Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of lifestyle factors on leukocytes in cardiovascular health and disease

Abstract

Exercise, stress, sleep and diet are four distinct but intertwined lifestyle factors that influence the cardiovascular system. Abundant epidemiological, clinical and preclinical studies have underscored the importance of managing stress, having good sleep hygiene and responsible eating habits and exercising regularly. We are born with a genetic blueprint that can protect us against or predispose us to a particular disease. However, lifestyle factors build upon and profoundly influence those predispositions. Studies in the past 10 years have shown that the immune system in general and leukocytes in particular are particularly susceptible to environmental perturbations. Lifestyle factors such as stress, sleep, diet and exercise affect leukocyte behaviour and function and thus the immune system at large. In this Review, we explore the various mechanisms by which lifestyle factors modulate haematopoiesis and leukocyte migration and function in the context of cardiovascular health. We pay particular attention to the role of the nervous system as the key executor that connects environmental influences to leukocyte behaviour.

Key points

  • Cardiovascular disease (CVD), and atherosclerosis in particular, is driven by chronic underlying inflammation, leading to plaque destabilization by the infiltration of leukocytes.

  • The risk of CVD is only partly driven by genetic predisposition; the exposome, consisting of environmental and personal factors, has an important role in the inflammatory progression of CVD.

  • Modification of lifestyle factors such as exercise, stress, sleep patterns and diet holds the potential to help in both reducing disease burden and revealing the effects that these factors have on the immune system.

  • Findings from the past decade highlight the connection between the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system, and modifiable lifestyle factors and the cardiovascular system.

  • Improving our understanding of the influence of the nervous system on the exposome, as well as on CVD and the immune system, can potentially help to lower CVD burden and its complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fasting affects leukocyte migration into atherosclerotic plaques through hepatic energy-sensing pathways and the hypothalamic–pituitary–adrenal axis.
Fig. 2: Acute stress leads to major shifts in circulating leukocyte numbers and worsens atherosclerosis.
Fig. 3: Chronic stress exacerbates atherosclerosis.
Fig. 4: Sleep disruption affects leukocytes and atherosclerosis.
Fig. 5: Acute and chronic exercise alter leukocyte migration into atherosclerotic plaques.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. M. et al. Life’s essential 8: updating and enhancing the American Heart Association’s Construct of Cardiovascular Health: a presidential advisory from the American Heart Association. Circulation 146, e18–e43 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 Study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    PubMed  PubMed Central  Google Scholar 

  3. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    PubMed  Google Scholar 

  4. Engelen, S. E., Robinson, A. J. B., Zurke, Y. X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed. Nat. Rev. Cardiol. 19, 522–542 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    CAS  PubMed  ADS  Google Scholar 

  6. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    CAS  PubMed  Google Scholar 

  7. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  8. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    CAS  PubMed  Google Scholar 

  9. Mendelson, A. & Frenette, P. S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 20, 833–846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    CAS  PubMed  ADS  Google Scholar 

  11. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Mindur, J. E. & Swirski, F. K. Growth factors as immunotherapeutic targets in cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39, 1275–1287 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stiekema, L. C. A. et al. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur. Heart J. 42, 4309–4320 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. van der Valk, F. M. et al. Increased haematopoietic activity in patients with atherosclerosis. Eur. Heart J. 38, 425–432 (2017).

    PubMed  Google Scholar 

  15. Courties, G. et al. Glucocorticoids regulate bone marrow B lymphopoiesis after stroke. Circ. Res. 124, 1372–1385 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendez-Ferrer, S. & Frenette, P. S. Hematopoietic stem cell trafficking: regulated adhesion and attraction to bone marrow microenvironment. Ann. N. Y. Acad. Sci. 1116, 392–413 (2007).

    CAS  PubMed  ADS  Google Scholar 

  18. de Juan, A. et al. Artery-associated sympathetic innervation drives rhythmic vascular inflammation of arteries and veins. Circulation 140, 1100–1114 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Wang, C., Lutes, L. K., Barnoud, C. & Scheiermann, C. The circadian immune system. Sci. Immunol. 7, eabm2465 (2022).

    CAS  PubMed  Google Scholar 

  20. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

    CAS  PubMed  ADS  Google Scholar 

  21. Trott, D. W. et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension 64, 1108–1115 (2014).

    CAS  PubMed  Google Scholar 

  22. Marvar, P. J. & Harrison, D. G. Stress-dependent hypertension and the role of T lymphocytes. Exp. Physiol. 97, 1161–1167 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Bowers, E. & Singer, K. Obesity-induced inflammation: the impact of the hematopoietic stem cell niche. JCI Insight 6, e145295 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821–835 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    CAS  PubMed  Google Scholar 

  26. Rappaport, S. M. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 21, 5–9 (2011).

    CAS  PubMed  Google Scholar 

  27. Turner, M. C. et al. Assessing the exposome with external measures: commentary on the state of the science and research recommendations. Annu. Rev. Public Health 38, 215–239 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Yu, E., Malik, V. S. & Hu, F. B. Cardiovascular disease prevention by diet modification: JACC health promotion series. J. Am. Coll. Cardiol. 72, 914–926 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Dong, T. A. et al. Intermittent fasting: a heart healthy dietary pattern? Am. J. Med. 133, 901–907 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Horne, B. D. et al. Usefulness of routine periodic fasting to lower risk of coronary artery disease in patients undergoing coronary angiography. Am. J. Cardiol. 102, 814–819 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rong, S. et al. Association of skipping breakfast with cardiovascular and all-cause mortality. J. Am. Coll. Cardiol. 73, 2025–2032 (2019).

    PubMed  Google Scholar 

  33. Jordan, S. et al. Dietary intake regulates the circulating inflammatory monocyte pool. Cell 178, 1102–1114 e1117 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Janssen, H. et al. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity 56, 783–796.e7 (2023).

    CAS  PubMed  Google Scholar 

  35. Collins, N. et al. The bone marrow protects and optimizes immunological memory during dietary restriction. Cell 178, 1088–1101.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagai, M. et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell 178, 1072–1087.e14 (2019).

    CAS  PubMed  Google Scholar 

  37. Chen, Y. et al. Intermittent fasting inhibits high-fat diet-induced atherosclerosis by ameliorating hypercholesterolemia and reducing monocyte chemoattraction. Front. Pharmacol. 12, 719750 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Okoshi, K. et al. Influence of intermittent fasting on myocardial infarction-induced cardiac remodeling. BMC Cardiovasc. Disord. 19, 126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Makimura, H. et al. Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiol. 3, 5 (2003).

    PubMed  PubMed Central  Google Scholar 

  40. La Rose, A. M. et al. Hepatocyte-specific glucose-6-phosphatase deficiency disturbs platelet aggregation and decreases blood monocytes upon fasting-induced hypoglycemia. Mol. Metab. 53, 101265 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Chawla, S., Beretoulis, S., Deere, A. & Radenkovic, D. The window matters: a systematic review of time restricted eating strategies in relation to cortisol and melatonin secretion. Nutrients 13, 2525 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chan, J. L., Mietus, J. E., Raciti, P. M., Goldberger, A. L. & Mantzoros, C. S. Short-term fasting-induced autonomic activation and changes in catecholamine levels are not mediated by changes in leptin levels in healthy humans. Clin. Endocrinol. 66, 49–57 (2007).

    CAS  Google Scholar 

  43. Poller, W. C. et al. Brain motor and fear circuits regulate leukocytes during acute stress. Nature 607, 578–584 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron 73, 511–522 (2012).

    PubMed  PubMed Central  Google Scholar 

  45. Landry, T. et al. Energy status differentially modifies feeding behavior and POMC(ARC) neuron activity after acute treadmill exercise in untrained mice. Front. Endocrinol. 12, 705267 (2021).

    Google Scholar 

  46. Matarese, G. et al. Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses. Proc. Natl Acad. Sci. USA 110, 6193–6198 (2013).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Douglass, A. M. et al. Neural basis for fasting activation of the hypothalamic–pituitary–adrenal axis. Nature 620, 154–162 (2023).

    CAS  PubMed  ADS  Google Scholar 

  48. Kivimaki, M. & Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 15, 215–229 (2018).

    CAS  PubMed  Google Scholar 

  49. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    CAS  PubMed  Google Scholar 

  50. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    PubMed  Google Scholar 

  51. Hinterdobler, J., Schunkert, H., Kessler, T. & Sager, H. B. Impact of acute and chronic psychosocial stress on vascular inflammation. Antioxid. Redox Signal. 35, 1531–1550 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Osborne, M. T. et al. Disentangling the links between psychosocial stress and cardiovascular disease. Circ. Cardiovasc. Imaging 13, e010931 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Wilbert-Lampen, U. et al. Cardiovascular events during World Cup soccer. N. Engl. J. Med. 358, 475–483 (2008).

    CAS  PubMed  Google Scholar 

  54. Hinterdobler, J. et al. Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. Eur. Heart J. 42, 4077–4088 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Goebel, M. U., Mills, P. J., Irwin, M. R. & Ziegler, M. G. Interleukin-6 and tumor necrosis factor-alpha production after acute psychological stress, exercise, and infused isoproterenol: differential effects and pathways. Psychosom. Med. 62, 591–598 (2000).

    CAS  PubMed  Google Scholar 

  56. Vaccarino, V. et al. Association of mental stress-induced myocardial ischemia with cardiovascular events in patients with coronary heart disease. JAMA 326, 1818–1828 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Breen, M. S. et al. Acute psychological stress induces short-term variable immune response. Brain Behav. Immun. 53, 172–182 (2016).

    CAS  PubMed  Google Scholar 

  58. Hammadah, M. et al. Inflammatory response to mental stress and mental stress induced myocardial ischemia. Brain Behav. Immun. 68, 90–97 (2018).

    CAS  PubMed  Google Scholar 

  59. Marsland, A. L., Walsh, C., Lockwood, K. & John-Henderson, N. A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Moazzami, K. et al. Higher activation of the rostromedial prefrontal cortex during mental stress predicts major cardiovascular disease events in individuals with coronary artery disease. Circulation 142, 455–465 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lagraauw, H. M., Wezel, A., van der Velden, D., Kuiper, J. & Bot, I. Stress-induced mast cell activation contributes to atherosclerotic plaque destabilization. Sci. Rep. 9, 2134 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  62. Xu, C., Lee, S. K., Zhang, D. & Frenette, P. S. The gut microbiome regulates psychological-stress-induced inflammation. Immunity 53, 417–428.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  PubMed  Google Scholar 

  64. Hodes, G. E. et al. Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc. Natl Acad. Sci. USA 111, 16136–16141 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Qing, H. et al. Origin and function of stress-induced IL-6 in murine models. Cell 182, 372–387.e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Osborne, M. T. et al. The combined effect of air and transportation noise pollution on atherosclerotic inflammation and risk of cardiovascular disease events. J. Nucl. Cardiol. 30, 665–679 (2023).

    PubMed  Google Scholar 

  67. Munzel, T., Sorensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol. 18, 619–636 (2021).

    PubMed  Google Scholar 

  68. Rosengren, A. et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case–control study. Lancet 364, 953–962 (2004).

    PubMed  Google Scholar 

  69. von Kanel, R., Bellingrath, S. & Kudielka, B. M. Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J. Psychosom. Res. 65, 51–59 (2008).

    Google Scholar 

  70. Marvar, P. J. et al. T lymphocytes and vascular inflammation contribute to stress-dependent hypertension. Biol. Psychiatry 71, 774–782 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nat. Rev. Neurosci. 10, 459–466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Arnsten, A. F. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Kang, D. O. et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment. Eur. Heart J. 42, 1883–1895 (2021).

    CAS  PubMed  Google Scholar 

  75. Sohrabi, Y., Reinecke, H. & Soehnlein, O. Trilateral interaction between innervation, leukocyte, and adventitia: a new driver of atherosclerotic plaque formation. Signal. Transduct. Target. Ther. 7, 249 (2022).

    PubMed  PubMed Central  Google Scholar 

  76. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    CAS  PubMed  Google Scholar 

  77. Mezue, K. et al. Reduced stress-related neural network activity mediates the effect of alcohol on cardiovascular risk. J. Am. Coll. Cardiol. 81, 2315–2325 (2023).

    PubMed  Google Scholar 

  78. Schakel, L. et al. Effectiveness of stress-reducing interventions on the response to challenges to the immune system: a meta-analytic review. Psychother. Psychosom. 88, 274–286 (2019).

    PubMed  Google Scholar 

  79. Grandner, M. A. & Fernandez, F. X. The translational neuroscience of sleep: a contextual framework. Science 374, 568–573 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Unruh, M. L. et al. Subjective and objective sleep quality and aging in the sleep heart health study. J. Am. Geriatr. Soc. 56, 1218–1227 (2008).

    PubMed  Google Scholar 

  81. Dominguez, F. et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 73, 134–144 (2019).

    PubMed  Google Scholar 

  82. Ford, E. S., Cunningham, T. J. & Croft, J. B. Trends in self-reported sleep duration among US adults from 1985 to 2012. Sleep 38, 829–832 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Garbarino, S., Lanteri, P., Bragazzi, N. L., Magnavita, N. & Scoditti, E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun. Biol. 4, 1304 (2021).

    PubMed  PubMed Central  Google Scholar 

  84. Cappuccio, F. P., Cooper, D., D’Elia, L., Strazzullo, P. & Miller, M. A. Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Eur. Heart J. 32, 1484–1492 (2011).

    PubMed  Google Scholar 

  85. Zuraikat, F. M., Wood, R. A., Barragan, R. & St-Onge, M. P. Sleep and diet: mounting evidence of a cyclical relationship. Annu. Rev. Nutr. 41, 309–332 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Daghlas, I. et al. Sleep duration and myocardial infarction. J. Am. Coll. Cardiol. 74, 1304–1314 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Y. H. et al. Association of longitudinal patterns of habitual sleep duration with risk of cardiovascular events and all-cause mortality. JAMA Netw. Open. 3, e205246 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Libby, P., Nahrendorf, M. & Swirski, F. K. Monocyte heterogeneity in cardiovascular disease. Semin. Immunopathol. 35, 553–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Poller, W. C., Nahrendorf, M. & Swirski, F. K. Hematopoiesis and cardiovascular disease. Circ. Res. 126, 1061–1085 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Friedman, G. D., Klatsky, A. L. & Siegelaub, A. B. The leukocyte count as a predictor of myocardial infarction. N. Engl. J. Med. 290, 1275–1278 (1974).

    CAS  PubMed  Google Scholar 

  92. Rothe, G. et al. Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 16, 1437–1447 (1996).

    CAS  PubMed  Google Scholar 

  93. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Heyde, A. et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184, 1348–1361.e22 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    CAS  PubMed  Google Scholar 

  97. Tall, A. R., Yvan-Charvet, L., Westerterp, M. & Murphy, A. J. Cholesterol efflux: a novel regulator of myelopoiesis and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 32, 2547–2552 (2012).

    CAS  PubMed  Google Scholar 

  98. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  101. Asada, N., Takeishi, S. & Frenette, P. S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 106, 45–54 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Robbins, C. S. et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012).

    PubMed  Google Scholar 

  103. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383–387 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. McAlpine, C. S. et al. Sleep exerts lasting effects on hematopoietic stem cell function and diversity. J. Exp. Med. 219, e20220081 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. Libby, P. & Ebert, B. L. CHIP (clonal hematopoiesis of indeterminate potential): potent and newly recognized contributor to cardiovascular risk. Circulation 138, 666–668 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Marnell, C. S., Bick, A. & Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell Cardiol. 161, 98–105 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Steensma, D. P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv. 2, 3404–3410 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    PubMed  Google Scholar 

  113. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Poon, G. Y. P., Watson, C. J., Fisher, D. S. & Blundell, J. R. Synonymous mutations reveal genome-wide levels of positive selection in healthy tissues. Nat. Genet. 53, 1597–1605 (2021).

    CAS  PubMed  Google Scholar 

  116. Pasupuleti, S. K. et al. Obesity-induced inflammation exacerbates clonal hematopoiesis. J. Clin. Invest. 133, e163968 (2023).

    PubMed  PubMed Central  Google Scholar 

  117. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature 612, 301–309 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  118. Rohde, D. et al. Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease. Nat. Cardiovasc. Res. 1, 28–44 (2022).

    PubMed  Google Scholar 

  119. Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Depner, C. M. et al. Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr. Biol. 29, 957–967.e4 (2019).

    CAS  PubMed  Google Scholar 

  121. Leger, D., Richard, J. B., Collin, O., Sauvet, F. & Faraut, B. Napping and weekend catchup sleep do not fully compensate for high rates of sleep debt and short sleep at a population level (in a representative nationwide sample of 12,637 adults). Sleep Med. 74, 278–288 (2020).

    PubMed  Google Scholar 

  122. Abboud, F. & Kumar, R. Obstructive sleep apnea and insight into mechanisms of sympathetic overactivity. J. Clin. Invest. 124, 1454–1457 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kritikou, I. et al. Sleep apnoea and the hypothalamic–pituitary–adrenal axis in men and women: effects of continuous positive airway pressure. Eur. Respir. J. 47, 531–540 (2016).

    CAS  PubMed  Google Scholar 

  124. Tietjens, J. R. et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J. Am. Heart Assoc. 8, e010440 (2019).

    CAS  PubMed  Google Scholar 

  125. Geovanini, G. R. et al. Elevations in neutrophils with obstructive sleep apnea: the Multi-Ethnic Study of Atherosclerosis (MESA). Int. J. Cardiol. 257, 318–323 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Florido, R. et al. Six-year changes in physical activity and the risk of incident heart failure: ARIC study. Circulation 137, 2142–2151 (2018).

    PubMed  PubMed Central  Google Scholar 

  127. Schroeder, E. C., Franke, W. D., Sharp, R. L. & Lee, D. C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: a randomized controlled trial. PLoS One 14, e0210292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Madssen, E. et al. Coronary atheroma regression and plaque characteristics assessed by grayscale and radiofrequency intravascular ultrasound after aerobic exercise. Am. J. Cardiol. 114, 1504–1511 (2014).

    PubMed  Google Scholar 

  129. Campo, G. et al. Exercise intervention improves quality of life in older adults after myocardial infarction: randomised clinical trial. Heart 106, 1658–1664 (2020).

    PubMed  Google Scholar 

  130. Gabriel, H., Urhausen, A., Brechtel, L., Muller, H. J. & Kindermann, W. Alterations of regular and mature monocytes are distinct, and dependent of intensity and duration of exercise. Eur. J. Appl. Physiol. Occup. Physiol. 69, 179–181 (1994).

    CAS  PubMed  Google Scholar 

  131. Neves, P. et al. Acute effects of high- and low-intensity exercise bouts on leukocyte counts. J. Exerc. Sci. Fit. 13, 24–28 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Timmerman, K. L., Flynn, M. G., Coen, P. M., Markofski, M. M. & Pence, B. D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise. J. Leukoc. Biol. 84, 1271–1278 (2008).

    CAS  PubMed  Google Scholar 

  133. Johannsen, N. M. et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW. PLoS ONE 7, e31319 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Agha, N. H. et al. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the beta(2)-adrenergic receptor. Brain Behav. Immun. 68, 66–75 (2018).

    CAS  PubMed  Google Scholar 

  136. Baker, J. M., De Lisio, M. & Parise, G. Endurance exercise training promotes medullary hematopoiesis. FASEB J. 25, 4348–4357 (2011).

    CAS  PubMed  Google Scholar 

  137. De Lisio, M. & Parise, G. Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. J. Appl. Physiol. 113, 1576–1584 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Aengevaeren, V. L. et al. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 136, 138–148 (2017).

    CAS  PubMed  Google Scholar 

  139. Liao, Z. et al. Early moderate exercise benefits myocardial infarction healing via improvement of inflammation and ventricular remodelling in rats. J. Cell. Mol. Med. 23, 8328–8342 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Dourida, M. et al. Endocrine responses after a single bout of moderate aerobic exercise in healthy adult humans. J. Appl. Biomed. 17, 46 (2019).

    PubMed  Google Scholar 

  141. Hill, E. E. et al. Exercise and circulating cortisol levels: the intensity threshold effect. J. Endocrinol. Invest. 31, 587–591 (2008).

    CAS  PubMed  Google Scholar 

  142. Jacks, D. E., Sowash, J., Anning, J., McGloughlin, T. & Andres, F. Effect of exercise at three exercise intensities on salivary cortisol. J. Strength Cond. Res. 16, 286–289 (2002).

    PubMed  Google Scholar 

  143. Tokinoya, K. et al. Plasma free metanephrine and normethanephrine levels correlated to plasma catecholamine after acute running in amateur runner. J. Exerc. Sci. Fit. 19, 178–181 (2021).

    PubMed  PubMed Central  Google Scholar 

  144. Vasamsetti, S. B. et al. Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity 49, 93–106.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jiang, L. et al. Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease. Nat. Commun. 11, 1517 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  146. Fedewa, M. V., Hathaway, E. D., Ward-Ritacco, C. L., Williams, T. D. & Dobbs, W. C. The effect of chronic exercise training on leptin: a systematic review and meta-analysis of randomized controlled trials. Sports Med. 48, 1437–1450 (2018).

    PubMed  Google Scholar 

  147. Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J. & Rattray, B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52, 154–160 (2018).

    PubMed  Google Scholar 

  148. Chaddock-Heyman, L. et al. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev. Cogn. Neurosci. 20, 52–58 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108, 3017–3022 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  150. Seifert, T. et al. Endurance training enhances BDNF release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R372–R377 (2010).

    CAS  PubMed  Google Scholar 

  151. Ibeas, K., Herrero, L., Mera, P. & Serra, D. Hypothalamus-skeletal muscle crosstalk during exercise and its role in metabolism modulation. Biochem. Pharmacol. 190, 114640 (2021).

    CAS  PubMed  Google Scholar 

  152. Miletta, M. C. et al. AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nat. Metab. 2, 1204–1211 (2020).

    CAS  PubMed  Google Scholar 

  153. He, Z. et al. Cellular and synaptic reorganization of arcuate NPY/AgRP and POMC neurons after exercise. Mol. Metab. 18, 107–119 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    CAS  PubMed  Google Scholar 

  155. Sato, D. et al. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Mol. Brain 15, 17 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    CAS  PubMed  ADS  Google Scholar 

  157. Kerage, D., Sloan, E. K., Mattarollo, S. R. & McCombe, P. A. Interaction of neurotransmitters and neurochemicals with lymphocytes. J. Neuroimmunol. 332, 99–111 (2019).

    CAS  PubMed  Google Scholar 

  158. Felger, J. C. et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol. Psychiatry 21, 1358–1365 (2016).

    CAS  PubMed  Google Scholar 

  159. Lewitus, G. M., Pribiag, H., Duseja, R., St-Hilaire, M. & Stellwagen, D. An adaptive role of TNFalpha in the regulation of striatal synapses. J. Neurosci. 34, 6146–6155 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Groot, H. E., van Blokland, I. V., Lipsic, E., Karper, J. C. & van der Harst, P. Leukocyte profiles across the cardiovascular disease continuum: a population-based cohort study. J. Mol. Cell. Cardiol. 138, 158–164 (2020).

    CAS  PubMed  Google Scholar 

  161. Nicolaides, N. C., Vgontzas, A. N., Kritikou, I. & Chrousos, G. HPA axis and sleep. In Endotext (eds Feingold, K. R. et al.) (MDText, 2000).

  162. McStay, M. et al. Intermittent fasting and sleep: a review of human trials. Nutrients 13, 3489 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jurado-Fasoli, L. et al. Exercise training improves sleep quality: a randomized controlled trial. Eur. J. Clin. Invest. 50, e13202 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

F.K.S. is funded by the National Institutes of Health R35 HL135752, P01 HL131478 and P01 HL142494. H.J. is supported by the German Research Foundation JA 2545/2-1. The authors thank K. Joyes (Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA) for help with editing the manuscript before initial submission.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Filip K. Swirski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Daniela Carnevale; Andreas Habenicht, who co-reviewed with Sarajo Mohanta; and Andrew Murphy for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssen, H., Koekkoek, L.L. & Swirski, F.K. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat Rev Cardiol 21, 157–169 (2024). https://doi.org/10.1038/s41569-023-00931-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00931-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing