, O. Post-transcriptional control of immune responses and its potential application. Clin. Transl. Immunol. 8, e1063 (2019).

    Article  Google Scholar 

  113. Kang, J.-G. et al. Zinc finger protein tristetraprolin interacts with CCL3 mRNA and regulates tissue inflammation. J. Immunol. 187, 2696–2701 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, H. et al. mRNA-binding protein ZFP36 is expressed in atherosclerotic lesions and reduces inflammation in aortic endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33, 1212–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Le Tonqueze, O. et al. Regulation of monocyte induced cell migration by the RNA binding protein, FXR1. Cell Cycle 15, 1874–1882 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Govindappa, P. K. et al. Targeting exosome-associated human antigen R attenuates fibrosis and inflammation in diabetic heart. FASEB J. 34, 2238–2251 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Shi, D.-L. RNA-binding proteins as critical post-transcriptional regulators of cardiac regeneration. Int. J. Mol. Sci. 24, 12004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mathiyalagan, P. et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Berulava, T. et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 22, 54–66 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Rigaud, V. O. C. et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation 147, 324–337 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Hosen, M. R. et al. Airn regulates Igf2bp2 translation in cardiomyocytes. Circ. Res. 122, 1347–1353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Davis, J. et al. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat. Commun. 6, 10084 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Bugg, D. et al. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 29, 419–433.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mudd, J. O. & Kass, D. A. Tackling heart failure in the twenty-first century. Nature 451, 919–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Schultheiss, H.-P. et al. Dilated cardiomyopathy. Nat. Rev. Dis. Prim. 5, 32 (2019).

    Article  PubMed  Google Scholar 

  126. Virani, S. S. et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2019).

    Google Scholar 

  127. Li, D. et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl. Sci. 3, 90–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Refaat, M. M. et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 9, 390–396 (2012).

    Article  PubMed  Google Scholar 

  130. Nishiyama, T. et al. Precise genomic editing of pathogenic mutations in RBM20 rescues dilated cardiomyopathy. Sci. Transl. Med. 14, eade1633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kong, S. W. et al. Heart failure-associated changes in RNA splicing of sarcomere genes. Circ. Cardiovasc. Genet. 3, 138–146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. D’Antonio, M. et al. In heart failure reactivation of RNA-binding proteins is associated with the expression of 1,523 fetal-specific isoforms. PLoS Comput. Biol. 18, e1009918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Boeckel, J.-N. et al. SLM2 Is a novel cardiac splicing factor involved in heart failure due to dilated cardiomyopathy. Genomics Proteom. Bioinforma. 20, 129–146 (2022).

    Article  CAS  Google Scholar 

  134. Asakura, M. & Kitakaze, M. Global gene expression profiling in the failing myocardium. Circ. J. 73, 1568–1576 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Ramirez Flores, R. O. et al. Consensus transcriptional landscape of human end-stage heart failure. J. Am. Heart Assoc. 10, e019667 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gruber, A. J. & Zavolan, M. Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet. 20, 599–614 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Nourse, J., Spada, S. & Danckwardt, S. Emerging roles of RNA 3’-end cleavage and polyadenylation in pathogenesis, diagnosis and therapy of human disorders. Biomolecules 10, 915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Soetanto, R. et al. Role of miRNAs and alternative mRNA 3′-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy. Biochim. Biophys. Acta 1859, 744–756 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Creemers, E. E. et al. Genome-wide polyadenylation maps reveal dynamic mRNA 3’-end formation in the failing human heart. Circ. Res. 118, 433–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Cao, J. & Kuyumcu-Martinez, M. N. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc. Res. 119, 1324–1335 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Cao, J. et al. RBFOX2 is critical for maintaining alternative polyadenylation patterns and mitochondrial health in rat myoblasts. Cell Rep. 37, 109910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mohan, N., Kumar, V., Kandala, D. T., Kartha, C. C. & Laishram, R. S. A splicing-independent function of RBM10 controls specific 3’ UTR processing to regulate cardiac hypertrophy. Cell Rep. 24, 3539–3553 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Chorghade, S. et al. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart. eLife 6, e24139 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gladka, M. M. et al. Single-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activation. Circulation 138, 166–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Martino, F. et al. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci. Transl. Med. 14, eabo5715 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Thiele, B.-J. et al. RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ. Res. 95, 1058–1066 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Chang, K.-T., Cheng, C.-F., King, P.-C., Liu, S.-Y. & Wang, G.-S. CELF1 mediates connexin 43 mRNA degradation in dilated cardiomyopathy. Circ. Res. 121, 1140–1152 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Krishnamurthy, P. et al. Myocardial knockdown of mRNA-stabilizing protein HuR attenuates post-MI inflammatory response and left ventricular dysfunction in IL-10-null mice. FASEB J. 24, 2484–2494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Green, L. C. et al. Human antigen R as a therapeutic target in pathological cardiac hypertrophy. JCI Insight 4, 121541 (2019).

    Article  PubMed  Google Scholar 

  151. Hu, X., Wu, P., Liu, B., Lang, Y. & Li, T. RNA-binding protein CELF1 promotes cardiac hypertrophy via interaction with PEBP1 in cardiomyocytes. Cell Tissue Res. 387, 111–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Dorn, L. E. et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Kmietczyk, V. et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci. Alliance 2, e201800233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Doroudgar, S. et al. Monitoring cell-type-specific gene expression using ribosome profiling in vivo during cardiac hemodynamic stress. Circ. Res. 125, 431–448 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. van Heesch, S. et al. The translational landscape of the human heart. Cell 178, 242–260.e29 (2019).

    Article  PubMed  Google Scholar 

  157. Schafer, S. et al. Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat. Commun. 6, 7200 (2015).

    Article  PubMed  Google Scholar 

  158. Petrosino, J. M. et al. The m6A methyltransferase METTL3 regulates muscle maintenance and growth in mice. Nat. Commun. 13, 168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Qin, Y. et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int. J. Mol. Med. 46, 1958–1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schöller, E. et al. Interactions, localization, and phosphorylation of the m6A generating METTL3–METTL14–WTAP complex. RNA 24, 499–512 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, M. et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19, 69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Carnevali, L. et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in fto deficient mice. PLoS One 9, e95499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Perez-Perri, J. I. et al. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat. Commun. 9, 4408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, H. et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gao, S. et al. Depletion of m6 A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin. J. Cell Mol. Med. 25, 10879–10891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Han, Z. et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11, 3000–3016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kmietczyk, V. et al. Ythdf2 regulates cardiac remodeling through its mRNA target transcripts. J. Mol. Cell Cardiol. 181, 57–66 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Garlick, P. J., McNurlan, M. A. & Preedy, V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem. J. 192, 719–723 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gudbjarnason, S., Telerman, M., Chiba, C., Wolf, P. L. & Bing, R. J. Myocardial protein synthesis in cardiac hypertrophy. J. Lab. Clin. Med. 63, 244–253 (1964).

    CAS  PubMed  Google Scholar 

  176. Zühlke, V., Du Mesnil de, R., Gudbjarnason, S. & Bing, R. J. Inhibition of protein synthesis in cardiac hypertrophy and its relation to myocardial failure. Circ. Res. 18, 558–572 (1966).

    Article  PubMed  Google Scholar 

  177. Zimmer, H. G., Steinkopff, G. & Gerlach, E. Changes of protein synthesis in the hypertrophying rat heart. Pflügers Arch. Eur. J. Physiol. 336, 311–325 (1972).

    Article  CAS  Google Scholar 

  178. Zhang, G. et al. Integrated stress response couples mitochondrial protein translation with oxidative stress control. Circulation 144, 1500–1515 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Volkers, M. et al. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc. Natl Acad. Sci. USA 110, 12661–12666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Varma, E. et al. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res. Cardiol. 118, 25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chothani, S. et al. Widespread translational control of fibrosis in the human heart by RNA-binding proteins. Circulation 140, 937–951 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Walter, W. et al. Deciphering the dynamic transcriptional and post-transcriptional networks of macrophages in the healthy heart and after myocardial injury. Cell Rep. 23, 622–636 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Schwarzl, T. Relative expression of human RNA-binding proteins (RBPs) in the human heart cell atlas. https://doi.org/10.5281/zenodo.8112712 (2023).

  187. Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Stempien-Otero, A., Kim, D.-H. & Davis, J. Molecular networks underlying myofibroblast fate and fibrosis. J. Mol. Cell Cardiol. 97, 153–161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kanadia, R. N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Tombor, L. S. et al. Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. Nat. Commun. 12, 681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Jabs, M. et al. Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart. Circulation 137, 2592–2608 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. de Bruin, R. G. et al. The RNA-binding protein quaking maintains endothelial barrier function and affects VE-cadherin and β-catenin protein expression. Sci. Rep. 6, 21643 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Smith, M. R. & Costa, G. RNA-binding proteins and translation control in angiogenesis. FEBS J. 289, 7788–7809 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. van Mil, A. et al. MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovasc. Res. 93, 655–665 (2012).

    Article  PubMed  Google Scholar 

  200. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hilgendorf, I. et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circulation Res. 114, 1611–1622 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Liepelt, A. et al. Identification of RNA-binding proteins in macrophages by interactome capture. Mol. Cell Proteom. 15, 2699–2714 (2016).

    Article  CAS  Google Scholar 

  204. Kratochvill, F. et al. Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation. Mol. Syst. Biol. 7, 560 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Chen, C.-Y. A., Xu, N. & Shyu, A.-B. Highly selective actions of HuR in antagonizing AU-rich element-mediated mRNA destabilization. Mol. Cell. Biol. 22, 7268–7278 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Krishnamurthy, P. et al. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circulation Res. 104, e9–e18 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Steffens, S., Nahrendorf, M. & Madonna, R. Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur. Heart J. 43, 1533–1541 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mohibi, S., Chen, X. & Zhang, J. Cancer the ’RBP’ eutics–RNA-binding proteins as therapeutic targets for cancer. Pharmacol. Ther. 203, 107390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 21, 736–762 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. Perez-Perri, J. I. et al. The RNA-binding protein landscapes differ between mammalian organs and cultured cells. Nat. Commun. 14, 2074 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thum, T. & Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 116, 751–762 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Sahoo, S., Kariya, T. & Ishikawa, K. Targeted delivery of therapeutic agents to the heart. Nat. Rev. Cardiol. 18, 389–399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Nostrand, E. L. V. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118-119, 93–100 (2016).

    Article  PubMed  Google Scholar 

  217. Lorenz, D. A. et al. Multiplexed transcriptome discovery of RNA-binding protein binding sites by antibody-barcode eCLIP. Nat. Methods 20, 65–69 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Asencio, C., Chatterjee, A. & Hentze, M. W. Silica-based solid-phase extraction of cross-linked nucleic acid-bound proteins. Life Sci. Alliance 1, e201800088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lin, C. & Miles, W. O. Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res. 47, 5490–5501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Nostrand, E. L. V. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  225. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Spiniello, M. et al. HyPR-MS for multiplexed discovery of MALAT1, NEAT1, and NORAD lncRNA protein interactomes. J. Proteome Res. 17, 3022–3038 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bos, T. J., Nussbacher, J. K., Aigner, S. & Yeo, G. W. Tethered function assays as tools to elucidate the molecular roles of RNA-binding proteins. Adv. Exp. Med. Biol. 907, 61–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Bardwell, V. J. & Wickens, M. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res. 18, 6587–6594 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. De Gregorio, E., Preiss, T. & Hentze, M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell Proteom. 10, M110.007385 (2011).

    Article  Google Scholar 

  231. Caudron-Herger, M., Jansen, R. E., Wassmer, E. & Diederichs, S. RBP2GO: a comprehensive pan-species database on RNA-binding proteins, their interactions and functions. Nucleic Acids Res. 49, D425–D436 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Hiller, M. et al. The mRNA binding proteome of proliferating and differentiated muscle cells. Genomics Proteom. Bioinforma. 18, 384–396 (2020).

    Article  CAS  Google Scholar 

  233. Zhang, Z. et al. An RNA tagging approach for system-wide RNA-binding proteome profiling and dynamics investigation upon transcription inhibition. Nucleic Acids Res. 49, gkab156 (2021).

    Article  Google Scholar 

  234. Bao, X. et al. Capturing the interactome of newly transcribed RNA. Nat. Methods 15, 213–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  237. Queiroz, R. M. L. et al. Comprehensive identification of RNA–protein interactions in any organism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37, 169–178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nat. Commun. 10, 990 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Castelló, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Panhale, A. et al. CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat. Commun. 10, 2682 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Bae, J. W., Kim, S., Kim, V. N. & Kim, J.-S. Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nat. Commun. 12, 6026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Bae, J. W., Kwon, S. C., Na, Y., Kim, V. N. & Kim, J.-S. Chemical RNA digestion enables robust RNA-binding site mapping at single amino acid resolution. Nat. Struct. Mol. Biol. 27, 678–682 (2020).

    Article  CAS  PubMed  Google Scholar 

  243. Gray, N. K., Pantopoulos, K., Dandekar, T., Ackrell, B. A. & Hentze, M. W. Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl Acad. Sci. USA 93, 4925–4930 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  245. Horos, R. et al. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell 176, 1054–1067.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. Hirose, T., Ninomiya, K., Nakagawa, S. & Yamazaki, T. A guide to membraneless organelles and their various roles in gene regulation. Nat. Rev. Mol. Cell Biol. 24, 288–304 (2023).

    Article  CAS  PubMed  Google Scholar 

  247. Evguenieva-Hackenberg, E. Riboregulation in bacteria: from general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. Wiley Interdiscip. Rev. RNA 13, e1696 (2022).

    Article  CAS  PubMed  Google Scholar 

  248. Guiducci, G. et al. The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res. 47, 4240–4254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Monti, M. et al. Modelling of SHMT1 riboregulation predicts dynamic changes of serine and glycine levels across cellular compartments. Comput. Struct. Biotechnol. J. 19, 3034–3041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thomas Schwarzl (EMBL, Germany) for contributing to Fig. 4. The authors receive support from Sonderforschungsbereich 1550 of the Deutsche Forschungsgemeinschaft (to M.V. and M.W.H.), the Boehringer-Ingelheim Stiftung Programm Plus3 (to M.V.), the Australian National Health and Medical Research Council APP1045417 & 1120483 (to T.P. and M.W.H.) and APP1135928 & 2018363 (to T.P.), and the Manfred Lautenschläger Stiftung (to M.W.H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Matthias W. Hentze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Yigal M. Pinto, Konstantinos Stellos and Gene W. Yeo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Völkers, M., Preiss, T. & Hentze, M.W. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-023-00958-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-023-00958-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing